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Abstract

We study an adaptive estimation of growth optimal asset pricing model with the setting
of hidden Markov models. We consider a market where risky assets and a risk-free asset are
traded in discrete time. We assume that there exists unobservable economic regime which is
modeled by time-homogenous Markov process as a state equation. As an observation equa-
tion, risky asset price processes are assumed to be lognormal conditioned on unobservable
economic regime. We also assume a risk-free asset of which rate of retum is switching ac-
cording to regime. With these assets, we derive a growth optimal portfolio and characterize
its first order condition for optimality. We then obtain an asset pricing model which gives
the expected excess return for each asset. Conditioned on regime, it is shown to be the

covariance of return between the growth optimal portfolio and its constituent risky assets.
Hence to estimate the expected excess return of risky assets adaptively, we are to estimate
its covariance matrix subject to regime. To implement this, we employ an adaptive filter-
ing technique developed by Elliott (1995). We also implement some numerical examples to
estimate the model.

1 Introduction

In this paper, we employ a regime switching model which takes into account hidden states of

the market. This model allows us to derive an asset pricing model based on a growth optimal
portfolio, and thereby estimate the risk premium of any assets based on the model.

The following gives some background on the theory of growth optimal portfolios and regime
switching models.

Growth Optimal Portfolio

First of all, a growth optimal portfolio is a portfolio which maximizes the expected growth
rate in portfolio value from the current time to the end of a finite horizon. The expected growth
rate can be interpreted as the expected log-return, or the geometric mean, in the portfolio value.

Hence these are referred to as a growth optimal portfolio, log-optimal portfolio, and a geometric
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mean portfolio, respectively. This portfolio was first proposed by Kelly (1956), who analyzed
expected growth rates in relation to information theory, and further progress in theoretical
research was made by Cover et. al. (Cover-Thomas, 1990).

On the one hand, this approach has been repeatedly applied to finance, and its validity has
been claimed in studies by Hakansson (1971), Thorp (1971) and others. On the other hand, the
growth optimal portfolio approach considers only maximization of the expected $\log$ utility, hence
the approach has been criticized because it does not maximize the expected utility of other risk
averse investors. However, Luenberger (1993) showed that the approach is economically sound.

This is not just a sound theoretical framework for performing dynamic portfolio selection as
indicated above. The research of Long (1990), Platen and Heath (2006), and others has shown
that growth optimal portfolios are a framework for fair asset pricing. That is, they have shown
that the Karush-Kuhn-Tucker (KKT) conditions themselves (which are necessary and sufficient
for a portfolio to be growth optimal) can be used in asset pricing. More specifically, these
KKT conditions express the fact that the relative prices of individual assets, found by dividing
by the growth optimal portfolio value as a numeraire, become a martingale under the original
probability measure. Furthermore, when this is combined with the theorem (Theorem 1, Long,
1990) which states that the non-existence of opportunities for arbitrage in a market is equivalent
to the existence a growth optimal portfolio as a numeraire one, then a growth optimal portfolio
can be used for pricing any assets.

An asset pricing formula based on a growth optimal portfolio has a distinguishing feature
that it is derived from just the list of assets which are the target of investment universe. The
risk premium or the expected excess rate of return of an individual asset is explained to be
proportional to that of the growth optimal portfolio. Therefore, this approach can be used in
almost the exact same way as the familiar classical capital asset pricing model (CAPM). On the
other hand, CAPM always has problems, like how to interpret the market portfolio which is only
a conceptual one in theory, and to determine the proper substitution assets when conducting
empirical analyses. However, a growth optimal portfolio can be specifically determined from
historical data on the list of assets which are the target investment universe. Even if a growth
optimal portfolio is not found directly, it is possible to use a benchmark for the list of assets
which are the target investment universe, as a proxy for the growth optimal portfolio. This is
because many empirical studies have strongly supported that the rate of return of the benchmark
satisfies the necessary and sufficient conditions to be a growth optimal portfolio. For example,
it has been reported that, if the stocks comprising TOPIX are taken to be the list of assets, the
rate of return of TOPIX which is a benchmark of those assets can be used as a proxy for the
rate of return of the growth optimal portfolio (Roll 1973, Long 1990, Platen and Heath 2006).

Regime Switching Model

The purpose of this paper is to derive an asset pricing model based on a growth optimal
portfolio, which takes regime into account. The term ”regime” refers to (hidden” states of the
market, such as booms and recessions or bull and bear markets. And the ”regime switching
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model” takes into account the fact that parameters describing existing time series models for
asset prices will switch according to the regime. The regime switching model was first proposed
in the pioneering research of Hamilton (Hamilton, 1989). The basic concept is to first describe
an “observation equation” for the asset price. That is, the equation is given by a logarithmic
diffusion model, in which the logarithmic rate of return conforms to a normal distribution, or
by an existing time series model of asset prices like an autoregressive processes. At this time,
the parameters of the observation equation are placed into correspondence with the regime, and
given as many different values as there are regimes. When a certain regime is realized at a
discrete time point, the corresponding parameters are regarded as being realized. As a result,
the parameters switch in accordance with the regime at discrete time points. On the other
hand, it is assumed that regimes conform to a first-order Markov process, and this is called the
“state equation“. In other words, a regime switching model is described by two equations-
an “observation equation” and a “state equation” –and their parameters are inferred from the
data. Thus, this model can be regarded as one of the so-called “ state-space models”, a category
which includes things like the Kalman filter (Elliot et al, 1995). Since the research of Hamilton,
this model has been actively studied in econometrics, and has shown its effectiveness through
theoretical extensions and applications to validation studies.

2 The Model

In this Section, we describe why a growth optimal portfolio serves as a fair pricing framework,
and then derive an asset pricing model subject to regime switching.

2.1 Asset Pricing via Growth Optimal Portfolios

We consider a market where one risk-free asset, and $n$ risky assets are traded at discrete time
$t=0,1,$ $\ldots,$

$T$ . Let $S_{t}=(S_{1t}\ldots S_{it}\ldots S_{nt})’$ be the prices of risky assets at time $t$ which is
assumed take finite, non-negative values. The period $t$ is the time interval between $t-1$ and
$t$ . The gross return of the assets over the period $t$ , i.e. 1 $+$ the rate of return, is written as
$X_{t}=(X_{1t}\ldots X_{it}\ldots X_{nt})’$ , where $X_{it}=S_{it}/S_{it-}i$ . Also, we write the gross return of the risk-free
asset during period $t$ as $x_{f,t}$ .

At each time $t-1$ , the investor rebalances her portfolio for the period $t$ . However, it is
assumed that there is no exchange of cash flows with the outside, that is, the portfolio is built
in a self-financing fashion. The portfolio is characterized by the ratios of the amounts invested
in each asset, relative to the entire portfolio value, i.e. by the portfolio weights. The weights for
the risk-free asset and the risky assets are denoted, respectively, as $\{b_{0t},$ $b_{t}=(b_{1t}\ldots b_{it}\ldots b_{nt})’\}$ .
The weights are assumed to be constrained as follows:

$\{b_{0t}\in R,$ $b_{t}\in R^{n}|b_{0t}+b_{t}’1=1\}$ ,

Under the assumptions above, the portfolio value $V_{t}$ can be expressed:

$V_{t}=V_{t-i}(b_{0t}x_{f,t}+b_{t}’X_{t})=V_{t-1}X_{t}$ ,
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where the gross return of portfolio value is denoted by $X_{t}=b_{0t}x_{f,t}\triangle+b_{t}’X_{t}$ . Hence, given the
initial investment $V_{0}$ , then the portfolio value at the end of the horizon can be written as:

$V_{T}=V_{0} \prod_{t=1}^{T}X_{t}=V_{0}\cdot e^{\Sigma_{t=1}^{T}\log X_{t}}=V_{0}\cdot e^{\log(V_{T}/V_{0})}$ ,

This last equation is a trivial identity for $V_{T}$ , and $\log(V_{T}/V_{0})$ gives the gross return over the
entire investment period.

This expression shows that, in order to maximize the portfolio value $V_{T}$ at the end of the term,

it is sufficient to maximize the $\log$ return of the portfolio during each period $\log X_{t}$ . Therefore,

to obtain the growth optimal portfolio, it is sufficient to take the conditional expectation of the
$\log$ return of the portfolio at the beginning of each period $t-1$ , and then to solve the following
problem at each period $t$ :

$P_{t}$

$\max_{b}imize$
$E_{t-1}[\log X_{t}]=E_{t-1}\triangle[\log(b_{0t}x_{f,t}+b_{t}’X_{t})]$

subject to $b_{0t}+b_{t}’1=1$ .

Since the objective function for the problem $P_{t}$ is concave, the Karush-Kuhn-Tucker (KKT)

conditions are necessary and sufficient conditions for the optimality. The KKT conditions for
the problem $P_{t}$ can be stated as $\{b_{0t}^{*}, b_{t}^{*} ; \ddagger 1^{*}\}$ , such that:

$E_{t}$一 1 $[ \frac{x_{f,t}}{x_{t}*}]$ $=$ 1, (2.1)

$E_{t-1}[ \frac{X_{it}}{x_{t}*}]$ $=$ 1 $(i=1, \ldots, n)$ , (2.2)

$\iota/^{*}$ $=$ 1. (2.3)

Where $\nu\in R$ is the Lagrange multiplier. Also $X_{t}^{*}=b_{0t}^{*}x_{f,t}+b_{t}^{*\prime}X_{t}$ . In Eqs. (2.1) and (2.2),
$X_{t}^{*}$ is the gross return of the growth optimal portfolio, and can be expressed as $X_{t}^{*}=V_{t}^{*}/V_{t-1}^{*}$ .
Similarly, since $X_{it}=S_{it}/S_{it-1}$ , Eq. (2.2) can be rewritten:

$\frac{S_{it-1}}{V_{t-1}^{*}}=E_{t-1}[\frac{S_{it}}{V_{t}^{*}}](i=1, \ldots, n)$ . (2.4)

This equation shows that the relative price of assets, taking the growth optimal portfolio as the
numeraire, becomes a martingale under the original probability measure. This asserts that the
growth optimal portfolio can be used for pricing an arbitrary asset. Furthermore, Eq. (2.4)
implies:

$Sit=E_{t}[( \frac{V_{T}^{*}}{V_{t}^{*}})^{-1}S_{iT}]=E_{t}[(X_{t+1}^{*}\cdot X_{t+2}^{*}\cdot\ldots\cdot X_{T}^{*})^{-1}\cdot S_{iT}]$ . (2.5)

Eq. (2.5) shows that the current price Sit of an arbitrary asset $i$ can be obtained by taking
the expectation of the discounted asset price at the terminal-time, $S_{iT}$ . Here the discount
factor is the inverse of the gross return of the growth optimal portfolio. Furthermore, when
this is combined with the Theorem 1 of Long (1990) which states that the non-existence of
opportunities for arbitrage in a market is equivalent to the existence a growth optimal portfolio
as numeraire one, and that the gross return of the growth optimal portfolio is unique, then we
can use the growth optimal portfolio for pricing any assets.
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2.2 Asset Pricing under a Regime Switching Model

We will consider on a probability space $(\Omega, \mathcal{F}, P)$ . Just as in the previous section, one risk-free

asset and $n$ risky assets are traded in the market. It is assumed that $K$ regimes exist in the

market at discrete time $t=0,1,$ $\ldots,$
$T$ , and we express regime as $Y=\triangle\{Y_{t};t=0, \ldots, T\}$ and

write $\mathcal{F}_{t}=\sigma\triangle$ $(Y_{t} : t\in \mathbb{N})$ . The state space of regime $Y_{t}$ is $\{e_{1}, \ldots, e_{k}, \ldots , e_{K}\}$ . Here $e_{k}\in \mathbb{R}^{K}(k=$

$1,$
$\ldots,$

$K)$ is a vector whose k-th element is 1, otherwise $0$ .

We assume that regime $Y_{t}$ is a first-order Markov process, and we denote the time-homogeneous

transition probability from regime $e_{l}$ at time $t$ , to regime $e_{k}$ at time $t+1$ as:

$P$ $=$ $(p_{kl})_{1\leq k,l\leq K}$ , (2.6)

where $p_{kl}$ $=$ $Pr(Y_{t+1}=e_{k}|Y_{t}=e_{l})$ . (2.7)

Here, $p_{kl}$ satisfies:

$p_{kl}\geq 0(k, l=1, \ldots, K)$ , $\sum_{k=1}^{K}p_{kl}=1$ . (2.8)

Now, regime $Y_{t}$ can be expressed as a state equation as follows:

$Y_{t+1}$ $=$ $PY_{t}+M_{t+1}$ , (2.9)

where $M_{t+1}$ is a $\mathcal{F}_{t}$ -martingale increment.
On the other hand, given the regime $Y_{t}$ at time $t$ , the retum of risky assets is assumed to be

described as follows as an observation equation:

$R_{t}(Y_{t})$ $=$ $\mu(Y_{t})+\Sigma^{1/2}(Y_{t})\epsilon_{t}$ , (210)

Here, we assume that $\mu(Y_{t})$ is the ex-divindend drift parameter. $\Sigma^{1/2}(Y_{t})=(\sigma_{ij}(Y_{t}))_{1\leq i_{r}j\leq n}=$

$(\sigma_{1}’(Y_{t})\ldots\sigma_{i}’(Y_{t})\ldots\sigma_{n}’(Y_{t}))’$ is the diffusion parameter. $\epsilon_{t_{I.I}}\sim_{D}.N(O, I)$ is a driving term which
follows mutually independent, identical standard normal distribution. Also, we write $\mathcal{R}_{t}$ $:=$

$\sigma$ $(R_{t} : t\in N),$ $\mathcal{G}_{t}$ $:=\sigma(Y_{t}, R_{t} : t\in \mathbb{N})$ .
The drift and diffusion parameters, respectively, are assumed to take values corresponding

to the regime from the following state spaces.

$\{\mu(1), \ldots, \mu(k), \ldots, \mu(K)\},$ $\{\Sigma(1), \ldots, \Sigma(k), \ldots, \Sigma(K)\}$ . (211)

At this time, we assume that the drift and diffusion parameters in the period $t$ given the regime
$Y_{t}$ at time $t$ :

$\mu(Y_{t})$ $=$ $\sum_{k=1}^{K}$ $\langle$巧, $e_{k}\rangle\mu(k)$ , (212)

$\Sigma(Y_{t})$ $=$ $\sum_{k=1}^{K}\langle Y_{t},$ $e_{k}\}\Sigma(k)$ . (213)

Here the operator $\langle,$ $\rangle$ indicates the inner product. Eq. (2.10) shows that the diffusion and

drift parameters which characterize the risk and return structure in the $\log$ return of assets will

switch according to the regime which dominates that period.
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We assume that the return of the risk-free asset is given as follows when the regime $Y_{t}$ is
given at time $t$ .

$r_{t}(Y_{t})=r_{f}(Y_{t})= \sum_{k=1}^{K}\{Y_{t}, e_{k}\}r_{f}(k)$ . (2.14)

Here the risk-free rate is regarded as taking values corresponding to the regime from the following
state space.

$\{r_{f}(1), \ldots, r_{f}(k), \ldots, r_{f}(K)\}$ . (2.15)

Eq. (2.14) signifies the fact that the risk-free rate of interest switches according to the regime
which dominates that period.

Given the above assumptions, we construct a portfolio from one risk-free asset and $n$ risky
assets. The ratios of amounts invested in the risk-free asset and risky assets after rebalancing
at time $t-1$ (i.e. the portfolio weights) are written as $\{b_{0t}, b_{t}=(b_{1t}\ldots b_{it}\ldots b_{nt})’\}$ . At this
time, the rate of return of the entire portfolio in period $t$ , given the regime at time $t$ , can be
expressed as follows:

$\tilde{R}_{t}(Y_{t})=b_{0t}r_{t}(Y_{t})+b_{t}’R_{t}(Y_{t})$ . (2.16)

Using log-linear approximation (Campbell-Viceira, 2002), the $\log$ return of the portfolio is:

$\tilde{R}_{t}^{\log}(Y_{t})=\tilde{R}_{t}|Y_{t}-\frac{1}{2}b_{t}’\Sigma(Y_{t})b_{t}=\mu_{P}(b_{0t}, b_{t};Y_{t})+b_{t}’\Sigma^{1/2}(Y_{t})\epsilon_{t}$ . (2.17)

Here we abbreviated as:

$\mu_{P}(b_{0t}, b_{t};Y_{t})=b_{0t}r_{f}(Y_{t})\triangle+b_{t}’\mu(Y_{t})-\frac{1}{2}b_{t}’\Sigma(Y_{t})b_{t}$ . (2.18)

Furthermore, letting:

$\mu_{P}(b_{0t}, b_{t})=(\mu_{P}(b_{0t}, b_{t;}e_{1})\ldots\mu_{P}(b_{0t}, b_{t;}e_{k})\ldots\mu_{P}(b0\iota, b_{t;}e_{K}))$ ,

then we have:

$\mu_{P}(b_{0t}, b_{t};Y_{t})=\langle\mu_{P}(b_{0t}, b_{t}),$ $Y_{t}\rangle$ . (2.19)

Using the tower property, the expected gross return for the entire investment period, given the
trajectory of regime is:

$E[ \log(\frac{V_{T}}{V_{0}})|\mathcal{F}_{0}^{R},$ $\mathcal{F}_{T}^{Y}]=\sum_{t=1}^{T}E[\tilde{R}_{t}^{\log}(Y_{t})|\mathcal{F}_{0}^{R},$ $\mathcal{F}_{T}^{Y}]=\sum_{t=1}^{T}\mu_{P}(b_{0t}, b_{t};Y_{t})$

Therefore, to maximize the expected growth rate given regime, the investor only have to employ
the growth optimal portfolio which is given as the solution to the following problem in each
period $t$ .

$P(Y_{t})$

maximize $\mu_{P}(b_{0t}, b_{t};Y_{t})$

$\{b_{0t},b_{t}\}$

$=b_{0t}r_{f}(Y_{t})+b_{t}’ \mu(Y_{t})-\frac{1}{2}b_{t}’\Sigma(Y_{t})b_{t}$ (2.20)

subject to $b_{0t}+b_{t}’1=1$ .
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KKT conditions for the problem $P(Y_{t})$ are given as follows:

$\Sigma(Y_{t})b_{t}^{*}$ $=$ $\mu(Y_{t})-r_{f}(Y_{t})1$ , (2.21)

$b_{0t}^{*}+b_{t}^{*\prime}1$ $=$ 1. (2.22)

Where $\iota/\in R$ is the Lagrange multiplier. Given regime, the covariance of return between the
risky assets and the growth optimal portfolio is:

COV $(R_{t},\tilde{R}_{t}^{*}|\mathcal{F}_{t-1}^{R},$ $\mathcal{F}_{T}^{Y})=\Sigma(Y_{t})b_{t}^{*}$ . (2.23)

Equating Eq. (2.21) and Eq. (2.23), we have;

$\mu(Y_{t})-r_{f}(Y_{t})1$ $=$

Or, $\mu_{i}(Y_{t})-r_{f}(Y_{t})$ $=$

Cov$t-1(R_{t},\tilde{R}_{t}^{*}|Y_{t})$ ,

Cov$t-1(R_{it},\tilde{R}_{t}^{*}|Y_{t})$ . (2.24)

Eq. (2.24) also holds for growth optimal portfolio $i=G$ itself, hence:

$\mu_{G}(Y_{t})-r_{f}(Y_{t})$ $=$ $V_{t-1}[\tilde{R}_{t}^{*}|Y_{t}]$ . (2.25)

From Eqs. (2.24) and (3.1), we obtain:

$\mu_{i}(Y_{t})-r_{f}(Y_{t})=\beta_{i}(Y_{t})(\mu c(Y_{t})-r_{f}(Y_{t}))$ . (2.26)

Where we define:

$\beta_{i}(Y_{t})=\triangle\frac{Cov_{t-1}(R_{it},\tilde{R}_{t}^{*}1Y_{t})}{V_{t-1}[\tilde{R}_{t}^{*}1Y_{t}]}$ , (2.27)

When $Y_{t}=e_{k}$ , Eq. (2.26) can be written:

$\mu_{i}(k)+\frac{1}{2}\lambda_{i}(k)-r_{f}(k)=\beta_{i}(k)(\mu_{G}(k)+\frac{1}{2}\lambda_{G}(k)-r_{f}(k))(k=1, \ldots, K)$ , (2.28)

This means that, under conditions where regime $Y_{t}$ is observed, linear relationships for just the
number $K$ of regimes exist between the expected excess rate of retum of each asset, and that
of the growth optimal portfolio. Furthermore, Eq. (2.26) can be rewritten.

$E_{t-1}[R_{it}|Y_{t}]-(r_{f}|Y_{t})=\beta_{i}(Y_{t})(E_{t-1}[R_{Gt}|Y_{t}]-(r_{f}|Y_{t}))$ . (2.29)

Due to Eqs. (2.28) and (2.29), the asset pricing formula under regime switching (hereafter
“regime switching G-CAPM“) of Eq. (2.26) can be interpreted as follows:

“The risk premiums for individual assets and the growth optimal portfolio switch according
to the regime. Given regime, the risk premium of individual assets varies proportionally with the
risk premium of the growth optimal portfolio, and the degree of that dependence can be grasped
by the switching beta $\beta_{i}(Y_{t}).$

” The growth optimal asset pricing model with the setting of regime
switching models, as indicated by Eq. (2.26), is turns out be be effective in the following ways
for finding the risk premium of any asset:
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. The model have the distinguishing feature which is able to indicate the relationship between
the risk premiums of assets given in the list of target investments, and the risk premium of
the growth optimal portfolio comprised of those assets. On the other hand, the CAPM is
a formula which indicates the relationship between the risk premium of a market portfolio
(which is a theoretical concept) and individual assets.. The growth optimal portfolio can be constructed using the SPOP Scheme (Ishijima-

Shirakawa, 2000), and it is even possible to use a benchmark index (S&P 500, DJIA
etc.) or a uniform portfolio as a proxy (refer to the validation and theoretical studies in
Ro111973, Long 1990 and Platen and Heath 2006 etc.). Estimating the regime is extremely difficult. In particular, the estimation of regime shared
between assets becomes ever more difficult as the number of assets increases. In this regard,
a good approach for the derived formula is to estimate the regime shared by the two assets,
namely: the individual asset and the growth optimal portfolio. This can be done easily
using the estimation method given in the following Section.

3 An Adaptive Estimation of Regime Switching G-CAPM

The model to be estimated is indicated as Eq. (2.24). With the notation:

$\Sigma(Y_{t}):=E[(\begin{array}{l}\overline{R}_{t}^{*}-\mu_{G}(Y_{t})R_{t}-\mu(Y_{t})\end{array})(\begin{array}{l}\tilde{R}_{r}^{*}-\mu_{G}(Y_{t})R_{t}-\mu(Y_{t})\end{array})|Y_{t}]$

where $\Sigma(Y_{t})=(\sigma_{0}(Y_{t})’\sigma_{1}(Y_{t})’\ldots\sigma_{i}(Y_{t})’\ldots\sigma_{n}(Y_{t})’)’$, Eq. (2.24) can be rewritten as

$\mu(Y_{t})-r_{f}(Y_{t})1=Cov_{t-1}(\tilde{R}_{t}^{*},$ $R_{t}|Y_{t})=\sigma_{0}’(Y_{t})$ (3.1)

Hence our task is to estimate $\Sigma(Y_{t})$ , namely $\Sigma(k)(k=1, \ldots, K)$ .
An adaptive estimation of the parameter $\Theta$ is implemented by so-called “EM algorithm”.

In this algorithm, an initial value $\Theta^{(0)}$ is set appropriately, and then altemating iterations
$(j=1,2, \ldots)$ are performed comprised of Expectation Steps and Maximization Steps. At
iteration $j$ , the parameter $\Theta^{(j-1)}$ is updated to a better one $\Theta^{(j)}$ . That is, iterations comprised
of E-steps and M-steps monotonically increase the likelihood function.

Iteration is repeated until the parameter estimate values are no longer updated, and when
$\Theta^{(J-1)}\approx\Theta^{(J)}$ , the estimate value for parameter $\Theta$ is set as $\hat{\Theta}=\Theta^{(J)}$ .

Below we shall discuss the EM algorithm used for estimating the model parameters in adap-
tive manner. Write $_{t}=\sigma(R_{1}, \ldots, R_{t})$ and $\ovalbox{\tt\small REJECT}_{t}=\sigma(Y_{1}, \ldots, Y_{t})$ . We then define the Q-function
as:

$Q( \Theta^{(j+1)};\Theta^{(j)},):=E^{\Theta^{(j)}}[\log\frac{dP^{\Theta^{(j+1)}}}{dP^{\Theta(j)}}|$ 塚$T$ $]$ . (3.2)

Also we let
$\Lambda_{T}:=\frac{dP^{\Theta^{(j+1)}}}{dP^{\Theta(j)}}$ .

$y_{T}$
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To estimate $\Sigma(k)$ , consider $\Lambda_{T}$ as

$\Lambda_{T}=\frac{f(_{T},\ovalbox{\tt\small REJECT}_{T)}\Theta^{(j+1)})}{f(_{T},\ovalbox{\tt\small REJECT}_{T)}\Theta^{(j))}}=\prod_{t=1}^{T}\frac{f(R_{t},Y_{t}|_{T-1},\ovalbox{\tt\small REJECT}_{T-1};\Theta^{(j+1)})}{f(R_{t},Y_{t}|^{_{T-1},y_{T-1;\Theta(j)}})}$

Here $f$ $(_{T}, \ovalbox{\tt\small REJECT}\tau; \Theta)$ is the complete likelihood function. Given the model (2.10),

$f(R_{t},$ $Y_{t}|_{T-1},$ $\ovalbox{\tt\small REJECT}_{T-1};\Theta^{(j+1)})$

$= \frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma(j+1)(Y_{t})|^{\frac{1}{2}}}\exp[-\frac{1}{2}(R_{t}-\mu^{(j+1)}(Y_{t}))’(\Sigma^{(j+1)}(Y_{t}))^{-1}(R_{t}-\mu^{(j+1)}(Y_{t}))]$ .

Then

$\log\Lambda_{T}$

$=- \frac{1}{2}\sum_{t=1}^{T}\sum_{k=1}^{K}\langle Y_{t},$ $e_{k}\rangle[\log|\Sigma^{(j+1)}(k)|+(R_{t}-\mu^{(j+1)}(k))’(\Sigma^{(j+1)}(k))^{-1}(R_{t}-\mu^{(j+1)}(k))]$

$+A(\mu^{(j)},$ $\Sigma^{(j)})$ .

Hence,

$E^{\Theta^{(j)}}[\log\Lambda_{T}|_{T}]$

$=- \frac{1}{2}\sum_{t=1}^{T}\sum_{k=1}^{K}\xi_{k,t}^{(j)}[\log|\Sigma^{(j+1)}(k)|+(R_{t}-\mu^{(j+1)}(k))’(\Sigma^{(j+1)}(k))^{-1}(R_{t}-\mu^{(j+1)}(k))]$

$+\hat{A}(\mu^{(j)},$ $\Sigma^{(j)})$ .

Here $\xi_{k,t}^{(j)}$ $:=E^{\Theta^{(j)}}[\{Y_{t},$ $e_{k}\rangle|_{T}]$ . Differentiate this equation with respect to $\Sigma^{(j+1)}(k)$ to equate
to $O$ , we obtain the re-estimate of $\Sigma^{(j+1)}(k, T)\wedge$ , at time $t=T$:

$\Sigma^{(j+1)}(k, T)=\sum_{t=1}^{T}\xi_{k,t}^{(j)}(R_{t}-\mu^{(j+1)}(k))(R_{t}-\mu^{(j+1)}(k))’/\sum_{t=1}^{T}\xi_{k,t}^{(j)}$

$=(\hat{\mathcal{T}}_{k,T}^{(j)}(RR’)-\hat{\mathcal{T}}_{k_{l}T}^{(j)}(R)\mu^{(j+1)\prime}(k)-\mu^{(3+1)}(k)\hat{\mathcal{T}}_{k}^{(9(R)+\mu^{(3+l)}(k)\mu^{(j+l)}(k)\text{\^{o}}\mapsto)}/\text{\^{o}}_{k,T}^{(j)}$

(3.3)

The filtering techniques under $P^{\Theta^{(j)}}$ are given in Elliott et al (1995). Define a new probability
measure $\overline{P}$ by

$\frac{d\overline{P}}{dP}|_{\mathcal{G}_{t}}=\Lambda_{t}=\prod_{\tau=1}^{t}\lambda_{\tau}=\frac{\phi(R_{t})\sum_{k=1}^{K}\{Y_{t},e_{k}\rangle|\Sigma(k)|^{\frac{1}{2}}}{\phi(\epsilon_{t})}$ .

Also to construct $P$ from $\overline{P}$ , define $P$ by putting

$\frac{dP}{d\overline{P}}|_{\mathcal{G}\iota}=\overline{\Lambda}_{t}=\prod_{\tau=1}^{t}\overline{\lambda}_{\tau}$ ,

where $\overline{\lambda}_{t}=\lambda_{t}^{-1}(t\geq 1)$ .
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Let $\{H_{t}:t\in \mathbb{N}\}$ be any process adapted to $\mathcal{G}_{t}$ and consider its filtering problem. With the
notation of

$\gamma_{t}(H_{t}):=\overline{E}[\overline{\Lambda}_{t}H_{t}|\mathcal{R}_{t}]$ ,

the filter for $H_{t}$ is then given as

$\hat{H}_{t}=E[H_{t}|\mathcal{R}_{t}]=\frac{\overline{E}[\overline{\Lambda}_{t}H_{t}|\mathcal{R}_{t}]}{\overline{E}[\overline{\Lambda}_{t}1\mathcal{R}_{t}]}=\frac{\gamma_{t}(H_{t})}{\gamma_{t}(1)}$ .

We remark that the estimate of $\gamma_{t}(H_{t})$ is expressed in terms of $\gamma_{t}(H_{t}Y_{t})$ , since $\gamma_{t}(H_{t})=$

$\{\gamma_{t}(H_{t}Y_{t}),$ $1\rangle$ . Also the recursion for $\gamma_{t}(H_{t}Y_{t})$ can be easily obtained. As summary, by deriving
the recursive equation for $\gamma_{t,t}(H_{t})=\gamma_{t}(H_{t}Y_{t})$ , we then obtain $\gamma_{t}(H_{t})$ and $\gamma_{t}(1)$ , and we thus
arrive at the filter $\hat{H}_{t}=E[H_{t}|\mathcal{R}_{t}]=\gamma_{t}(H_{t})/\gamma_{t}(1)$ . Our concem is the estimators for the
followgs:

State: $Y_{t}$

Occupation time : $\mathcal{O}$

た,t: $= \sum_{\tau=1}^{t}\langle Y_{\tau},$ $e_{k}\rangle$

Number of jumps : $\mathcal{J}_{kl,t}$ $:= \sum_{\tau=1}^{t}\langle Y_{\tau-1},$ $e_{k}\rangle\langle Y_{\tau},$ $e_{l}\rangle$

Observation process: $\mathcal{T}_{k,t}(f)$ $:= \sum_{\tau=1}^{T}\{Y_{\tau},$ $e_{k}\rangle f(R_{\tau})$

Adaptive estimators for these are given in Elliott et al (1995) as follows:

$\gamma\iota(Y_{t})$ $=$ $\sum_{k=1}^{K}\langle\gamma_{t-1}(Y_{t-1}),$ $\Gamma_{k}(R_{t})\}p_{i}$ ,

$\gamma t,t(\mathcal{J}_{t}^{kl})$ $=$ $\sum_{k=1}^{K}\langle\gamma t,t(\mathcal{J}_{t-1}^{kl}),$ $\Gamma_{k}(R_{t})\rangle p_{k}+\langle\gamma t-1(Y_{t-1}),$ $\Gamma_{k}(R_{t})\rangle p|_{k}e|$ ,

$\gamma_{t,t}(\mathcal{O}_{\text{た},t})$ $=$ $\sum_{l=1}^{K}\langle\gamma_{t-1,t-1}(\mathcal{O}_{k,t-1}, \Gamma_{l}(R_{t}))\rangle p_{l}+\langle\gamma_{t}(Y_{t}),$ $\Gamma_{\text{た}}(R_{t})\rangle p_{k}$ ,

$\gamma_{t.t}(\mathcal{T}_{k,t})$ $=$ $\sum_{l=1}^{K}\langle\gamma_{t-1,t-1}(\mathcal{T}_{\text{た},t}(f))$ , $\Gamma_{l}(R_{t+1})\}p_{l}+\langle\gamma_{t-1}(Y_{t-1}),$ $\Gamma$

た $(R_{t})\}f(R_{t})p_{k}$

Using these estimators, we are able to re-estimate $\Sigma^{(j+1)}(k, t)$ which provides risk premiums for
risky assets in an adaptive manner.

4 Numerical Example

We generate the sample data according to the two-dimensional and two-state regime switching
normal model. The parameter set used are shown in Table 1. Under these settings, we estimate
the regime switching G-CAPM by two algorithms: Baum-Welch and Elliott algorithms. We
evaluate them in the viewpoint of the error in estimated value when compared to the true ones.

Estimated transition probabilities using Baum-Welch and Elliott algorithms are shown in
Table 2. Values in parentheses shows the errors of estimated values from true ones. Also
estimated mean vectors and covariance matrices for each of regime, using Baum-Welch and
Elliott algorithms, are shown in Table 3 and 4.
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Both Baum-Welch and Elliott algorithms monotonically increase the likelihood as the it-
eration has been repeated. In this numerical experiment, the log-likelihood function is locally
maximized in the second iteration. Our finding is that the same initial values for both algorithms
leads to exactly the same results.

Figure 1: Parameter set used in the numerical experiments. Table on the left shows the transition
probability matrix. Two tables on the right show the mean vector and covariance matrix for
each of regime.

Figure 2: Estimated transition probabilities with the sample size of 10, 100, 1,000, 10,000 and
100,000. The results by Baum-Welch and Elliott algorithms are shown in the left and right
tables, respectively.

5 Conclusion

We derived a growth optimal asset pricing model with the setting of hidden Markov models and
slightly extended Elliott algorithm (1995) to estimate the model in an adaptive manner.
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Figure 3: Estimated mean vectors and covariance matrices with the sample size of 100, 1,000.
The results by Baum-Welch and Elliott algorithms are shown in the left and right tables, re-
spectively.

Figure 4: Estimated mean vectors and covariance matrices with the sample size of 10,000,
100,000. The results by Baum-Welch and Elliott algorithms are shown in the left and right
tables, respectively.
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