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Hitting of a line by two-dimensional symmetric
stable Lévy processes: an approach based on
modified resolvents

Yasuki Isozaki!?

Department cf Mathematics, Graduate School of Science,
Osaka University, Toyonaka, Osaka 560-0043, Japan.

Abstract

Let (X (¢),Y (t)) be a symmetric a-stable Lévy process on R? with 1 < a < 2. We
announce a multivariate asymptotic estimate involving the first hitting time/place
of a half-line. We deduce explicitly the density of the first hitting distribution of a
line. The method is based on some modified version of quantities in the celebrated
potential theory. We also discuss properties of quantities arising in our modification.

1 Introduction and the result

In [4] and [5], the author stud:ed trivariate asymptotic estimates involving the first hitting
time of the nonnegative-half o the first axis, the first hitting place thereon, and the sojourn
time on the first axis up to then, by a random walk and a Brownian motion, respectively.

Note that more precise in‘ormation can be retrieved from this kind of estimates such
as the tail probability concerning both the first hitting time and place, than from the tail
probability of the first hitting time.

Let 1 < a < 2. In this note, we are mainly concerned with the a-stable Lévy pro-
cess (X (t),Y (t)) with rotational symmetry on R? starting from (zp,y) € R2. Its law
and expectation are denoted by P;, 4, and E(;, 4,), respectively, and are determined by
Eoo)[e1XW+i&Y ()] = ot +2)°"? for (¢).¢,) € R?. Let Ly(t) be the local time at 0 for
Y(-): Ly(t) = lime_yo 2 f3 Li_ce)(Y(s))ds.

For a € R, we set

7(a, = inf{t > 0|Y (t) =0, X(t) > a}. (1.1)

We also set ®q(£1, u2) = 21/ [ #—2:(—6—?%—&%—)-5 Ci(a) = $4(1,0) = 27/B(3, 252), Ca(a) =
®,(0,1) = asinZ, and

ha dt

Lem(t2 + 1) log(to + Pa(pat, pi2)) (1.2)

Io(pos pta,s p2) = /

for &4 € R and p; > 0 (i = 0,1, 2) such that pug + p1 + pe > 0.
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To state the main theorem, we introduce a family of holomorphic functions. Let
Cy ={z2€C|Sz>0},C, ={z€ C|Sz > 0} and set

-1

®a(2; po, p2) = exp <%[x;7}; log(po + <I>a(t,uz))dt) (1.3)

for z € C, and u; > 0 (z = 0,2) such that o + o > 0. We can extend ¢, (2; o, 42) for
z € R by continuity. We also set

Pa(2;0,0) = iz)~ "2 for z € C; \ {0},

e
C]((J’)
where we employ the branch such that 17(*~1/2 = 1,

Theorem 1.1 Leta >0, u; >0 (¢ =0,1,2), and po + py + ua > 0.
(i) It holds

E(_a 0) [ e oLy (1(0))—p1 X (7(0)) - p27(0)

. etre o] 101 _ efia((?-iyl) p
= eM?% — - a . ; alU; P .
(Pa(zul;ﬁbﬂwll'Q)['x 27i(0 — i) (6: o, iz)

(i1) As s — +0,
1- E(—a 0) [e—lm.ﬂ(n “V Ly (7(0)) = 182 X (7(0)) — 25227 (0) ]

exp(1a(fo- pt1. ig))ale =72 .
Ch(e)T(1 + 251)

)

where ~ means that the ratio of the both sides converges to 1.

Since the method of proof applies to symmetric a-stable Lévy processes on R?, we
restate the theorem for such processes in the forthcoming paper [6]. Here (X(t),Y (t)) is
symmetric iff (X (¢) — X (0),Y (¢) — Y (0)) has the same law as (X (0) — X(t),Y(0) — Y (t)).
In Section 4, we give a generalization of the theorem for such (X (¢),Y (¢)) that X (¢) and
Y (t) are independent, X (t) is symmetric /3-stable, and Y (t) is symmetric a-stable.

We could not calculate explicitly the definite integral I, (uo, p1, pt2) defined in (1.2)
but some marginal values can be evaluated, e.g., exp (1,(0, 111,0)) = \/Cl(u)ug"*l)ﬂ and
exp (1a(0,0, 12)) = /Cal)pss™ V7.

It is elementary to obtain the following corollary by a Tauberian theorem, the strong
Markov property, and Theorem 1.2(i) below.

Corollary 1.1 (i) We have

Co () alr /2 o1
Plan [7(0) > A] ~ Y2200 At

: o 1 a1 as A — +o0o,
Cr()T(1 + =) (1 = %5=)
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where Cy(@) = 27/ B(3, 252) and Ca(e) = arsin I.
(i) If yo # 0 and z¢ € R, we have, as s — +0,

1-— E( vo) [C—P'OSZ(GMI)LY(T(O))“#lSQX(T(D))-“2S201T(O)]
Zo,Yo

a1 €Xp(Ia(Bo, i1, p2)) [ *0/10l (1 4 £2)—2/2
O+ 50 ). B

In the course of the proof of Theorem 1.1, we obtain an explicit formula for the first
hitting distribution of a line.

The law of a Lévy process (X(t),Y(t)) on R? is determined by the characteris-
tic exponent W(¢y,&,) satisfying E [ X H+E2Y ()] = ~t¥&é2) for (&,&) € R% If
(X(t),Y(t)) is symmetric in the sense that (X (t) — X (0),Y (t) — Y(0)) has the same law
as (X(0)—X(t),Y(0)—-Y(t)), we have ¥(&;, &) = ¥(—&;, —¢&2) and hence ¥ is real-valued.

| Zo + |yolt I(a_l)/2 dt.

Theorem 1.2 Set T} := inf {t > 0|Y (t) = 0}.
(i) Let (X(t),Y(t)) be an a-stable Lévy process with rotational symmetry on R? and
Ca,ror be a real random variable such that P [Coyor € dz ]| = B(3, 2551)71(1 + 22)~°/%dz.
Then Pz 40 [X(Toy) € dx] = P[yoCorot + To € dz].
(ii) More generally, if (X (t),Y(t)) is a genuinely two-dimensional symmetric a-stable

| L W(1,z)"'d
Léuvy process such that Egy[e® XO+102Y ()] = e~t¥(&182)  set P[Cy € dx] = ﬁ?%—)—_%
R ?

Then Plagy) [ X(TY) € dz| = P[yoCu + zo € dz].

The proof is given in Section 2 by an approach based on modified resolvents. We
characterize some quantities related to modified resolvents in Section 5.

In Section 2, we also study the hitting times of two parallel lines and some formula
concerning the last exit time from a line.

To our knowledge, there are only two papers in the literature concerning explicit hit-
ting distribution of sets by multidimensional stable Lévy processes. {2] obtained the first
hitting distribution of {z € R¢||z| > r} and {z € RY||z|] < r}, and [7] obtained that of
{z € RY|z| = r}, by an a-stable Lévy processes with rotational symmetry. Theorem 1.2
is restricted to the case for dimension 2, but needs not the rotational symmetry. Unfor-
tunately, the author has not succeeded in extending our result to the case for dimension
3 or higher.

It seems interesting to compare Theorem 1.2 with the formula (5.12) in [8], which
concentrates on the one-dimensional symmetric «-stable Lévy process. Let X (t) and Y (¢)
are independent symmetric a-stable Lévy processes with 1 < o < 2 and P[C, € dx] =
= sin(Z)(1+|z|*)"'dz. Then it is shown that P, . [X (T4 )€dz] =P [yoCo + zoEdz).
Our Theorem 1.2(ii) contains this formula: in this case we have W(&;, &) = |&1]* + [£2]*
and P[Cy € dz] = P|C, € dz|. The variable C,, is called an «-Cauchy variable in [8] since
its law reduces to the Cauchy distribution if «v = 2.
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Let us also remark that Theorem 1.2(i) and [8, (5.12)] are different stable-analogs
of the hitting distribution of a line by a two-dimensional standard Brownian motion,
namely the Cauchy distribution. A two-dimensional standard Brownian motion has the
independent components and is of rotational symmetry. But a two-dimensional symmetric
a-stable Lévy process does not have these two properties at the same time. [8] retains
independence of components while Theorem 1.2(i) is based on rotational symmetry. We
may consider Cq o as another a-Cauchy variable.

2 Modified resolvents and proof of Theorem 1.2

In this section, we introduce the modified resolvents U(dy; &1, 1) and its density u(y; &1, 1)
and apply them to determine the joint law of the first hitting time and place of a line.
The resolvents U(dy; ,, 1) are modified ones in the sense that they reduce, if £, = 0, to
p-resolvents for a one-dimensional Lévy process Y(t) as in [1, §1.2].

Let (X(t),Y(t)) be a two-dimensional Lévy process starting from (zo,y0) € R%. Its
law and expectation are denoted by P, ., and E(, ), respectively. Let F; be the
P(z.y0)-completion of o((X(s),Y(s));s € [0.t]). We denote its characteristic exponent by
‘I’({l,ég), i.e. it holds E(Q,o)[eiﬁlx(t)“}'i{?y(f)] = e "&18) for ({1,62) € R2.

Assume W(£,,&;) satisfies

1
r |1+ V(0.&)

Then it is well-known(see {1, Corollary 11.20, Theorem V.1, and Proposition V.2]) that
Y (t) admits a local time process Ly (y,t) = lim, -21; fot L{|y (s)—y|<e}ds and t — Ly (y,t)
is a.s. continuous.

Note that (2.1) is a bit stronger than the existence of such Ly (y,t): (2.1) implies that
xR 1+\I/(0£ )d£2 < oo and a single point is regular for itself for Y'(¢); these conditions are
sufficient for the existence of Ly (y.t) as above. We assume (2.1) since it facilitates (2.5)
below and the Lévy processes of our interest, such as symmetric a-stable processes with
1 < a < 2, satisfy (2.1).

One can show that, for any bounded Borel function f(y) on R,

[reaxas o = [ay ) [T eoXOdLyw, (22)

by standard arguments. Set
U(dy; &1, 1) = Eqo) [/Ooo e"‘X(")““‘tl(),-(t)edy)dt] , (2.3)
u(y;&,10) = Eo) [A“’C eig’)‘.(")""tdtl/)f(y,t)] (2.4)

for £,y € R and it > 0.
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Note that these quantities correspond to the following ones in [1] if & = 0: (2.2)
reduces to [J' f(Y(t))dt = [, dy f(y)Ly(y,u) in (1, §V.1]; U(dy;0, i) is the p-resolvent
U*#(0,dy) for Y(t) in [1, §1.2}; and then

co 1 e—iyfz
;O, = E '—l"td L+ ’t = ——/ N ——
u(y; 0, 4) = Eo,0) [/ﬂ e diLy(y )} 2m Jr p+ \Il(O,éz)d§2

is the continuous version of the density for U#(0,dy) in [1, §I1.5]. In Section 5, we discuss
their properties from the potential theoretic viewpoint.

Lemma 2.1 Assume (2.1).
(i) The function y — u(y; &1, 1) s a version of the density for U(dy; &, ).
(ii) Assume &2 — 1/|p + V(&41,&2)| is integrable for any fired £&,. Then we have

1 e~ ivs2
wvibon) = o /R U 6 (25)

Proof. We refer the reader to the forthcoming paper [6] for the proof. [

Note that if 1/|u+ (&, &2)| is integrable for some u > 0, then it is integrable for any
u>0.

Note also that 1/|u+ W(&;, £2)] is integrable if the process is genuinely two-dimensional
and Ve > 0,V(&y,&2), U(cy, c€) = c®V(€,€,). Indeed, RY(;, &) > 0, ¥ vanishes only at

(0,0), and we have 1/|p + W(&1,&2)| ~ 62177/ W(&1/€2, 1)] ~ |€2|7°/|¥(0,1)] as &2 — oo.
A similar bound holds when & — —oc.

We next set, for any fixed £ € R and p > 0,
N(t) = X O Ry (Y (1), €, 1) (26)
This process is bounded since |u(y; &1, 11)| < u(0;0, 1) by (2.4).

Lemma 2.2 Assume (2.1). Then for any starting point (2o, yo) € R?, under P(z,y0),
(i) N(t) + fot e1X()=rsd 1..(0,s) is a w.i. martingale;
(il) M(t) = eM/UO&Ly O N(t) is a local martingale.
Proof. We refer the reader to the forthcoming paper [6] for the proof. O
Let
Ly (t) :=inf {s > 0]Ly(0,s) >t} and Z(t) = X(Ly!(¢)). (2.7)
Then, under P, o), (£(t), Ly,'(t)) is a two-dimensional Lévy process starting from (zg, 0).

Lemma 2.3 Assume (2.1) ard the condition in Lemma 2.1(ii).
Then the Lévy process (E(t), Ly'(t)) has the following Fourier-Laplace characteristic
exponent: Ego)[eSW-1Ly () = o=t®(€14) yith

' 1
& ) = _ £ . .
(&1, 1) 27(//11{ e ‘1’(51,52)(1&2 foré& €R and >0 (2.8)

If (X(t),Y(t)) is a genuinely two-dimensional symmetric a-stable Lévy process, (2.8) is
also valid for & # 0 and u = 0.
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Proof. If u > 0, we stop M(t) at L;'({) to obtain a bounded martingale. Then
we have FE(g ) [e(l/“(o?gl"‘))te""”’l(‘)“E‘X(L\"l“”u(O;ﬁ,,,u,)J = M(0) = u(0;&, ), which
implies (2.8) by (2.5).

Fix & # 0. If (X (¢),Y(t)) is a genuinely two-dimensional symmetric a-stable Lévy
process, we have infgcr V(£1,€2) > 0 and W(&1,&2) ~ [£]|°¥(0,1) as |{&| — oo. The
condition in Lemma 2.1(ii) is satisfied, as is seen in the arguments following the proof of
Lemma 2.1. On one hand, we have lim,_, o ®(&,u) = 27 /fm \p—(s—}’f—ﬁdfg by the domi-

nated convergence. On the other hand, E(o[e'®=] = lim,_, o E() [e6E®-1Ly ®)] =

exp (—tlim,_ ;0 ®(&, 1)) O
Proof of Theorem 1.2. Fix & > 0. By the same argument as the proof of Lemma 2.3,
we have

—iy€2
w(vi60,0) 1= Jim u(wi 100 = 5= [ Goesdes

Since £; # 0, we have ¥(£;,&2) > 0 for any §2 € R, and then u(0;&,,0) € (0,00).
Stopping M (t) at Ty , we hava

Eeyyo [eifnx(rg')—ﬂg'} _ e @y —yo; &1, 1)
oo u(0; &1, 1)

We then let 4 — +0 to obtain

i) X (T ei&zou(_yo;{l,o)
E‘IW’[C m”)}: u(0;61,0) (2.9)

By substituting &, = &z, we have

e ivéiT 4 }’“ 6—iy£11d
—— ¢ =
(y 51’0) 271, \I} {hle c1dT 2m ,/R‘Il(lax) i

since W(c&y, ¢&2) = c®V(£,,€2). Putting this into (2.9), we have

i ¥y 1 -1 ei€1on+i€11‘o
E(“’y“)[e“X(T")] = (/R \I’(].f)dt) /R (1, 2) dz
-1
= 1€ {wo 7o) dt) ¥(l,z) 'dz.
/Re (/\I/(l f) ) (1,2)dz

The comlex conjugate of both sides yields the same formula for &; < 0.
Then the right hand side is equal to E[exp(i{;(yoCy + zo))], where P[Cy € dx] =
(fo W(1,t)"dt) " (1, 2)"1dz. O

2.1 Appendix to Section 2: hitting of a line or two parallel lines

We determine the joint law of the first hitting time/place of a line or lines. We do not
need the content of this subsection in proving Theorem 1.2.



For any a,b € R such that a # b, set

TY = inf{t>0|Y(t)=a},
T), = inf{t>0|Y(t) € {a,b}}.

These are respectively the first hitting times of a line and two parallel lines.
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The hitting time T can be decomposed at the last exit time from the line {Y = Y (0)}:

Gy =inf{t <TY|Y(t) =Y (0)}

is independent of TY — GY.

In the following lemma, (i) is an extension of a well- known fact, see e.g. Corollary I1.18
in [1]. Moreover, (ii), (iii) and (iv) are extensions of Proposition 5.4, 5.5, and Theorem

5.8 in (8], respectively.

Lemma 2.4 Assume (2.1) and let {1 € R, 0> 0,a #0,b#0, and a #b. Then
. . i Yy_,TY w(a:fy,pu
(i) it holds Eygg) | e XTN-4TY | = satn,
(i) it holds

[eisxx(T,,Y,,,)—uT,,Y,,, ]

(u(0;&1, 1) — ulb — a; &1, w))ula; &, i) + (u(0; &1, 1) — u(a — b; &1, 1)) u(b; {1,u)
u(0; &1, 1)? — u(a — b; &y, w)u(b — a; &1, 1)

E(,0)

if (X(8), =Y (8) ® (X(t),Y (1)) then

E(O 0) l: ei{:l’\'(Tan)“’l‘-Tr):f, ] — u'(a‘; §l ) /J') + u(b, 61 , lj,) )
’ w(0;&1, 1) +u(b—a; &, 1)’

(iii) 4t holds

3 —uTY - - b - awf >/~1‘)u(a;§l) M) + U(O,{l,[i)u(b, §1 “)
E 1£1X(Tby) uTY | TY T) — U( 1 ) 5
0o [ ¢ <] u(0; &1, 1) — ula — b &y, wyu(b — a;ér, )

(iv) it holds, with h®)(a) = W 5
Eoo [eiglx(cg’)~,.c:},' ] _ w(0; &1, )% — u(a; &1, pu(—a; &1, 1)
o 2h0)(a)9(0, 1) Tu(0; &1, )
Eoo) [eisl(X(T:')—X(cz'))—p-(Tg'—cg')] _ 211 (a)¥(0, 1) tu(a; &, 1)
' u(0; &1, )% — u(a &1y )u(—a; &1, 1)

Proof.  Let our process start from (0, —a). We stop M(t) at Ty . Since Ly (0,7Ty) =0,

E(0,—a) {e"fl)"(ﬂ'?')—#T(}’] _ waidnp)
u(0; &1, 12)
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By the translation invariance, we have the statement of (i).
(ii) Let ¢, and ¢, be such that

1 = cou(0;&s, 4t) + cpu(b — a; &1, 1),
1 = cou(a—b&, p) + cpu(0;€y, 1)

As a corollary to (i) we have |u(y; &1, 1) < |u(0;&;, 1)| for any y #0, & € R, and p > 0,
which ensures that the solution (c,, cp) exist:

u(0;&1, 1) —u(a — b; &1, 1)
u(0; &1, 1) — u(a — b; &, wu(b — a;&1, 1)’
u(0; &, 1) — u(b—a; &, 1)
u(0; &1, )2 — u(a — b; &y, p)u(b — a; &y, 1)

Ca

Cb

We define

Map(t) = 9% 07 (cou(a — Y (t); &1, 1) + cyu(b = Y (t); &1, 1)) -

Then M, (t A T),) is a bounded martingale. Now the statement in (ii) is equivalent to

E0,0) [eiglx(m)—“m] = E,0) [M(TY,)] = Map(0) = cou(a; &1, 1) + cou(b; €1, ).

If we put the symmetry assumption in (i), u(y; &, 1) = u(—y; &1, ) and hence ¢, =
ey = 1/ (u(0; &1, 1) + u(b — a; &1, 1))
(iii) Let ¢, and ¢, be such that

0 = cou(0;&, 1) + cpu(b — a; €1, 1),
1 = cou(a —b;&. 1) + cpu(0;6, ).
Then
c _ _u(b_ a;§17I~‘L)
¢ u(0; &1, 14)? — u(a — b; &y, w)u(b — a; &y, 1)’
cp = U(O;gla N)
w(0;&1.10)2 —u(a — b; & p)ulb — a; &, 1)
We define

Nap(t) = e X074 (cou(a — Y (1); 61, 1) + cou(b — Y (1); &1, 1))
so that Ngu(t AT),) is another bounded martingale. Finally,
E0.0) [eiflx(T"Y)/ #T"Y%Tb)l— < Ta)]
= Eqo [eis,X(T()ﬁhr 1lh Y (TY,) = b]

= Ewoo [N(T),)]
= Ngp(0) = coula: &, 1) + cou(b; &1, 1).
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(iv) Recall that we normalize the local time of Y'(+) at 0 by

o 1 1
E(O,U) [/ e"’&x(t)—utdtLy(O,t) = u(ovﬁllt) = % A o+ ‘I’(§1 62)d§2‘
o s

Let us introduce Ito’s excursion measure (see standard texbooks; we adopt the nota-
tions in (8, §3]). Let D = D([0, 00); R?) be the space of R2-valued cddldg paths equipped
with the Skorohod topology. We define the random set

D :={l > 0|Ly'()) > Ly (1)}
and a point function p(l) € D on D by

_f (X@+ Ly (=), Yt + Lyt (=), ift e [0, Lyt (1) — Lyi(1-)),
p()(t) = { (X(L;l(l})’),Y(L;l(l))), otherwise.Y Y

Remark. Y (Ly!(1)) = 0 but X (L;!(1)) needs not to be 0 since X is ‘running freely.’
Then it is well-known that p(-) is a Poisson point process. Ito’s excursion measure is
defined as follows: if U € B(D) and Dy := {l € D|p(l) € U}, set

n\p[U] = FEoo [# (Dun(0,1])].

The formula
E(O 0)[ei§1X(L;1(f))‘/lL;_l(t)] — e—t/u(o;ﬁl,p)

as in Lemma 2.3 implies that

n% [1 — axp(i&121(C) — 1€)] = 1/u(0; &y, 1), (2.10)

where ( is the lifetime of a generic excursion u(-) = (u;(+), uz(+)) € D:

¢ = ((u) :=sup {t > Oluy(t) = 0} .

Note that u;(t) needs not to end at 0.

Let T, (uz) be the first hitting time of a € R by the second component uy(-) of a generic
(R2-valued) excursion u € D.

Set U, := {u € D|T,(uz) < {(u)} and recal that Dy := {l € D|p(l) € U}. Then it
is well-known that p|p,, and p|p,, are independent. Moreover, n?[U,] = n*[T,(u,) <
¢(u)] < oo and then the first excursion of p|p,, determines the hitting place X (TY); more
precisely, if we set

ke = inf {{ > 0|p(!) € U,} = inf Dy,

we have

T, -Gy = Tu(p(ka)),
X(Ta))—‘)((sz) = p(l“.'u)l(Ta(p(K'a))),
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Gl = ) pW)),
l€(0.5q)NDye
X(@GY) = > prai(CPD).

1€(0,Kq )”DUS

Note that p(k,)1(-) is the first component of the first excursion p(k,) in p|p,, -

By the standard argument concerning the Poisson point processes, we can deduce that
{PIDU‘%, Ka, p(l{.a)} are independent, so that (T} —GY, X (TY)— X(GY)) and (GY, X(GY))
are independent. The law of p(k,) is n¥[-; U,]/n¥[U,]. Hence

v : ‘
i (X(@-x(@)-w(r ~¥) |  PYlexp(igaus (Ta(wa)) = uTa(uz)); U
Eo | ] I . (211)
By the independence described above,
E 0 ‘:ei&(X(T(}/)—X(G.).A))‘II(T,,‘-,G.’l')] - Eg) [ei&X(G};)_pcg’]
= e x () -ury | _ (@& )
Foo [e ] uw(0;&;. 1) (2.12)

Since {p(l);l € (0,Kk,) N DU;} is a Poisson point process stopped at an independent
exponential variable, we have

Eo) [e«i£1X(GX)~uGZ' ]

= /Ooo dl n‘I’[Ua]e“l"”U"] exp (—In"[1 — exp(i& ui (¢(uw)) — pl(u)); US)
n?[U,]

T 000+ ¥ [T = exp(i&run (C(w)) — C(w); U] (2.13)
By the strong Markov property of n?,
n® [exp(i€iu (((u)) — 1C(w)); Ua)
= n®[exp(iyu (To(uz)) — 1To(uz)): Ual - By [ X TI=T8 |
= n¥[exp(i&iui(To(uz)) — 1Tu(uz2)); Ud] - W (2.14)

An elementary manipulation of these equalities yields

nq’[exp(iélu](Ta(ug)) — 1T (u2)): U] = u(0; &y, p1)? —uli((l(;l'é;;.uﬁ)t)u(—a‘fhu)

among others. Then

n?[U,] = loim 4On‘l"{(‘xp(‘ié;u;(Ta(uQ)) — uT,(u2)); Uy]
140,

<1
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. u(a; 0, p)
= lim .
u=+0 u(0; 0, u)? — u(a; 0, p)u(—a;0, p)

This quantity is concerned with the one-dimensional symmetric a-stable Lévy process

Y (t). Although we omit the further detail, n¥[U,] can be evaluated by the same method

) v(0,1) (o) sin 2207 g (0,1)
. 07 _ ) _ s
as Lemma 4.1 in [8]: n”[U,] = R ) T .0

3 Proof of Theorem 1.1

Let 7(a) = inf {t > 0|Y(¢) =0, X(¢) > a} and o(a) = inf{t > 0|E(t) > a} for a € R.
Then o(a) = Ly(7(a)), E(o(a)) = X(7(a)), and Ly'(0(a)) = 7(a). Hence the first
hitting time of interest, 7(a), can be studied via o(a) and its companions.

We now redefine the function ¢, (z; o, p12). The coincidence of two definitions can be
checked. Let C, = {z € C|Sz > 0}, C, = {z € C|Sz > 0} and set

Pa(2; po, H2) = /i + Pa(0, i2) /0 dt E(o,0) [e-“"‘+"z§“>-“2L?‘“>] (3.1)

for z € C, and p; > 0 (i = 0,2) such that ug + pe > 0. For po = pp = 0, we set

1 —
a(2;0,0) = ————(—iz)"@"V/%2 for z € C, \ {0}, 3.2
Po(5i0,0) = sl =19 T\ (0) .2
where we employ the branch such that 17(@=1/2 = 1. For u; > 0 (: = 0,1, 2) such that
o + p1 + p2 > 0, we define

e 1
-[D ) y M = 71 1 29y éa ) ’ .
(Ko, pa, p2) /_‘x,27r(1 e log(po + @o(prt, p2))dt (3.3)
convergence of which is verified using
0 < @, (&1, p2) = [&11° @ (1,[&1] 2 p2) ~ ®a(1,0)[€1]07, (3.4)

as |&1|%/pg — +oo.
If o = pp = 0, it is elementary to verify 1,(0, p1,0) = log ( P, (1, 0),u§°"”/2).
Proof of Theorem 1.1. We use the following in an crucial way:

e We use Theorem 1 in [3]: for any z € C, and any 6 € R, it holds

Vo + Da(0, p2)@o (23 pho- i)

00— pot + o _
= exp (/ € d E { (evs:.(f.) — 1) e—ﬂ-zL)»](t);E(t) > 0]) , (3_5)
0

t
1
09; ) \2:4‘-(};'-' u"g;'v - . .
lpa(0; ko, p211° = @alf; pto. t2) o (—0; po, pi2) o T 3.0 ) (3.6)
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e On the real line, we have

exp((sgn )3 (o — 1))

©a (05 o, pi2) ~ B.,(1.0)|6]=-D/2

e On the positive imaginary axis, we have

as |f| — oo.

wa(ipu; ko, p2) = exp(—ILo (1o, 1, 42)).

e Forany a > 0 and y; > 0 (¢ = 0,1, 2) such that o + 1 + pus > 0,

1 - Eqy) [e-uoa(a)-wE(a(a))—sz;.‘(a(a))}

1 /oo l(_)l _ e—ia(()—ipl) (0 )
= - ( A 3y al\Y; ) -
Yo (Upte; teos pt2) J_ oo 2mi(0 — ipy) v Ho, 2

We refer the reader to the forthcoming paper [6] for the detail of the proof. [J

Remark 1 In the terminology of Chapter VI in [1], Z(o(a)) — a is the overshoot for a
one-dimensional symmetric (o — 1)-stable Lévy process Z(t). Adopting Exercise V1.1 and
Lemma VIII.1 in [1], we have the following double Laplace transform:

= S(o(a)) ple e
dae—qa 1 _ E e'—/l-: gla — .
/0 ( (0,0 [ ]) q(q + p)le-1r2

On the other hand, we set 1o = -0 and take the Laplace transform of the both sides of
Theorem 1.1(i) to obtain

°°d —qa , (a—1)/2 oolyl—e”i(ﬁ-i;:)a. 1
/0 ae L /A,x‘ 2mi(0 — ip) (—if)e—1/2

1 1
o0 1 ; 1
= (e—1)/2 104 g+ u+i@
g /_x( 2mi(0 — i) (—if)(e-1)/2
_oplemn /°° ” 1 1

The coincidence of these is verified by a simple application of the residue theorem.

4 The case for independent symmetric stable Lévy

processes with different indices
Let 1 <a <2, 0< <2, and (X(¢),Y(t)) be such that X(t) and Y (t) are independent,

X (t) is symmetric 3-stable, and Y (t) is symmetric «-stable. In terms of the characteristic
exponent, W(&;,&) = |&]° + |&]”. When (X (t),Y (t)) is started from (zo,%) € R?, its
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law and expectation are denoted by P, yu) and E(,, ,0), respectively. Let Ly (t) be the
local time at 0 for Y (-): Ly (t) = lime—y0 & [ 1(_ee)(Y(s))ds.

For a € R, we set 7(a) = inf{t > 0|Y (¢) = 0, X (t) > a}.

We define, for z € C, & € R, and y; > 0 (2 = 0,1, 2) such that yo + u2 > 0,

d€2
Cap(f1,p2) = 27 / ’
681, p2) / R M2 + &7 + &2
© dt
Ia,ﬁ(ﬂ'ﬂ) U1, /1'2) = / ) m 108(,1&0 + q>a,l3(/~l’ltv .u‘2))7

-1 [ =z
$a,6(2; o, H2) = exp (%/ #mlog(uo + Qa,ﬂ(t,»uz))dt) .

For po = pe = 0, we define 1, 5(0, i14,0) = log( C’z(a)u,f(a—l)/(za)) and ¢, 8(2;0,0) =

—iz)Bla=1)/(2a)
Torm (i)

We obtain the following theorem by the same method as in §3. We refer the reader to
the forthcoming paper (6] for the detail. O

Theorem 4.1 (i) Leta >0, u; >0 (i = 0,1,2), and po + py + pz > 0.
(i) It holds

—~poLy (7(0)) —p1 X (7(0)) —p27(0
E'(__ 0)[ oLy (7(0)) —p (())12()]
1 _— e—ia(e—iﬂ'l)
2mi(0 — i)

= "% — e"%exp(lo (10, 1. .Uz))/ de ©a,3(6; Lo, 12)-

(ii) As s — 40 it holds
1 — E(_a 0) [eﬂ:ns?m - ”Ly("'(o))—m Sz”""X(T(O))—mshT(o) ]

exp(Lo,5(1o, s fio))a? @D/ @)

S ?
VCr(1 + A=l

where ~ means that the ratio of the both sides converges to 1.

5 Some properties of modified resolvents

We modified the resolvents for Y (t) in Section 2 and presented minimal(except Subsection
2.1) arguments for our application. The aim of this section is to characterize the modified
resolvents in terms of the modified capacitary measure for Y (). Since the polarity of sets
is determined solely by the process Y (t), there is no addition to the classification results
in our modification. We focus on the modified identities between some quantites in the
potential theory for Y'(¢). We do not need symmetry or (2.1) but state the results in
terms of Pz, 4,) and El(zy.40), the law and the expectation of the dual process, respectively.
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In this section, we assume (X (t),Y (t)) is a Lévy process on R? and employ the fol-
lowing notations for resolvents:

Pif(y) == Epy [ei‘c'\’(t)f(y(t))] ,

UE”‘f(y) = E(o,y) [/Ooo eie‘Y(t)_”'tf(Y(t))dt]

for f(y) € L2(R)UL}(R). So we have US*f(y) = [ f(y+2)U(dz; €, ), where U(dy; €, 1)
is defined by (2.3) in Section 2. These quantities reduce, if £ = 0, to P, f(y) and U* f(y)
in {1, p.19,22], which employes g for zi. Our resolvents obey the same resolvent equation
as the case £ = 0:

Lemma 5.1 Let Cy := {f : R — R|f is continuous and goes to O at infinity.}.
(i) P* maps Cy into Cy; (Pf) o forms a semigroup if P§ = Id; not Markovian but
X t>
satisfies | Pf f)| < ||f|l; for each f € Co, PFf — f uniformly as t — +0.
(ii) For any f(y) € L(R) U L' (R), it > 0, and A > 0, we have
U f(y) = U f(y) + (A — p)USAUS* f(y) = 0. (5.1)

(iii) The range of US* does not depend on j1 > 0; we denote the range by D; pUSH f —
f uniformly as u — oo; D C Cy is a dense subspace; US*: Cy — D is a bijection.

Proof. (i) is a modified version of Proposition 1.5 in (1, p.19]. (ii) can be checked by
a standard argument. (iii) is shown by the same argument as in (1, p.23]. O

Obviously,
(1 + D(E,0)) /R US* f(y)dy = /R f(v)dy (5.2)

for f(y) € LYR). Set T} = inf {t > 0|Y(t) € B} and define the semigroup/resolvent
with the killing upon entrance of B:

PP f(y) = Epg [eXWfY (1)t < Ty ],

o Ty
Ui = [ e*“tPf*fw)dr:Em,y)[ J A O

These quantities reduce, if £ = 0, to P2 f(y) and Uj f(y) in [1, p.47], which employes ¢ for
p. Theorem I1.5 in [1, p.47] is called ‘Hunt’s switching identity.” We also have an analog
for the modified semigroup and resolvent.

Theorem 5.1 (modified Hunt’s switching identity) Let the modified dual semi-
group PP* and the modified dual resolvent Ug" be defined in the same way as PP* and
Ug", respectively, with (X (t) — X (0),Y (t) =Y (0)) replaced by (X (0) — X (t),Y (0) =Y (t)),

i.e., the process travels in the opposite way.
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If either f € L2(R), g € LYR) or g € L2(R), f € LY(R), we have

/ dy g(y) PP<f(y) = / dz f(2)BF g (2),
R R

/dyg(y)Ufs’“'f(y) = /dzf(z)Uég’“g(Z)-
R R

To prove this theorem, we need two Lemmas. The first is a straightforward extension
of Prop.Il.1 in [1, p.44].

Lemma 5.2 The following eguality for two measures on R® = {(z,y,2)} holds.
dy Poy [ X(t) € dz, Y(t) € dz] = d=z Po.y[—X(t) € dz, Y (t) € dy] (5.3)

Proof. Let f,g,h € B,.(R). We prove that the integrations of g(y)f(z)h(z) by the
two sides of (5.3) coincides.

[ dv9) Bo INXENFY )] = [ avaw B (X )+ Y (1)
= Ewo) {h(X(t))/Rdyg(y)f(erY(t))]
= Eo [h(X(t))/dzg(z—Y(t))f(Z)}
- / dz f(2)Bo [MX(8)9(z = Y (¢))]
_ /R dz f(2) B0 [R(-X()g(z + Y (1))
_ /d f(2)Eq [A(=X(t)g(Y(t)]. O

The second lemma is an extension of page 48, line 7 in [1}.
Lemma 5.3 If B C R is either open or closed,
Pog)~(z) [t <Th ] = Poay—i-ea [t <TH |- (5.4)
Proof. By the same method as Corollary I1.3 in {1, p.45], we can prove
(X(my=r Yiemy=35 € [0,4]), Pogy—ien) = ((-’E + Xs. Y s € [0=t])»15(o,z)~<az,y)) - (5.5)
If B is open, it is clear that (sze page 48, line 3 in [1])
{t < TY) ot {t < T;"“*'“‘} (5.6)
and hence

, (5.6) Yooy -
Poyy—@) [t <TE ] = Poy)—a.2) [f <Tg"™ ]
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If B is closed, we take a sequence of open sets B, N\, B such that N,B, = B. Then we
have T¥ " T} and 1{t <T% } , 1{t < T} } by Corollary 1.8 in [1, p.22). It is then
elementary to observe

Pogyaen [t <Th, ] = Posicam [t < T, ]
! !
P(O,y)——»(:x:,z:l [t < T%] ]3(0,2)—&(—;5,3/) [t < Tg]

a
Proof of Theorem 5.1. We start with f,g € L>(R) N L}(R).
By Lemma 5.3, the following functions are equal to each other.
9 f(2)e Poy)m(ze) [t < T§ ] = 9() f(2)€¥" Posys(cayy [t < T ]
We then integrate the both sides by the measures in the both sides of Lemma 5.2, respec-
tively.
/dyg(y)E(o,y) [P f(Y ()it < TY] = /dz F(2)E@q [e7XWg(Y (1))t < TF ]
R R
| |
[ dvot)rEstw) JE O

To loosen the condition f,g € L£L>(R) N L}(R), we first set £ = 0 to verify the both
sides is absolutely convergent by using Fubini’s theorem; next use truncation and the
bounded convergence for any £ € R. O

The capacitary measure is defined in (1], p.49. We define the modified capacitary
measure for B C R which is either open or closed:

() = (e W(E0) [ Bouy [XTHTE Y (1)) € dz | ay,
R
Lemma 5.4 For f(y) € L}(R),

/m f(w)dy = (1 + V(€. 0) /R US* f(y)dy + / US™ f(y)s” (dy).

Proof. Use the strong Markov property at the instant T . The version for £ = 0 is
the equation (1) in [1, p.51]. O

The next theorem is a modified version of Theorem I1.7 in 1, p.50], which characterize
the capacitary measure.

Theorem 5.2 Define the measure ug"US by fo f(2)u%"USH(dz) = S USH f(y)us(dy).
Let £ € R, u > 0 and suppose that B is either open or closed. Then

PP U (d2) = B e YT 1T ] gz

Moreover, /1%“ is the unique C-valued Radon measure on R satisfying the above equation.
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Proof. Uniqueness follows from the denseness of U**f in Co, see Lemma 5.1. By
Lemma 5.4, we have

/ F(ugUSH(dz) = / F@W)dy — (u+ V(E,0)) / US* f(y)dy.
R R R

We set ¢ =1 € L®(R) and f = £!'(R) in Theorem 5.2 to obtain the second term in the
right side.

(u+ ¥(6,0)) [ UEf(w)dy
R
= e+ ¥(E0) [ d= f(5)051n(2)
z f(z ooe—“'tAB’“E z
(ot w,o»/kd £ )/0 BP€1g(2)dt

= (u+ ¥(,0)) / dz f(z)/ e_“"l:}'(o,z) [e‘ifx(‘);t < Tg] dt.
R 0

The first term in the right side is handled with (5.2) for the dual resolvent:
[1war = @+ v(--9.0) [ 01wy
= ¥ 0) [ f) [ et B [0 ] at
Putting these together, we have
/R F(2)g UM (dz)
= +(pu+ \P({,O))/]Rdz f(2) /Ooo e " B [e”*¥W] dt
—(u+ VE0) [ def(a) [ e Ban [ Oit < TY ]t
= (p+ \D(g,o))/mdz 7(2) /000 e MEq.y [e7 Wt > TY ] dt
= (u+ ‘I’(§,O))/]Rdz F(2)Eo. [e_‘E‘Y(TE)""Tg] /Ooo e B [ M) dt
= /R dz f(2)E . [e—is‘-Y(Té'>—ﬂTE] A

Since f is arbitrary integrable function, the proof is complete. [J
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