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Subharmonicity for symmetric Markov processes
Zhen-Qing Chen! and Kazuhiro Kuwae?

Abstract

We establish the equivalence of the analytic and probabilistic notions of subhar-
monicity in the framework of general symmetric Hunt processes on locally compact
separable metric spaces, extending an earlier work of the first named author on the
equivalence of the analytic and probabilistic notions of harmonicity. As a corollary,
we prove a strong maximum principle for locally bounded finely continuous subhar-
monic functions in the space of functions locally in the domain of the Dirichlet form
under some natural conditions.
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1 Introduction

This article is a summary of the paper [6] under preparation. It is known that a func-
tion being subharmonic in a domain D C R? can be defined by Au < 0 on D in the
distributional sense; that is, u € WL3(D) := {u € L2 (D) | Vu € L} (D)} so that

/ Vu(x) - Vu(e)dx <0 for any non-negative v € C(D).
R

If u is continuous, then the akove is equivalent to the following sub-averaging property
by running a Brownian motion X = (2, X;, P,),cre: for every relatively compact open
subset U of D:

w(X.,) € LYP,) and  w(x) < B lu(X.,)] forevery x € U.

Here 7y := inf{t > 0 | X, ¢ U} is the first exit time from U. A function v is said to
be harmonic in D if both « and —u are subharmonic in D. Recently, there have been
interest from several areas of mathematics in determining whether the above two notions
harmonicity and subharmonicity remain equivalent for general symmetric Hunt processes
including symmetric Lévy procssses. For instance, due to their importance in theory and
applications, there has been intense interest recently in studying discontinuous processes
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and non-local (or integro-differential) operators by both analytical and probabilistic ap-
proaches. See, e.g. [4, 5] and the references therein. So it is important to identify the
connection between the analytic and probabilistic notions of subharmonic functions. Very
recently, in [3] the first named author established the equivalence between the analytic
and probabilistic notions of harmonic functions for symmetric Markov processes. Sub-
sequently, the above equivalence is extended in [18] to non-symmetric Markov processes
associated with sectorial Dirichlet forms.

In this paper, we extend the previous work [3] to address the question of the equivalence
of the analytic and probabilistic notions of subharmonicity in the context of symmetric
Hunt processes on locally compact separable metric space (Theorem 2.7). As a byproduct
of our result, we prove that strong maximum principle holds for locally bounded finely
continuous &-subharmonic functions under some conditions (Theorem 2.9). Strong max-
imum principles for subharmonic functions of second order elliptic operators have been
powerful tools for various fields in analysis and geometry. In [15], the second named
author established a strong maximum principle for finely continuous £-subharmonic func-
tions in the framework of irreducible local semi-Dirichlet forms whose Hunt processes
satisfy the absolute continuity condition with respect to the underlying measure, which
generalize the classical strong maximum principle for second order elliptic operators (for
an extension of strong maximum principle for subharmonicity in the barrier sense, see
also [16]). The strong maximum principle developed in [14, 15] can be applied to anal-
ysis or geometry for geometric singular spaces; Alexandrov spaces or spaces appeared in
the Gromov-Hausdorff limit of Riemannian manifolds with uniform lower Ricci curvature
bounds and so on. More concretely in [17], we establish splitting theorems for weighted
Alexandrov spaces having measure contraction property, which are striking applications
of the strong maximum principle treated in {14, 15] in terms of symmetric diffusion pro-
cesses. The strong maximum principle established in this paper holds for symmetric
Markov processes, which may possibly have discontinuous sample paths, on locally com-
pact separable metric spaces, which should be useful in the study of non-local operator
or jump type symmetric Markov processes.

Let X be be an m-symmetric Hunt process on a locally compact separable metric
space £ whose associated Dirichlet form (£, F) is regular on L?(E;m). Let D be an open
subset of £ and 7p is the first exit time from D by X. Motivated by the example at
the beginning of this section, loosely speaking (see next section for precise statements),
there are two ways to define a function « being subharmonic in D with respect to X:
(a) (probabilistically) ¢ — u(Xa-,) is a P,-uniformly integrable submartingale for quasi-
every * € D; (b) (analytically) &(u.g) < 0 for ¢ € F N CHD). We will show in
Theorem 2.7 below that these two definitions are equivalent under some integrability
conditions as imposed in the previous work [3] by the first author. Note that even in
the Brownian motion case, a function u that is subharmonic in D is typically not in the
domain F of the Dirichlet form. Denote by Fp 1, the family of functions v on E such that.
for every relatively compact open subset Dy of D, there is a function f € F so that u = f
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m-a.e. on D;. To show these two definitions are equivalent, the crux of the difficulty is to

(i) appropriately extend the definition of £(u,v) to functions u in Fp .. that satisfy
some minimal integrability condition when X is discontinuous so that £(u, v) is well
defined for every v € F N C.(D);

(ii) show that if u is subharmonic in D in the probabilistic sense, then u € Fp ), and
&(u,v) < 0 for every non-negative v € F N C.(D).

The question (i) is solved in the previous work [3]. The main focus of this paper is to
address the second question (ii). For (ii), we establish a Riesz type decomposition theorem
(Lemma 3.7 in [6]) for £-subharmonic functions, which is a crucial step in proving our
main result.

If one assumes a priori that « € F, then the equivalence of (a) and (b) is easy to
establish. In next section, we give precise definitions, statements of the main results and
their proofs. Four examples are given to illustrate the main results of this paper. We use
“:="as a way of definition. For two real numbers a and b, a A b := min{a, b}.

2 Main result

Let X = (,3,%F:, Xt,(,P,,r € E) be an m-symmetric right Markov process on a
space E, where m is a positive o-finite measure with full topological support on E.
A cemetery state 0 is added to F to form E; := E U {0}, and Q is the totality of
right-continuous, left-limited sample paths from [0,00) to E5 that hold the value 8 once
attaining it. Throughout this paper, every function f on E is automatically extended
to be a function on Ey by setting f(9) = 0. For any w € Q, we set X;(w) := w(t).
Let {(w) := inf{t > 0 | Xi(w) = &} be the life time of X. Throughout this paper, we
use the convention that X, (w) := 0. As usual, F,, and F, are the minimal augmented
o-algebras obtained from F := o{X, | 0 < s < 00} and F? := o{X, | 0 < s < t} under
{P. : z € E}. For a Borel subset B of E, 7p := inf{t > 0| X, ¢ B} (the exit time of B)
is an (F;)-stopping time.
The transition semigroup {P; : t > 0} of X is defined by

Pf(z) = E[f (X)) = E|f(X)) : t<¢, t>0.

Each P, may be viewed as an operator on L?(E:;m), and taken as a whole these operators
form a strongly continuous semigroup of self-adjoint contractions. The Dirichlet form
associated with X is the bilinear form

w ) = limt- (i — P
E(u,v): Iflll})]t (u— Py, )y
defined on the space

F = {u € L*(E:m) | sup t (u — Pau,u)m < oo}‘

t>0
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Here we use the notation (f, g)m 1= [ f(«)g(x) m(da) and we shall use |fl2 := \/(f, f)m
for f,g € L*(E;m). P, is extended to be a strongly continuous semigroup {7};t > 0} on
L?(E;m). Without loss of generality, we may assume that (£, F) is a regular Dirichlet
form on L*(E;m) and the X is an m-symmetric Hunt process, where E is a locally
compact separable metric space having a one point compactification Es := E U {8} and
m is a positive Radon measure with full topological support (see [7]).

A set B C Ej is called nearly Borel if for each probability measure i on Ej, there exist
Borel sets By, B, C Ej5 such that By C B C B; and P,(X; € B, \ B; for some t > 0) = 0.
Any hitting time o := inf{t > 0 | X, € B} is an (3,)-stopping time for nearly Borel
subset of E5 (see Theorem 10.7 and the remark after Definition 10.21 in [1]). A subset B
of Ej is said to be X-invariant if B is nearly Borel and

P.(X: € Bs,X;- € By forallt >0)=1 for any 2 € B.

A set A is finely open if for each = € A there exists a nearly Borel subset B = B(x) of E
such that B D E\ Aand P (05 > 0) = 1. A set N is called properly ezxceptional if E\ N
is X-invariant and m(N) = 0. A nearly Borel set. N is called m-polar if P,,(oy < 00) =0
and any subset N of E is called ezceptional if there exists an m-polar set N containing
N. Clearly any properly exceptional set N is exceptional. A function defined g.e. on an
open subset D of E is said to be g.e. finely continuous on D if there exists a properly
exceptional Borel set N such that w is Borel measurable and finely continuous on D\ N.
[t is known (cf. [12]) a quasi-continuous function on D is g.e. finely continuous on D.
Let F. be the family of m-measurable functions u on E such that |u| < oo m-a.e. and
there exists an £-Cauchy sequence {u,} of F such that lim u, = u m-a.e. We call {u,}
as above an approximating sequence for v € F,. For anyn'uiioz € F. and its approximating
sequences {u,}, {v,} the limit &(u, v) = 1)li£1010 E(un, vy) exists and does not depend on

the choices of the approximating sequences for u, v. It is known that £/2 on F, is a
semi-norm and F = F,NL2(E;m). We call (£, F,) the extended Dirichlet space of (£, F).
Any u € F, admits a quasi-continuous m-version @. Throughout this paper, we always
take quasi-continuous m-version of the element of F,, that is, we omit tilde from # for
u € F,

Let D be an open subset of £. We define

Fp={ueFlu=0 Eqe on E\D},
EP(u,v) := E(u, i) for w,v € Fp.

Then (£P, Fp) is again a regular Dirichlet form on L2(D;m), which is called the part space
in D. Denote by Fp oc (resp. (Fphoe) the space of functions locally in F on D (resp. the
space of functions locally in Fp): that is. u € Fpoe (resp. 1w € (Fpoe) if and only if
for any relatively compact open set U with [7 C ) there exists uy € F (resp. uy € Fp)
such that u = uy m-a.e. on U. Note that (Fphoe € Fpioe and 1p € (Fploc. Any
u € Fpioec admits an m-version @ of u which is quasi-continuous on D. As remarked
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above, we always take such m-version and omit tilde from u for v € Fpj,.. We can
see that Fpioc N LS (D;m) C (Fpioe- Indeed, for u € Fpioc N LP(D;m), we can take
uy € Fp such that u = uy m-a.e. on U, because uy = (—||uf|veo) V uv A |Jufluc m-a.e. on
U, where ||lu||ly,co := m-ess-supy |u|. Taking ¢ € FNC(E) with ¢ =1 on U and ¢ =0
on D¢ we see uy¢ € Fp and v = uy¢ m-a.e. on U.

Definition 2.1 (Sub/Super-harmonicity) Let D be an open set in E. We say that a
nearly Borel measurable function u defined on E is subharmonic (resp. superharmonic)
in D if for any relatively compact open subset U of D with U € D, t — u(Xir,) is
a uniformly integrable right continuous P -submartingale (resp. P -supermartingale) for
ge. « € E. A nearly Borel function « on E is said to be harmonic in D u is both
superharmonic and subharmonic in D.

Definition 2.2 (Sub/Super-harmonicity in the weak sense) Let D be an open set
in E. We say that a nearly Borel function « defined on E is subharmonic (resp. super-
harmonic) in D in the weak sense if u is q.e. finely continuous in D and for any relatively
compact open subset U with U € D, E,[|u|(X,,)] < oo for q.e. € E and for q.e. x € E,
u(z) < Eg{u(Xr,)] (resp. u(x) > E [u(X.,)]) holds if P.(7y < co) > 0. A nearly Borel
measurable function u on E is said to be harmonic in D in the weak sense if u is both
superharmonic and subharmoric in D in the weak sense.

Clearly 1p is superharmonic in D in the weak sense.

Remark 2.3 Our definition on the subharmonicity or superharmonicity in the weak sense
is different from what is defined in the Dynkin’s textbook [11] and is weaker than it when
X is an rm-irreducible diffusion process satisfying (2.1) below. Actually, superharmonicity
of u in [11] requires u be localy bounded from below instead of the P,-integrability of
u(X,,) for any relatively compact open I/ with U < D. Indeed, suppose that X is a
diffusion process and u is a superharmonic function in D in the sense of [11]. Then for U
as above, we have

Bal|u(Xn)l] € Eo[u(Xe,)] + 2Be((—0)* (X)) < ul2) + 2~ inf u)* < oo

forqe x € E. D

We introduce the following condition:

For any relatively compact ooen set UV with I/ C D, P (ry < o0) >0 for q.e. z € U.
(2.1)
Condition (2.1) is satisfied if (£,F) is m-irreducible, that is, any (T})-invariant set B is
trivial in the sense that m(B) = 0 or m(B¢) = 0.
It will be shown that under condition (2.1), every subharmonic function in D is a
subharmonic function in D in the weak sense.
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In what follows, all functions denoted by u or w;, (i = 1.2) are defined on E and are
(nearly) Borel measurable and finite quasi everywhere.

For an open set D C E, we consider the following conditions for a (nearly) Borel
function « on E that are introduced in [3]. For any relatively compact open sets U,V
withU cV cV C D,

|u(y)|J(dxdy) < oo (2.2)
VU (E\V)

and
1yE[(1 — év)|ul(X+,)] € (Fu)e, (2.3)

where ¢y € FNC(E) with0< ¢y <l and ¢y =1on V.

As is noted in [3], in many concrete cases such as in Examples 2.12-2.14 in [3] (see
also Examples 3.1-3.2 below), one can show that condition (2.2) implies condition (2.3).

Remark 2.4 (i) In view of [3, Lemma 2.3|, every nearly Borel bounded function u on
E satisfies both (2.2) and (2.3).

(if) If u € Fpoc N LL.(D; ), then w is bounded q.e. on any relatively compact open U

with U C D, so for any U, V as above, (2.2) is equivalent to

/ |[u(y) — w(x)|J(dxdy) < oo (2.4)
Ux(E\V)

for such u. Clearly, any u € F, satisfies

1/2
/ fuly) — u()| J(dady) < J(U x V2 ( / nu(y>—u(u.->|2J<dxdy>) < o0
Ux(E\V) ExE

that is, (2.4) is satisfied by v € F,. Furthermore, by Lemma 2.5 of [3], both (2.2)
and (2.3) hold for every u € F. N L2 (D;m). O

The following is proved in (3].

Lemma 2.5 (cf. Lemma 2.6 in [3]) Let D be an open set of E. Suppose that u is a
locally bounded function on D such that u belongs to Fp o and it satisfies condition (2.2).
Then for every v € F NC. (D). the expression

1

D)+ 5 [ () = ul) o) = ) Idrdy) + [ ateyutalda)

1s well-defined and finite; it will still be denoted as E(u,v).
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Definition 2.6 (£-sub/super-harmonicity) Let u € Fpioc N Lo (D;m) be a function
satisfying the condition (2.2). We say that u is &£-subharmonic (resp. &€-superharmonic)
in D if and only if E(u,v) < 0 (resp. E(u,v) > 0) for every non-negative v € F N C(D).
A function u € Fpioc N LT (D;m) satisfying condition (2.2) is said to be E-harmonic in

D if u is both E-superharmonic and &-subharmonic in D. When D = E, we omit the
phrase ‘n D’.

Note that 1p € Fp o satisfies (2.2) and is £-superharmonic in D. It is £-harmonic
in D provided x(D) =0 and J(D, D°) = 0.

Our main theorem below is an analogy of Theorem 2.11 in [3] for subharmonic func-
tions. ‘

Theorem 2.7 Let D be an open subset of E. Suppose that a nearly Borelu € LS.(D; m)
satisfies conditions (2.2) and (2.3). Then

(i) u is subharmonic in D if and only if u € (Fp)oc and it is £-subharmonic in D.

(i) Assume that (2.1) holds. Then u is subharmonic in D if and only if u is subharmonic
in D in the weak sense, that is, for any relatively compact open set U with U C D,
w( X7, ) ts Py-integrable and u(x) < E [w(X,,)] for ge. x € E.

Theorem 2.7 will be established through Lemma 3.7 and Theorems 3.8-3.10 in [6]. As
an application of Theorem 2.7, we have the following.

Corollary 2.8 (i) Let n € C'Y(R) be a convez function and u € Fpioc N LZ.(D;m)
be an E-harmonic function in D satisfying conditions (2.2)—(2.3). Suppose that 1
has bounded first derivative or w is bounded on E. Then n(u) € Fpi and is &-
subharmonic in D satisfying conditions (2.2)—(2.3).

(i) The conclusion of (i) remains to true if n € C''(R) is an increasing convez function
and u € FpiocNLL.(D;m) is an E-subharmonic function in D satisfying conditions
(2.2)—(2.3).

(ili) Let p > 1 and u € Fpoc be an E-harmonic function in D that is locally bounded
in D and satisfies conditions (2.2)-(2.3). Suppose that |u|P satisfies conditions (2.2)
and (2.3), and that (2.1) holds. Then |u|P € Fpoc and is E-subharmonic in D.

(iv) Let u1,uz € Fpioc N LS (D;m) be £-subharmonic functions in D satisfying condi-
tions (2.2)~(2.3). Then u; V uz € Fp e satisfies (2.2)~(2.3) and is E-subharmonic
n D.

We say that X satisfies the absolute continuity condition with respect to m if the
transition kernel P,(x,dy) of X is absolutely continuous with respect to m(dy) for any
t>0and zr € F.

As a consequence of Corollary 2.8(iv), we have the following strong maximum principle.
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Theorem 2.9 (Strong maximum principle) Assume that D is an open subset of E,
X satisfies the absolute continuity condition with respect to m and (EP, Fp) is m-irreducible.
Suppose that u € Fpoc satisfying conditions (2.2)-(2.3) is a locally bounded finely con-
tinuous E-subharmonic function in D. If u attains a marimum at a point x9 € D. Then
ut =ut(x9) on D. If in addition k(D) = 0, then u = u(xp) on D.

3 Examples

Example 3.1 (Stable-like process on R?) Consider the following Dirichlet form (£, F)
on L?(R¢), where

{ F = Worh(RY) = {u € LARY) | fpuqe (u(x) = u())?]c — y|#+2dady < oo},
E(,0) = § fpunga (u(2) = u())(v(x) = v(y)|x — y|**c(z, y)dady for u,v € F.

Here d > 1, a €]0,2[, and c(x,y) is a symmetric function in (z,y) that is bounded
between two positive constants. In literature, W °/22(R?) is called the Sobolev space on
R? of fractional order (a/2,2). For an open set D C R4, W/22(D) is similarly defined as
above but with D in place of R?. It is easy to check that (€, F) is a regular Dirichlet form
on L?(R4) and its associated symmetric Hunt process X is called symmetric a-stable-like
process on R?, which is studied in [4]. When ¢(zr,y) = A(d, —a) := zfld:arl(_:—f)g), the
process X is nothing but the rotationally symmetric a-stable process on R¢. It iszshown
in [4] that the symmetric a-stable-like process X has strictly positive jointly continuous
transition density function p,(x, y) with respect to the Lebesgue measure on R? and hence
is irreducible. Moreover, there is constant ¢ > () such that

pe(y) <t fort >0 and x,y € RY. (3.1)
Consequently, by [10, Theorem],

sup E:rITU] < 0. (32)

rel!
for any open set U having finite Lebesgue measure. Note that in this example, the jumping
measure ()

o ey o

J(d;l-(ly) = I-l—————ql—cH_:(Ildl/

Hence for any non-empty open set D C R? condition (2.2) is satisfied if and only if
(1A ]9 *)u(x) € L'(R?) (or equivalently, u(a)/(1 + |«])?*+> € L'Y(R?)). As is shown
in [3, Example 2.12], condition (2.3) is automatically satisfied for such u. When o €
]1,2[, every (globally) Lipschitz function u on R? satisfies the condition (2.2), that is,
(1A 2|74 )Yu(x) € L'(R?) holds. Consequently (2.3) holds for any Lipschitz function «
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provided « €]1, 2[. Indeed, for any relatively compact open sets U, V withU C V Cc V C
D,

[ R N vy < sy [ = dnay
UxVe

|l — y|d+e uxve |

< Nlullipo(S*1) // r~drdz
d(z,V°)

d(U, Veyl—e
a

< lullplU]o(s4) 522

< 09,

and so by Remark 2.3, (2.2) holds. Here |[ju|lLip := Sup, yega '—‘i")——’iﬁ’—l |U| denotes the

lz—yl
volume of U and o(S%!) is the (d — 1)-dimensional volume of the unit qphere Sd-1,

Theorem 2.7 says that for an open set D and a nearly Borel function u on R? that is
locally bounded on D with (1 A || =% )u(x) € L'(R%), the following are equivalent.

(i) u is subharmonic in D;

(ii) For every relatively compact open subset U of D, u(X,,) € L'(P,) and u(z) <
E.[u(X,,)] for q.e. x € U;

(iii) u € Fpoec = WD) and

loc

/ (u(z) — u(y))(v(x) — v(y))—wd;lrdy < 0 for every v € W°/22(D) N CH(D).
Rd x R4

[ — y[a+e

Example 3.2 (Symmetric Relativistic «-stable Process) Take « €]0,2[ and m >
0. Let X®® = (Q, X;, P.),cre be a Lévy process on R* with

B ¢6X0] o oot am/ )/ 2—m)

If m > 0, it is called the relativistic «-stable process with mass m (see [20]). In particular,
if @ =1and m >0, it is called the relativistic free Hamiltonian process (see [13]). When
m = 0, X™* is nothing but the usual symmetric «-stable process. Let (E®*, F*°) be
the Dirichlet form on L?(R%) associated with-X™*. Using Fourier transform f(z) :=
@;ﬁwg S €Y f(y)dy, it follows from Example 1.4.1 of [12] that

Fre {fEL RY) '/ ((1&]% + mP/eye/2 - m)d£<oo},
ene(fig) = [ FOE (P + m?/*)/ —m)de  for f,g€ F*2,
R

It is shown by Ryznar [20] that the semigroup kernel p;(x, y) of X®% is given by

o /] \ 92 .
e = [ (3] e o o
0 - LIS




186

where 05(t, s) is the nonnegative function called the subordinator whose Laplace transform
is given by

hae s
/ e~ M05(t. s)ds = e,
0

Then we see the conservativeness of X" and the irreducibility of (€®e, FR2). From
Lemma 3 in [20], there exists ('(d, m) > 0 depending only on m and d such that

sup p(x,y) < Cid,m) (m¥°~4%¢=4% 4 =4/} for any t > 0.

z,yeRd

This yields by [10, Theorem 1] that (3.2) holds for any open set U having finite Lebesgue
measure. It is shown in [8] that the corresponding jumping measure satisfies

e, _ Ad, —«a .
J(dzdy) = I—(;J_—gﬁ%;dxdy with  c(x,y) = —(2——)\11(m1/ lz —yl),
a2d+er(dte)

where A(d, —a) = 577 gy and the function ¥ on [0,00[ is given by ¥(r) :=
2

I(r)/I(0) with I(r) = [° s%%-1¢-i-%ds. Note that W is decreasing and satisfies
U(r) < e (1 + r(@+e=1/2) near r = oo, and W(r) = 1 + ¥”(0)r2/2 + o(r*) near r = 0. In
particular, for b > 0 we have

L U(mte(r + b)) W(me(r + b))

<s .
0< lrzlg V(mt/er)y — :2‘5 U (/) = (3:3)

and
R,  __ r2 Yy ) C(;U.»y)
Fra {f cr®)| [ i - swps el V) iy < oo},
gre(f,g) = / (F() = F))ole) — 9())

c(x,y)
R4 xRd

I;L- — y|d+a

Applying (3.3), we can obtain that for any relatively compact open sets U,V with 0 €
Uand U C V € V C D, condition (2.2) is satisfied if and only if W(m!e|z|)(1 A
lz] = *)u(z) € LY(R?) (equivalently W(m'/*|a))u(x)/(1 + |z|)** € LY(RY)). Similarly,
any function w with W(m'/e|x|)(1 A || 4= )u(x) € L'(R?) also satisfies the condition
(2.3) in the same way as in Example 3.1. For « € L& (D;m) N B’,‘,’oc, we can deduce
(2.2) and (2.3) if ¥(m!/*|z]) (1 A )74 *) u(x) € L'(R?) without assuming 0 € U. In
this case, (2.2) for any relatively compact open U,V with U ¢ V ¢ V C D is equivalent
to ¥(m!e|z|) (1 A |z|~¢°) u(xr) € L'(R?). Moreover, any (globally) Lipschitz function
u satisfies (2.2), consequently (2.3) holds for such u. Indeed, for any relatively compact
open sets U, V with U C V,

lu(y) — u(x)] A(d. —) / |z — yI\I}(m”"Ix —y)
— 2~ (x, y)drdy < ———||u|L; dxd
[JxVC |z — yl|dt+e (%, y)dry 2 leltuie UxVe |x — yl|d+e Y

dxdy for f,g € F™e.

A(d. — 0o
< *(—(TLY*)H'I'-FIL;IJU(Sd—l)// W(m!er)r=edrdr
> v Jagz,ve)

o0

. 1/0 dta—-1 dta-—1 _

< (,’/ T (Vb Tz JrT%dr < oo,
AUV



187

and so (2.2) holds by Remark 2.3. Here (' is a positive constant.
By Theorem 2.7, for an open set D and a nearly Borel function u on R< that is locally
bounded on D with W(m!/2|z|)(1 A |z|~%*)u(x) € L*(R?), the following are equivalent.

(i) u is subharmonic in D;

(ii) For every relatively compact open subset U of D, u(X,,) € L'(P,) and u(z) <
E.[u(X,,)] for q.e. x € U;

(iii) » € Fp. and

Y(m/x — y))

e dxdy <0 for every v € F°NCH(D).

/ (u(z) — u())(v(z) —v(y))
R4 xRd

One may ask concrete exarples of £-(sub/super)-harmonicity on D. To answer this
question, in what follows, we assume d > 2 (d > « if m = 0). Applying Theorems 3.1
and 3.3 in [19] to ¢(A) := (A + m*¥*)*/2 —m, A > 0, we can obtain that the Green kernel
r(x,y) == [3° p(x,y)dt of X satisfies r(uw,y) < (Ka(x,y) + K3(x,y)), x,y € RY, where
Kp(z,y) == A(d, B)/|x — y|?~* for B €]0,2]. In particular, X is transient and r(z, z) = oo
for £ € R%. Note that r(x,y) = K,(t,y) provided m = 0. Let u be a Borel function
satisfying w(z)W(rmt/*|x|)/(1 + |2|)* € LY (R?). For ¢ > 0 and z € RY, we define the
modified fractional Laplacian by

AL2my(r) == A(d, —a) 2y) = 88 gy ey g))ay,

lz—y|>e |;17 - yld+a

and put A®/2™y(z) := lim,_,o AZ*™u(x) whenever the limit exists. It is essentially shown
in Lemma 3.5 in [2] (resp. the remark after Definition 3.7 in [2]) that for any u € C?(D)
(resp. u € C?(D) satisfying u(x)¥(mY|x|)/(1+ |x|)¥+e € L}(RY)), A*/2™y always exists
in C(R?) (resp. in C(D)). Recall that for u € ("*(R?) with w(z)¥(m!/*|z])) /(1 + |z))*+e €
L'(R?), u satisfies (2.2) and (2.3). Hence, for such « and ¢ € C%(D), E(u, ) is well-
defined and the proof of Lemira 2.6 in [3] shows

| W(ml/e|a — y|)dzdy
v — yle+e

[ @) wwliet) - o0)
R4 xRd
which implies £(u, ) = (=A%, ) and the £-subharmonicity in D of u is equivalent

to A®/2my < 0 on D.
For ¢ € C.(R%), we set

R pix) ::/ rie.y)e(y)dy = € Re.
R

Then, we see R(®)y is locally bounded on R? and (R®p)(z)¥(m/|z|)/(1 + |z|)¢+ €
L'(R?) for such ¢, because of +(x, y) =< (Ko(r,y) + Ko(x,y)). Moreover, we see R(®y €
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Fioc for such . Indeed, for any relatively compact open set D with D ¢ R4, R@yp is a
difference of excessive functions with respect to X? and bounded on D, so R(®yp € FD Joc
by Theorem 3.9 in [6]. Since D is arbitrary, Ry € Fj,.. Thus R satisfies (2.2)
and (2.3) for U,V with U ¢ V Cc V C R% Similarly, r(a,) € LZ(R?\ {a}) satisfies
Jra %—i@dx < oo. We can obtain 1(a,-) € Fra\(s}10c iD a similar way as above.
Hence 7(a, -) satisfies (2.2) and (2.3) for U,V with U ¢ V c V C R*\ {a}. Note that for
@ € C®(D), A%/2mp = L™y ae. on R? and R@A/2my — o on RY. Here L*™ is
the L?-generator of (EV°, FRe).
For ¢ € C=(R?\ {u}), we then have

E(r(a,-),p) = —/ r(a, €) A2 ™p(x)dx
Rd
= —(RA2m0)(4) = p(a) = 0.

This means the £-harmonicity in R?\ {a} of r(a,-). Similarly, for non-negative 9, ¢ €
C>*(R?), we have

E(R(")w, SO) — (1‘[,’ _R(O)AO/Q,HI"D) — (Ul’\ ,‘p) > 0,

which implies the £-superharmonicity of R(®)4 for non-negative 1 € C®(R¢%).

References

(1} R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure
and Applied Mathematics, Vol. 29 Academic Press, New York-London.

[2] K. Bogdan and T. Byczkowski, Potential theory for the «-stable Schrodinger operator
on bounded Lipschitz domains, Studia Math. 133 (1999), no. 1, 53-92.

[3] Z.-Q. Chen, On notions of harmonicity. Proc. Amer. Math. Soc. 137 (2009), no. 10,
3497-3510.

[4] Z.-Q. Chen and T. Kumagai, Heat kernel estimates for jump processes of mixed
types on metric measure spaces, Probah. Theory Related Fields 140 (2008), no. 1-2,
277-317.

(5] Z.-Q. Chen and T. Kumagai, A priori Holder estimates, parabolic Harnack principle
and heat kernel estimates for diffusions with jumps, preprint (2009), to appear in
Revista Matematica Iberoamericana.

[6] Z.-Q. Chen and K. Kuwae, On subharmonicity for symmetric Markov processes, in
progress (2009).



189

[7] Z.-Q. Chen, Z.-M. Ma and M. Rockner, Quasi-homeomorphisms of Dirichlet forms,
Nagoya Math. J. 136 (1994) 1-15.

[8] Z.-Q. Chen and R. Song, Drift transforms and Green function estimates for discon-
tinuous processes, J. Funct. Anal. 201 (2003), no. 1, 262-281.

[9] K. L. Chung, Doubly-Feller process with multiplicative functional, Seminar on
stochastic processes, 1985 (Gainesville, Fla., 1985), 63-78, Progr. Probab. Statist.,
12, Birkhauser Boston, Boston, MA, 1986.

[10] K. L. Chung, Greenian bounds for Markov processes, Potential Anal. 1 (1992), no.
1, 83-92.

(11) E.B. Dynkin, Markov Processes I, II. Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences],121,122. Springer-
Verlag, Berlin, Heidelberg, New York, 1965.

[12] M. Fukushima, Y. Oshima and M. Takeda: Dirichlet Forms and Symmetric Markov
Processes, de Gruyter, Berlin, 1994.

[13] I. W. Herbst and A. D. Sloan, Perturbation of translation invariant positivity pre-
serving semigroups on L%(R™), Trans. Amer. Math. Soc. 236 (1978), 325-360.

(14] K. Kuwae, On a strong maximum principle for Dirichlet forms, Stochastic processes,
physics and geometry: new interplays, I1 (Leipzig, 1999), 423-429, CMS Conf. Proc.,
29, Amer. Math. Soc., Providence, RI, 2000.

[15] K. Kuwae, Maximum principles for subharmonic functions via local semi-Dirichlet
forms, Canad. J. Math. 60 (2008), no. 4, 822-874.

[(16] K. Kuwae, On Calabi’s strong maximum principle via local semi-Dirichlet forms,
preprint, 2009.

[17] K. Kuwae and T. Shioya, A topological splitting theorem for weighted Alerandrov
spaces, preprint 2009.

[18] Z.-M. Ma, R.-C. Zhu and X.-C. Zhu, On notions of harmonicity for non-symmetric
Dirichlet form. To appear in Sci. China Ser. A.

(19] M. Rao, R. Song and Z. Vondrcek, Green function estimates and Harnack inequality
or subordinate Brownian motions, Potential Anal. 25 (2006), no. 1, 1-27.

[20] M. L. Ryznar, Estimates of Green function for relativistic a-stable process, Potential
Anal. 17 (2002), no. 1, 1-23.



190

Zhen-Qing Chen:
Department of Mathematics, University of Washington, Seattle, WA 98195, USA.
Email: zchen@math.washington.edu

Kazuhiro Kuwae:

Department of Mathematics and Engineering, Graduate School of Science and Tech-
nology, Kumamoto University, Kumamoto 860-8555, Japan.

Email: kuwae@gpo.kumamato-u.ac.jp



