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Abstract

This article is a survey on branching Brownian motions in time-space random
environment associated with the Poisson random measure. We show the existence
of the phase transitions in terms of the population growth rate and of the diffusivity
as follows: if the effect from the randomiiess of the environment is weak enough,
the population growth rate is the same with its expectation almost surely and the
population density satisfies the ceiitral limit theorem. In contrast with this, if the
effect is strong enough, the population growth rate is strictly less that its expectation
almost surely and particles $corl(:ell\uparrow_{1\dot{c}1}te$ on small sets infinitely often.

1 Introduction
We consider a model of branching Brownian motions in timespace random environment
associated with the Poisson random measure. In particular, we are concemed with the
population growth rate and the diffusivity of the population density. For the non-random
environment model, it is well known that the growth rate is the same with that of the
expected total population size and 1, $he$ population density satisfies the central limit the-
orem. However, our model may have quite different properties because of the correlation
among Brownian particles caused by the randomness of the environment. In the present
article, we give a survey on this problem and related topics by following [32] and [33].

Smith-Wilkinson [35] and Athreya-Karlin [1], [2] formulated models of discrete time
branching processes in random environment as a generalization of the classical Galton-
Watson process (see also [3]). There t.he off: priiig distribution forms a stochastic process
indexed by generation. A notable feature of these models is the correlation among particles
caused by the randomness of the $ofi^{\backslash }s$] $)I^{\cdot}i_{IJ}g$ di $\backslash c\uparrow_{I}\cdot i1)ut.ion$ . On account of this, these models
are different from the classical Galton $-\backslash \uparrow^{r}d\uparrow,\overline{h}^{t}(11$ process in many properties such as the
extinction condition and the population growth rate. For instance, see [34], [35] for
the Smith-Wilkinson model and [1], [2] for the Athreya-Karlin model. Kaplan [25] also
introduced a continuous time model and obtained the counterparts of the results as we
mentioned above. In this model. the offspring and the splitting time distributions form
stochastic processes and are independent to each other.

The case of interest here is a model of $1\supset i\cdot anching$ processes with spatial motions;
particles reproduce according to a Gall on-Watson process and move in space according to
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a stochastic process. Then the peculiar ] $)r()])ertv$ to this model is $t_{\text{・}}he$ diffusivity of particles.
For the non-random $environm\sim\circ nt$ model. we may guess that $t_{l}he$ diffusivity of this model is
the same with that of the underlying process. In fact, this is true for branching Brownian
motions and branching random walks as proved by S. Watanabe (see [3, p.243, Theorem
1 $])$ and Biggins [6], respectively (see also [11], [18], [37] and references therein for related
results on asymptotic properties of branching Markov processes). However, if we cope
with models of branching $prc|cesses$ with spatial motions in random environment, both
the population growth rate and the diffusivity are affected by the correlation among
particles. In particular, N. Yoshida [38] aiid Hu-N. Yoshida [20] proved the existence
of the phase transitions of these properties for a model of branching random walks in
discrete time-space random environment. There the offspring distributions attached to
time-space points are independent and identically distributed (see also [7], [17] and [29]
for more results on this mode:).

The goal of the present article is to study the population growth rate and the diffusivity
for a continuous time-space r-iodel, that is, a model of branching Brownian motions in
time-space random environment. To consider this subject, we formulate the model so
that the splitting time $distrib_{J}tions$ of particles are correlated to each other by the time-
space Poisson random measure. Roughly speaking, each Brownian particle splits early
in proportion to the number of Poisson points over the trajectory of the particle. We
can then prove the following: if the spatial dimension is high and the correlation is weak
enough, the growth rate of the population size is the same with that of the expectation
almost surely and the population density satisfies the central limit theorem. Therefore,
the situation of our model is rhe same with that of the non-random environment model.
In contrast with this, if the spatial dimension is low or the correlation is strong enough,
the growth rate of the population size is strictly less than that of the expectation almost
surely and particles concentrate on small $\backslash et\backslash$ infinitely often.

The results we stated abcve are continuous counterparts of those established by N.
Yoshida [38] and Hu-N. Yoshida [20], and we take an approach similar to theirs. Here
we explain our motivation for introducing and studying the continuous time model: we
can often investigate the continuous time model more in detail than the discrete time
one by stochastic analysis. For directed polymers in random environment, Comets and
N. Yoshida $[$ 15, 16] introduced a continuous time-space model which is called Brownian
directed polymers in random environment $\dagger$ and obtained several detailed results by ap-
plying stochastic analysis. Concerning our model, we do not satisfy the motivation yet,
but we hope that our model is applicable for tlie detailed study.

Here it should be mentioned that tlte phase transitions of the population growth rate
(or the growth rate of the partition $ftItt$ ( ion) and of the diffusivity appear in many models
such as directed polymers in random environinent ([8], [9], [12], [13], [14], [15], [16]),
branching random walks in random environment ([17], [20], [29], [38]), linear stochastic
evolutions ([28], [40], [41]) and linear systenis ([26] $\grave$ [27]). Furthermore, similar techniques
can be applied for the study of these models and our model. Among them, Brownian
directed polymers in random environment ([15], [16]) are closely related to our model.
In fact, if we fix an environnient. $th_{t^{\supset}t^{s}}x$ ] $)\mathfrak{k}^{1}(t‘ J(1])(])ulatioIl$ size of the branching model
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coincides with the so called partition function of the directed polymer model. This relation
will be explained more precisely in Section 4 below.

2 Model

2.1 Construction
A branching process we consider in this article is defined by the Brownian motion on
$\mathbb{R}^{d}$ and the Poisson random measure on $\mathbb{R}_{+}\cross \mathbb{R}^{d}$ for $\mathbb{R}_{+};=[0, \infty)$ . Following [39], we
first give some notations of them and then construct branching Brownian motions in
time-space random environment. We remark that Savits [31] also constructed branching
Markov processes in time-space random environment by applying the results by N. Ikeda,
M. Nagasawa and S. Watanabe ([21], [22], [23]), but our construction is more direct and
self-contained.

Let $\eta$ denote the Poisson random measure on $\mathbb{R}_{+}\cross \mathbb{R}^{d}$ with unit intensity on a
probability space $(\mathcal{M}, \mathcal{G}, Q)$ . Nmiely, $\eta$ is a non-negative integer valued random mea-
sure such that, $\eta(A_{1}),$

$\ldots,$
$\eta(A_{n})$ are niutually independent for disjoint and bounded sets

$A_{1},$
$\ldots,$

$A_{n}\in \mathcal{B}(\mathbb{R}_{+}\cross \mathbb{R}^{d})$ and

$Q( \eta(A)=k)=\epsilon^{-|A|}\frac{|A^{k}}{k}!$ for $A\in \mathcal{B}(\mathbb{R}_{+}\cross \mathbb{R}^{d})$ .

Here $\mathcal{B}(\mathbb{R}_{+}\cross \mathbb{R}^{d})$ is the family of all Borel measurable sets on $\mathbb{R}_{+}\cross \mathbb{R}^{d}$ and $|\cdot|$ is the
Lebesgue measure on $\mathbb{R}^{1+d}$ . Let $\{\theta_{t}\}_{t\geq 0}$ be the time shift operator of the Poisson random
measure, that is, $\theta_{t}\eta=\theta_{t}\eta(d_{6}\cdot, d.’\cdot)=\eta(\{t\}+d_{6}\cdot, d.t:)$ identically for any $s,$ $t\geq 0$ . The
notation $\theta_{t}\eta$ is often abbreviated to $/1t$ . We denote by $\{\mathcal{G}_{t}\}_{t\geq 0}$ the family of the $sub-\sigma- field$

of $\mathcal{G}$ defined by
$\mathcal{G}_{t}=\sigma(\eta(A\cap((0, t]\cross \mathbb{R}^{d})), A\in \mathcal{B}(\mathbb{R}_{+}\cross \mathbb{R}^{d}))$ .

Let $M=(\Omega, \mathcal{F}, \{\mathcal{F}_{t}\}_{t\geq 0}, \{B_{t}\}_{t\geq 0}, \{P_{x}\}_{x\in 1R^{r}}’. \{\theta_{t}\}_{t\geq 0})$ be the Brownian motion on $\mathbb{R}^{d}$ ,
where $\{\theta_{t}\}_{t\geq 0}$ is the time shift operator of paths, that is, for each path $\omega\in\Omega,$ $B_{t}(\theta_{s}\omega)=$

$B_{t+s}(\omega)$ identically for any $s.t\geq 0$ . Note that we use the same notation $\{\theta_{t}\}_{t\geq 0}$ as the
time shift operators of paths and of the Poisson random measure, respectively. Denote
by $V_{t}$ the tube around the graph $\{(s, B_{s})\}_{0<s\leq f}$ defined by

$V_{t}=V_{t}(\omega)=\{(,s, .x;)\in \mathbb{R}_{+}\cross \mathbb{R}^{d}|.\nwarrow\in(0.t]. \iota:\in U(B_{s}(\omega))\}$ for $\omega\in\Omega$ ,

where $U(x)$ is a closed ball in $\mathbb{R}^{d}$ centered at $?\in$ IR $d$ with unit volume. Here we recall
that a Brownian particle can not hit any point for $d\geq 2$ , but we can recognize $\eta(V_{t})$ as
the number of Poisson points hit by the particle. We learn this idea from Comets and N.
Yoshida [16].

Let $\tau$ be a non-negative random vari $\dot{(}\{|_{)}]_{(}\lrcorner\langle)11(\zeta\}, \mathcal{F}. P_{x})$ , independently of the Brownian
motion, of exponential distribution witli the mean 1: $P_{x}(\tau>a)=e^{-a}$ for any $(x\geq 0$ . Fix
a parameter $\alpha>0$ and set

$S=S( \omega, \eta)=\inf\{t\backslash ’>0|c\downarrow’\eta(l_{f}(\mu’))>\tau(\omega)\}$ for (ru, $\eta$) $\in\Omega\cross \mathcal{M}$ .
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We then have
$P_{x}(S(\cdot, \eta)>t)=E_{x}[e^{-tx\eta(V_{t})}]$ .

Here we note that $\{\eta(V_{t}(\omega))\}_{t\geq 0}$ is a standard Poisson process on the half line for each
$\omega\in\Omega$ . In particular, the jump size of this process is equal to one Q-a.s. (for instance, see
[30, p.472, Proposition 1.4] $)$ . Let $\{p_{n}\}_{n=0}^{\infty}$ be a probability function, that is, $p_{n}\geq 0$ for
any $n\geq 0$ and $\sum_{n=0}^{\infty}p_{n}=1$ . In the sequel, we assume $p_{0}+p_{1}<1$ to avoid the case where
the numbers of particles do not increase for branching Brownian motions which will be
introduced below. We define

$m^{(q)}= \sum_{n=0}^{\infty}\uparrow?^{q}p_{n}$ for $q\geq 0$ .

We also let $I$ be an Nu $\{0\}$-valued random variable on $(\Omega, \mathcal{F}, P_{x})$ , independently of the
Brownian motion and $\tau$ , associated with $\{p_{n}\}_{n=0}^{\infty}$ so that $P_{x}(I=n)=p_{n}$ .

We now introduce the index sets. Define

$K^{0}=\{(0)\}$ , $K^{1}=\{(1)\}$ , $K^{n}=\{(1, k_{2}, \ldots, k_{n})|k_{2}, \ldots , k_{m}\in N\}$ for $n\geq 2$

and

$K=\sum_{n=0}^{\infty}K^{n}$ .

In addition, it is useful to set

$\overline{K^{0}}=\{(0,1)\}$ , $\overline{K^{n}}=K^{n+1}$ for $?l\geq 1$

and
$\overline{K}=\sum_{n=0}^{\infty}\overline{Ji^{r_{h}}}$ .

If $k=(1, k_{2}, \ldots, k_{n})\in K^{n}$ for some $\uparrow 7\geq 1$ and $k\in N$ , then we define $k\cdot k=$

$(1, k_{2}, \ldots, k_{n}, k)\in\overline{K^{n}}$ . By the same $wa$} $.$ we define (0). $1=(0.1)\in\overline{K^{0}}$.
Let $\{B_{t}^{k}\}_{t\geq 0}$ and $\tau^{k},$ $k\in K$ , be independent copies of $\{B_{t}\}_{t\geq 0}$ and $\tau$ , respectively.

Denote by $V_{t}^{k}$ the tube $V_{t}$ associated with the Brownian motion $\{B_{t}^{k}\}_{t\geq 0}$ , and by $S^{k}$ the
random variable $S$ with $\tau$ and $V_{t}$ replaced by $\tau^{k}$ and $V_{t}^{k}$ , respectively. In addition, we set
$I^{(0)}=1$ and let $I^{k},$ $k\in K\backslash K^{0}$ , be independent copies of $I$ , respectively.

We consider the family of randoni variables $T^{k}$ and $\{B_{t}^{k}\}_{t\geq 0}$ indexed by $k\in K$ on
the measurable space $(\Omega\cross \mathcal{M}, \mathcal{F}\otimes \mathcal{G})dq$ follows: for $eac\cdot h$ fixed $(\omega, \eta)\in\Omega\cross\Lambda 4$ , let
$T^{(0)}(\omega, \eta)=0$ and $B_{t}^{(0)}(\omega, \eta)=B_{t}^{(0)}((A^{\prime)}$ identically for any $t\geq 0$ . We then define induc-
tively for $k\cdot k\in\overline{K}$ ,

$T^{k\cdot k}=T^{k_{t}k}(\omega, \eta)=\{\begin{array}{ll}T^{k}(\omega, \prime/))+l(-\supset^{k\cdot k}(\theta_{T^{k}()}\omega,\prime\prime\omega, \theta_{T^{k}(\omega,r\})}\eta) if k\leq I^{k}(\omega)\infty if k\geq I^{k}(\omega)+1,\end{array}$

and
$B_{t}^{kk}=B_{t}^{k\cdot k}(\omega, \eta)$

$=\{\begin{array}{l}B_{T^{k}\langle\omega,\eta)}^{k}(\omega, \eta)+B_{t}^{k\cdot k}(\omega)-B_{T^{k}(\omega,\prime\prime)}^{k\cdot k}(4\prime)\triangle\end{array}$

for $T^{k}(\omega, \eta)\leq t<T^{k\cdot k}(\omega, \eta)$ if $k\leq I^{k}(\omega)$

$ot$ herwise,
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where $\triangle$ is a cemetery point, $T^{(1)}$ $:=T^{(0,1)}$ and $B_{t}^{(1)}$ $:=B_{t}^{(0,1)}$ . We use the notations $B_{t}^{k}$

and $T^{k}$ to denote, respectively, the position and the splitting time of the particle with
index $k$ of a branching Brownian motion. More precisely, we can describe our branching
Brownian motion as follows:

$\bullet$ At time $0$ , the Brownian particle with index 1 starts from $B_{0}^{(0)}$ .

$\bullet$ The Brownian particle with index $k\in K\backslash K^{0}$ splits into $n$ Brownian particles with
probability $p_{n}$ at site $B_{T^{k}}^{k}$ at time $T^{k}$ .

$\bullet$ These Brownian particles, indexed by $k\cdot 1,$ $k\cdot 2,$
$\ldots,$

$k\cdot n$ , respectively, start from
$B_{T^{k}}^{k}$ independently.

The definition of the splitting time says that eath Brownian particle is apt to split if the
associated ball with unit volume catches many Poisson points.

Let us introduce the notion of branching Brownian motions in random environment.
We define the probability measures $\{\mathbb{P}_{x}^{?1}\}_{x\in R^{d}}$ and $\{\mathbb{P}_{x}\}_{x\in R^{d}}$ on $(\Omega\cross \mathcal{M}, \mathcal{F}\otimes \mathcal{G})$ , respec-
tively, by

$\mathbb{P}_{x}^{21}=P_{x}\otimes\delta_{1/}$ and $\mathbb{P}_{x}=\int_{\lambda 4}Q(d\eta)\mathbb{P}_{x}^{\eta}$ ,

where $\delta_{\eta}$ is the Dirac measure at $\eta\in \mathcal{M}$ . We call
$M|^{7}=(\Omega\cross \mathcal{M}, \mathcal{F}\otimes \mathcal{G}. \{\mathcal{F}_{t}\otimes \mathcal{G}_{t}\}_{t\geq 0}, \{\{B_{t}^{k}\}_{t\geq 0}\}_{k\in K}, \{T^{k}\}_{k\in K}, \{\mathbb{P}_{x}^{\eta}\}_{x\in R^{d}})$

a branching Brownian motion in environment $\eta$ with offspring distribution $\{p_{n}\}_{n=0}^{\infty}$ , and
$\overline{M}=(\Omega\cross \mathcal{M}, \mathcal{F}\otimes \mathcal{G}, \{\mathcal{F}_{t}\otimes \mathcal{G}_{t}\}_{t\geq 0}. \{\{B_{t}^{k}\}_{t\geq 0}\}_{k\in K}, \{T^{k}\}_{k\in K}, \{\mathbb{P}_{x}\}_{x\in \mathbb{R}^{d}})$

a branching Brownian motion in random environment with offspring distribution $\{p_{n}\}_{n=0}^{\infty}$ .
Here it should be emphasized that, for $eac\cdot h$ fixed $k\in K,$ $T^{k}$ ‘’ $-T^{k},$ $T^{k\cdot 2}-T^{k},$

$\ldots$ are
independent to each other under the law $\mathbb{P}^{\prime/}(\cdot|T^{k})$ , but this is not true under the law
$\mathbb{P}(\cdot|T^{k})$ .

Let $N_{t}(A)$ be the number of particles on the set $A\in \mathcal{B}(\mathbb{R}^{d})$ at time $t$ , that is,

$N_{\ell}(A)= \sum_{k\cdot k\in\overline{K}}1_{\{T^{k}\leq t<T^{kk},B^{kk}\in A\}}$
.

We can then regard $N_{t}(\cdot)$ as a configuration measure of particles at time $t$ . We denote by
$\overline{N}_{t}$ the total number of particles at time $t$ , that is, $\overline{N}_{t}=N_{t}(\mathbb{R}^{d})$ . We also use the notation

$N_{t}(f)= \sum_{k\cdot k\in\overline{K}}f(B_{t}^{kk})1_{\{T^{k}\leq t<T^{kk}\}}$
for $f\in \mathcal{B}_{b}(\mathbb{R}^{d})$ ,

where $\mathcal{B}_{b}(\mathbb{R}^{d})$ stands for the set of all bounded Borel measurable functions on $\mathbb{R}^{d}$ .

Remark 2.1. (Extinction. [32]) Since the branching mechanism $\{p_{n}\}_{n=0}^{\infty}$ is deterministic
in our model, the extinction condition is similar to the Galton-Watson process. In fact,
we can prove

$m^{(1)}\leq 1\Rightarrow \mathbb{P}(1i_{l11}\overline{N}_{f}=0)=1$

by comparing our model with the continuous time Galton-Watson process with branching
rate $1-e^{-a}$ and branching mechanism $\{I’ n\}_{?\iota=0}^{\infty}$ .
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2.2 Moments
Here we give some results on the moments of $A_{t}^{r}$ . In the sequel, we assume that $m^{(1)}$ is
finite. Let us define

$\beta=\log\{m^{(1)}-e^{-\mathfrak{a}}(nt^{(1)}-1)\}$ and $\lambda=\lambda(\beta)$ $:=e^{\beta}-1$ . (2.1)

Lemma 2.2. ([32]) For any $s,$ $t\geq 0$ and $f\in \mathcal{B}_{b}(\mathbb{R}^{d})$ , we have

$E_{x}^{\eta}[N_{t+s}(f)|\mathcal{F}_{t}\otimes \mathcal{G}_{t}]=\sum_{k\cdot k\in\overline{K}}1_{\{T^{k}\leq t<T^{kk}\}}E_{B^{kk}},[e^{\beta\eta_{t}(V_{s})}f(B_{s})]$

$Q$-a.s.

and
$E_{x}[N_{t+s}(f)|\mathcal{F}_{t}\otimes \mathcal{G}_{\ell}]=\epsilon^{\lambda_{\backslash }s}’\sum_{k\cdot k\in\overline{K}}1_{\{T^{k}\leq\iota<T^{kk}\}}E_{B_{t}^{k\cdot k}}[f(B_{s})]$

.

In particular, we obtain

$E_{x}^{\eta}[N_{t}(f)]=E_{x}[t^{l^{t}/(V_{l})}f(B_{t})]$ $Q$-a.s. (2.2)

and
$E_{x}[N_{\ell}(f)]=e^{\lambda\ell}E_{x}[f(B_{t})]$ . (2.3)

By (2.1), (2.2) and (2.3), we have

$E_{x}^{\eta}\ulcorner_{t}]=E_{x}[\{r|l(1)-e^{-}$
’

$(m^{(1)}-1)\}^{\eta(V_{1})}]$ $Q$-a.s.

and
$E_{x}\ulcorner^{r_{t}}]==e^{(rn^{(t)}-1)(1-e^{-\circ})t}\lambda’$ .

Therefore, if we fix an environment, t,he $exl$) $ec\cdot te(1$ population size of our model is similar
to that of discrete time branching processes. On the other hand, if we randomize the
environment, the situation is similar to continuous time branching processes.

Let $\overline{M}_{\ell}$ be a normalization of $t.1le$ total ] $)([)nlat.itIl$ size defiiied by

$\overline{\Lambda f}_{f}=t_{1}^{\urcorner^{-\lambda t}}\overline{\backslash \dot{|}}$

’ for $t\geq 0$ . (2.4)

Lemma 2.2 then implies that $\pi_{t}$ is a non-negative martingale on $(\Omega\cross \mathcal{M},$ $\mathcal{F}\otimes \mathcal{G},$ $\{\mathcal{F}_{t}\otimes$

$\mathcal{G}_{t}\}_{\ell\geq 0},$ $\mathbb{P}_{x})$ , whence there exists a limit $\lim_{tarrow\infty}\overline{M}_{t}=:\overline{\Lambda f}_{\infty}\mathbb{P}- a.s$ . Here we note that the
martingale $\overline{\Lambda l}_{t}$ includes the information (11 asymptotic properties similar to branching
processes in non-random environment (for instance, see [3]). We can then derive this
information by the moment calculatioii and $1\supset y$ Ito $s$ formula.

In what follows, we further assume that $\prime\prime\prime(2)$ is finite. Let us define

$\subset=\uparrow 7t^{(2)}-m^{(1)}=\sum_{n=r)}^{\infty}\prime\prime(\prime\prime-1)_{J})_{\eta}$ and $\mu=1-e^{-\mathfrak{a}}$ .

We denote by $(\{B_{t}^{1}\}_{t\geq 0}, \{P_{x}^{1}\}_{x\in R^{r\prime}})$ and $(\{B_{f}^{2}\}_{t\geq 0}. \{P_{x}^{2}\}_{x\in R^{d}})$ the independent Brownian
motions on $\mathbb{R}^{d}$ . We let $P_{x.y}=P_{r}^{1}\mathfrak{c}^{-}|$ , and abbreviate $P_{:r,\tau}$ to $P_{x}$ .
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Lemma 2.3. ([33]) For any $s,$ $t\geq 0$ and $f.g\in \mathcal{B}_{b}(\mathbb{R}^{d})$ , we have

$E_{x}[N_{t+s}(f)N_{t+s}(g)|\mathcal{F}_{t}\otimes \mathcal{G}_{t}]=\sum_{k\cdot k\in\overline{K}}1_{\{T^{k}\leq t<T^{kk}\}}(e^{\lambda s}E_{B_{f}^{kk}}[f(B_{s})g(B_{s})]$

$+c \mu e^{2\lambda s}E_{B_{f}^{kk}}[\int_{0}^{s}e^{-\lambda u}E_{B_{1l}}[\exp(\lambda^{2}\int_{0}^{s-u}|U(B_{v}^{1})\cap U(B_{v}^{2})|dv)f(B_{s-u}^{1})g(B_{s-u}^{2})]du])$

$+ \sum_{k\cdot k,\overline{k}\cdot\overline{k}_{\frac{}{k}}\in\overline{K}}.1\{\begin{array}{l}T^{k}\leq t<T^{k\cdot k}\tau^{\overline{k}}\leq\iota<\tau^{\overline{k}\overline{k}}\end{array}\}[\exp(\lambda^{2}\int_{0}^{s}|U(B_{u}^{1})\cap U(B_{u}^{2})|du)f(B_{s}^{1})g(B_{s}^{2})]$

.

In particular, we have

$E_{x}[\overline{N}_{t+s}^{2}|\mathcal{F}_{t}\otimes \mathcal{G}_{t}]$

$= \overline{N}_{t}(e^{\lambda s}+c\mu e^{2\lambda s}\int_{0}^{s}e^{-\lambda u}E[\exp(\lambda^{2}\int_{0}^{s-u}|U(B_{v}^{1})\cap U(B_{v}^{2})|dv)]du)$

$+ \sum_{kk\neq\overline{k}}.1kk.’\overline{k}\cdot\overline{k}_{\frac{}{k}}\in\overline{K}\{T^{\overline{k}}\tau^{k}\leq\leq tt<<T^{\overline{k}\cdot\overline{k}}T^{kk}\}^{e^{2\lambda s}E_{B^{kk},.B^{\overline{k}\overline{k}}}},[\exp(\lambda^{2}\int_{0}^{s}|U(B_{u}^{1})\cap U(B_{u}^{2})|du)]$

.

Related to Lemma 2.3, we should keep in mind that the value

$\exp(\lambda^{2}\int_{0}^{t}|U(B_{s}^{1})\cap U(B_{s}^{2})|ds)$

expresses how often two independent Brownian particles “meet” together. This value
comes from the fact that some Brownian balls can catch a Poisson point at the same
time. In other words, this value measures the magnitude of the correlation among particles
caused by the Poisson random measure.

Let $\{\overline{M}\rangle_{t}$ be a predictable quadratic variation of the martingale $\overline{M}_{t}$ , that is, $\langle\overline{M}\}_{t}$ is
a unique predictable and locally integrable increasing process such that $\overline{\lambda l}_{t}^{2}-\{\overline{M}\rangle_{t}$ is a
locally square integrable martingale. (see [19, p. 199, 7.28 Lemma]).

Proposition 2.4. ([33]) We get the following equality.

$\{\overline{\Lambda f}\rangle_{t}=\{(-1)_{l^{J_{n}}}^{2}I^{\mu\int_{0^{e^{-\lambda s_{A}}}}^{t}\overline{\eta}}\int_{s}d.\tau+\lambda^{2}\int_{0}^{t}(\int_{N^{d}},\backslash \prime ds$

(2.5)
for $t\geq 0$ .

Here we give a remark on the predictable quadratic variation $\langle\overline{M}\rangle_{\ell}$ . The equality

$\int_{N^{d}}M_{s}(U(X))^{2}dx-e^{-\lambda s}\overline{\Lambda f}_{s}=e^{-2\lambda\backslash \int_{\mathbb{R}^{d}}\tau^{k}\leq s<T^{k\cdot k}}\sum_{kk,\overline{k}\overline{k}\in\overline{K}}1\{B_{s}^{kk}\in U(x)\}^{1}\{\tau^{\overline{k}}\leq s<T^{\overline{k}\overline{k}}\}^{dx}B_{s}^{\overline{k}\overline{k}}\in U(x)$

$kk\neq\overline{k}\overline{k}$

implies that the second term of the right hand side of (2.5) is closely related to the
correlation among particles because the magnitude of the correlation is proportional to
the degree to which pairs of particles meet together
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3 Results
In this section, we state the results in this article. These results are the continuous model
version of those obtained by N. Yoshida [38] aiid Hu-N. Yoshida [20] for branching random
walks in random environment. $ln$ the sequel, we denote by $P,$ $\mathbb{P}^{\eta},$

$\mathbb{P}$ , etc. the quantities
$P_{x},$ $\mathbb{P}_{x}^{\eta},$ $\mathbb{P}_{x}$ , etc. for $x=0$ , respectively.

3.1 Regular growth and diffusivity

In this subsection, we show that, if the correlation among particles is weak enough, then
the properties of our model are similar to branching Brownian motions in non-random en-
vironment. Here the non-random environment ineans that the splitting times of particles
are independent and identically distributed with the given exponential distribution.

Define
$M_{t}(dx)=e^{-\lambda t}N_{t}(d_{1}:)$ and $/$) $(x \cdot)=\frac{1}{(2\pi)^{d/2}}\exp(-\frac{|x|^{2}}{2})$ .

Let $C_{b}(\mathbb{R}^{d})$ stand for the set of all bounded and continuous functions on $\mathbb{R}^{d}$ .

Theorem 3.1. ([32]) Assum $\circ\vee$

$d\geq 3$ , $m^{(1)}>1$ and $m^{(2)}<\infty$ .

Then the following conditions are equivalent to each other:

(i) $E[ \exp(\lambda^{2}\int_{0}^{\infty}|U(B_{\ell}^{1})\cap U(B_{\ell}^{2})$ I $dt)]<\infty$ ;

(ii) $\lim_{tarrow\infty}\overline{M}_{\ell}=\overline{M}_{\infty}$ in $L^{2}(\mathbb{P})$ ;

(iii) $\lim_{tarrow\infty}\int_{R^{d}}f(\frac{\lambda}{\sqrt{t}})M_{t}(dx)=\overline{\Lambda f}_{\infty}\int_{R^{d}}f(.r\cdot)\rho(.x:)dx$ in $L^{2}(\mathbb{P})$ for any $f\in C_{b}(\mathbb{R}^{d})$ .

Remark 3.2. Related to the comment after Lemma 2.3, Condition (i) means that the
correlation among particles is weak enough. Furthermore, since Lemma 2.3 implies

$E_{x}[\overline{M}_{\ell}^{2}]=e^{-\lambda\ell}+c\mu\int_{0}^{t}e^{-\lambda s}E[\exp(\lambda^{2}\int_{0}^{t-s}|U(B_{u}^{1})\cap U(B_{u}^{2})|du)]ds$, (3.1)

Conditions (i) and (ii) are equivalent to each other. From another point of view, Condition
(i) says that the randomness of the Brownian motion moderates that of the environment.
In fact, if we formally replace both $B_{t}^{1}$ and $B_{t}^{2}$ in Condition (i) with the origin, that is, we
assume that particles stay at the origin forever, then the expectation diverges to infinity.

Here we give another remark on (’ondition (i). $Eec\cdot all$ first t,he relation

$(\{B_{t}^{2}-B_{\ell}^{1}\}_{t>0}. P_{c})=d(\{B_{2t}\}_{t\geq 0}, P)$, (3.2)

where $=d$ means that the both hand sides have the same law. Since this implies

$E[ \exp(\lambda^{2}\int_{0}^{\infty}|U(B_{\ell}^{1})\cap U(B_{t}^{2})|dt)]=E[\exp(\frac{\lambda^{2}}{2}\int_{0}^{\infty}|U(0)\cap U(B_{t})|dt)]$ ,
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we see from [10, Theorem 5.1] and [36, Theorem 2.4] that Condition (i) is equivalent to
say

$\inf\{\frac{1}{2}\int_{\mathbb{R}^{d}}|\nabla u(x)|^{2}$ d.r $\{\iota\in C!_{0}\infty(\mathbb{R}^{d}), \frac{\lambda^{2}}{2}\int_{N^{d}}\ell\iota(.\iota.\cdot)^{2}|U(0)\cap U(x)|d’\iota\cdot=1\}>1$ ,

where $C_{0}^{\infty}(\mathbb{R}^{d})$ denotes the totality of infinitely differentiable functions with compact
support in $\mathbb{R}^{d}$ . [ $16$ , Proposition 4.2.1] also yields that Condition (i) holds if

$\beta\in(0.\log(1+\frac{\gamma_{d}}{2r_{d}}))$ ,

where $r_{d}=\beta((d+2)/2)^{1/d}/\sqrt{\pi}$ is the radius of $U(0)$ and $\gamma_{d}$ is the smallest positive zero
of the Bessel function $J_{(d-4)/2}$ defined $|yy$

$J_{\nu}( \gamma)=(\frac{\gamma}{2})^{\nu}\sum_{k=0}^{\infty}\frac{(-\gamma^{2}/4)^{k}}{k!\gamma(lJ+k+1)}$ for $\gamma\geq 0$ and $\nu>-1$ .

In contrast with $d\geq 3$ , when $d=1$ or 2, the Brownian motion is recurrent and a pair of
particles is apt to meet together as we can see from (3.2). Hence the correlation among
particles is so strong that Condition (i) does not hold.

Let $\rho_{t}(dx)$ be the population density at time $t$ defined by

$\rho_{t}(d.;\cdot)=\frac{N_{t}(d.\iota.\cdot)}{\overline{N}_{t}}$ .

We then get

Corollary 3.3. (Central limit theorem. [32]) Assume

$d\geq 3$ , $/7l^{(1)}>1$ and $m^{(2)}<\infty$ .

If one of the conditions in Theorem 3.1 holds, then

$\lim_{tarrow\infty}\int_{R^{d}}f(\frac{x}{\sqrt{t}})\rho_{t}(dx)=\int_{1\mathbb{R}^{d}}f(.r)/)(.r)d.l$’ in $\mathbb{P}(\cdot|\overline{hf}_{\infty}>0)$ -probability

for any $f\in C_{b}(\mathbb{R}^{d})$ .

Corollary 3.3 says that the population density $p_{t}(dx)$ converges weakly to the standard
normal distribution under the Brownian scale. We note that S. Watanabe and Nakashima
proved respectively almost sure central limit theorems of this type for branching Brownian
motions in non-random environment (see [3, p.245]) and for branching random walks in
random environment ([29]).

Related to the population density $/’ f(d.\})$ . we let

$\overline{\rho}_{\ell}=\sup_{x\in \mathbb{R}^{d}}\rho_{\ell}(U(.())$
and $f7_{f}= \int_{\mathbb{R}^{d}}p_{t}(U(x))^{2}dx$ . (3.3)
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We can then regard $\overline{\rho}_{t}$ as the density at the niost populated site and $R_{t}$ as the replica
overlap by analogy with the spin glass theory. Furthermore, by the same way as that in
[16, Theorem 2.3.2], there exists a constant $c=c\cdot(d)\in(0,1)$ such that

$c\overline{\rho}_{t}^{2}\leq R_{t}\leq\overline{p}_{t}$ for any $t\geq 0$ . (3.4)

We now characterize the diffusive behavior of our model in terms of the decay rate of the
replica overlap:

Proposition 3.4. ([32]) Assume

$d\geq 3$ , $m^{(1)}>1$ and $m^{(2)}<\infty$ .

If one of the conditions in Theorem 3.1 holds, then

$R_{\ell}=O(t^{-d/2})$ in $\mathbb{P}(\cdot|\overline{A/f}_{\infty}>0)$ -probability.

3.2 Slow growth and localization

In this subsection, we assume that the spatial dimension $d$ is one or two, or the parameter
$\lambda$ is large enough. For $d=1$ or 2, the correlation among particles becomes strong enough
as we mentioned above. Even for $d\geq 3$ , the situation is similar to the former case for
large $\lambda$ . Therefore, under such situations, the ]$)opulation$ growt,h rate and the diffusivity
of our model change dramatically.

We first consider the population growth rate. Since t,he exponential growth rate of
$E^{\eta}[\overline{M_{t}}]$ is strictly negative Q-a.s. as we will see in Section 4, we have the following:

Theorem 3.5. (Slow growth. [32]) For $d=1$ or 2, $\mathbb{P}(\overline{M}_{\infty}=0)=1$ holds for any
$\beta>0$ . On the other hand, for $(l\geq 3$ , there exists a positive constant $\beta_{0}(d)>0$ such that
$\mathbb{P}(\overline{M}_{\infty}=0)=1$ holds for any $\beta>[f_{0}(d)$ Moreover, for any dimension $d$ , there exists a
non-negative constant $\beta_{1}(d)\geq 0$ such that, for each $\beta>\beta_{1}(d)$ ,

$\lim\sup\frac{\log\overline{\# t}_{\ell}}{t}<-(.(/;)$ $\mathbb{P}- a.s$ .
$tarrow\infty$

holds with some non-random constant $c\cdot(\beta)>0$ . In particular, we have $\beta_{1}(1)=\beta_{1}(2)=0$

and $\beta_{1}(d)>0$ for $d\geq 3$ .

Theorem 3.5 says that, if the randomness of the environment is strong enough, the
growth rate of the population size is strictlv less than its expectation almost surely. This
result contrasts with the non-randoni environinent case and the weak random environment
case as we discussed before.

We next consider the diffusivity. Here we $r\epsilon^{1}c\cdot al1$ that each particle splits early in
proportion to the number to Poisson points over the passage area of the associated ball.
Since Brownian balls can catch common Poisson points at the same time, the splitting
places of some particles may be close to each ot her. Moreover, if the correlation is strong
enough, such a tendency increases so that particles may concentrate on small sets. To
confirm this property, we establish t.he following relations between the slow population
growth and the localization property in teriiis of the replica overlap:
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Theorem 3.6. ([33]) (i) Assume

$p_{0}=0$ , $//l(1)>1$ and $m^{(2)}<\infty$ . (3.5)

Then we have the relation

$\{\overline{M}_{\infty}=0\}\subset\{\int_{0}^{\infty}R_{t}dt=\infty\}$ $\mathbb{P}- a.s$ .

Furthermore, if $\mathbb{P}(\overline{M}_{\infty}=0)=1$ holds, then there exists a non-random positive constant
$c>0$ such that

$\int_{0}^{t}R_{s}ds\geq-c\cdot\log\overline{Jtf}_{t}$ for any $t\geq T$

for some random positive constant $T>0$ .
(ii) Assume

$p_{0}=0$ and there exists $L\geq 2$ such that $p_{n}=0$ for any $n\geq L+1$ . (3.6)

Then we also have the relation

$\{\overline{M}_{\infty}=0\}=\{\int_{0}^{\infty}R_{t}dt=\infty\}$ P-a.s.

If $\mathbb{P}(\overline{M}_{\infty}=0)=1$ , then there exist non-random positive constants $c_{1},$ $c_{2}>0$ such that

$-c_{1} \log\overline{M}_{t}\leq\int_{0}^{f}R_{s}d.s\leq-c_{2}\log\overline{\Lambda f}_{t}$ for any $t\geq T$

for some mndom positive constant $T>0$ .

We now give a sketch of the proof of Theorem 3.6 (ii). In the sequel, we use the
following notations: for functions $f$ and $g$ defined on a set $A\subset \mathbb{R}^{d}$ , we write $f_{\wedge}^{\vee}g$ on
a set $A$ if there exist two positive constants (1, $r_{2}>0$ such that $c_{1}g(x)\leq f(x)\leq c_{2}g(’\iota\cdot)$

holds for any $x\in A$ . For functions $f$ and $g$ defined on $\mathbb{R}_{+}$ , we write $f\sim g$ as $tarrow\infty$ if
$\lim_{tarrow\infty}f(t)/g(t)=1$ holds.

We first note that $\overline{M}_{t}$ is a purely discontinuous martingale because $\overline{M}_{\ell}$ is of finite
variation on each finite time interval (see [24. p.41, 4.14 Lemma $(b)]$ ). Therefore, if $[\overline{\Lambda f}]_{t}$

denotes the quadratic variation of $\overline{\Lambda I}_{f}$ . then we get

$[ \overline{\Lambda f}]_{t}=\overline{J\mathfrak{h}I}_{0}^{2}+\sum_{q}(\triangle\overline{Jl}_{s})^{2}\triangle^{\frac{<s}{j1f}}\neq 00\leq t$

for
$\overline{M}_{t-}:=\lim_{s\uparrow t}M_{s}$

$\epsilon J11t]$ $\triangle\overline{\Lambda I}_{t}$ $:=\overline{\lrcorner \mathfrak{h}I}_{t}-\overline{M}_{t-}$ .

Moreover, by Ito’s formula ([24, p.57. Theorem 4.57]) applied to $-\log\overline{M}_{t}$ and (3.6), we
have

$- \log\overline{hf}_{t}=-\int_{0^{i}}^{1}\overline{\overline{J\mathfrak{l}I}_{s-}}d\overline{\Lambda 1}_{s}+/0^{t}\frac{1}{\overline,i1\ell_{s-}^{2}}d[\overline{4\mathfrak{h}[}]_{s}$ for any $t>0$ .
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By [19, p.291, 10.7] and Proposition 2.4, we know

$\int_{0}^{t}\frac{1}{\overline,M_{s-}^{2}}d[\overline{M}]_{s}\sim\int_{0}^{\ell}\frac{1}{\overline,\Lambda I_{s}^{2}}d\{\overline{\Lambda I})_{s^{\vee}}-\int_{0}^{t}R_{s}ds$ as $tarrow\infty$ .

In addition, the finite variation part $\int_{0}^{\ell}1/\overline{\Lambda f}_{s-}^{2}d[\overline{\Lambda f}]_{s}$ dominates the martingale part
$- \int_{0}^{t}1/\overline{M}_{s-}d\overline{M}_{s}$ by the law of large numbers ([19, p.247, 9.38 Corollary]). Hence-log $\overline{M}_{t}$

is comparable to $\int_{0}^{\ell}R_{s}ds$ , which completes the proof.

Using Theorems 3.5 and 3.6 with (3.4), we can derive the strong localization property
in terms of the population density.

Corollary 3.7. (Localization. [33]) Assume the condition (3.5). Then, for any $\beta>\beta_{1}(d)$ ,
we have

$\lim_{tarrow}\sup_{\infty}\overline{\rho}_{t}\geq\lim_{tarrow}\sup_{\infty}R_{\ell}\geq c’(\beta)$

$\mathbb{P}- a.s$ .

with some non-random positive constant $c^{/}(\beta)\in(0,1)$ .

4 Connection with Brownian directed polymers in
random environment

In this section, we confirm a $connet^{-}tion$ between the model of branching Brownian mo-
tions in random environment and the model of Brownian directed polymers in random
environment introduced by Comets and N. Yoshida [16]. Let $\mu_{\ell}^{x}$ be a probability measure
on $(\Omega, \mathcal{F})$ , the so called polymer measure, defined by

$\mu_{t}^{x}(d\omega)=\frac{t^{3_{lj}(1^{\prime,})}\prime}{Z_{\ell}^{x}}P_{r}(d\omega)$ $\eta\in \mathcal{M}$ ,

where $\beta\in \mathbb{R}$ is a parameter and $Z_{t}^{x}$ is the partit.ion fun$(\uparrow ion$ defined by

$Z_{t}^{x}=E_{x}[\mu^{\backslash ^{i}}\cdot;)/(t^{r_{1}})]$ .

The size of $\eta(V_{t})$ is then considered as the total number of impurities governed by $\mathcal{T}($ in the
tube $V_{t}$ , and thus the polymer measure is nothing but the law of the Brownian motion in
environment $\eta$ .

Let
$11_{\ell}=\epsilon^{\backslash ^{-\lambda t}}Z_{t}$

for $\lambda=\lambda(\beta)=e^{\beta}-1$ as we definecl in $(\underline{)}.1)$ . $\ulcorner\Gamma henlt_{\ell}’$ is called the normalized partition
function because $Q[W_{t}]=1$ holds. In addition, since the process $\{\eta(V_{t}(\omega))\}_{t\geq 0}$ has
independent Poisson increments for each $\omega’\in\Omega$ . lf $t$ is a mean-one, right continuous and
left limited, positive martingale on $(M. \mathcal{G}. \{\mathcal{G}_{t}\}_{t\geq 0}.Q)$ , whence the limit $W_{\infty}$ $:= \lim_{\ellarrow\infty}W_{\ell}$

exists Q-a.s. By noting that $\rho^{;r/(\mathcal{V}_{1})}>0$ holds for all $t\geq 0$ , the event $\{W_{\infty}=0\}$ is
measurable with respect to the tail $\sigma- firightarrow]_{(}]$

$\bigcap_{t\geq 1}\sigma(7’|_{|t\propto)x|\mathbb{R}^{\prime l}})$
.
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Furthermore, Kolmogorov’s O-llaw implies $Q(W_{\infty}>0)=1$ or $Q(W_{\infty}=0)=1$ . The
situation $Q(W_{\infty}>0)=1$ is called the weak disorder and another situation $Q(W_{\infty}=$

$0)=1$ the strong disorder.
In the sequel, let $\beta$ and $\lambda=\lambda(\beta)$ be the same as we defined in (2.1). Since (2.3) yields

$E^{\eta}[N_{t}(A)]=E[\epsilon^{\beta\eta(V_{1})}\urcorner;B_{t}\in A]$ and $E^{\eta}\ulcorner_{t}]=Z_{\ell}$ (4.1)

for any $\eta\in \mathcal{M}$ , we obtain

$E^{\eta}[M_{t}(A)]=e^{-\lambda\ell}E[e^{\beta_{l\prime}(V_{t})}\cdot,$ $B_{t}\in A]$ and $E^{\eta}\ulcorner\Lambda l_{\ell}]=W_{\ell}$ , (4.2)

and thus
$\mu_{t}(B_{t}\in A)=\frac{E^{\eta}[N_{t}(A)]}{E^{l|_{1}}\ulcorner V_{t}]}=\frac{E^{\eta}[M_{t}(A)]}{E^{\eta}\ulcorner_{t}]}$ .

Moreover, (4.1) says that the model of branching Brownian motions in random environ-
ment is more random than that of Brownian directed polymers in random environment.
However, as we already saw before, we can study the properties of the population growth
rate and of the diffusivity behavior of the former model in a similar way to the latter
model (see [16]).

We finally explain how Theorem 3. $\ulcorner J$ follows from the relation (4.2). Comets and N.
Yoshida [16, Theorem 2.1.1] showed the existence of the phase transition for Brownian
directed polymers in random environment in terms of the so called free energy defined by

$c^{/I}(\beta)$ $:= \lim_{tarrow\infty}-\frac{1}{t}\log W_{t}$ Q-a.s.

(the existence of the limit follows from the subadditive argument and $\psi(\beta)\geq 0$ holds for
any $\beta>0)$ . More precisely, they proved that there exists a critical value $\beta_{c}=\beta_{c}(d)\geq 0$

such that
$\mathfrak{j}/(\beta)=0\Leftrightarrow 0<\beta\leq\beta_{c}$

and
$\beta_{c}(d)>0$ for $d\geq 3$ . $darrow\infty 1inl\beta_{c}(d)=\infty$ .

Furthermore, Bertin ([4], [5]) recently proved

$\beta_{c}(1)=l^{f_{c}(2)=0}$ .

Hence, combining these results with (4.2), we get Theorem 3.5.
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