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Abstract

Given a set of rectangles and a rectangular container with a fixed width, called a strip,
the two-dimensional strip packing problem (2SP) requires all the given rectangles to be
placed orthogonally without overlap within the strip so as to minimize the height of the
strip. The problem and its variants have many applications in steel and textile industries,
and it has indirect application in scheduling problems. However, 25P is known to be NP-
hard. The one-dimensional contiguous bin packing problem (1CBP) is a relaxed problem
of 2SP. 1CBP is originally proposed for giving a lower bound on the optimal value to
the 2SP [1]. 1CBP is also known to be NP-hard. In this paper, we propose an exact
algorithm for 1CBP incorporating a branch-and-bound algorithm for 1CBP with fixed
height problem (1CBPFH), a decision problem of 1CBP which asks whether there is a
feasible placement of all rectangles within the strip with fixed width and height, and a
heuristic algorithm for 2SP with fixed height problem (2SPFH). Our algorithm can deal
with not only 1CBP without rotations but also 1CBP with rotations of 90 degrees.

We conducted experiments using benchmark instances. Our algorithm succeeded to
find the optimal values for most of these instances in a practical time. Especially, we found
that the optimal values of instances “gcut02” and “cgcut02” (without rotations) are 1187
and 64, respectively, which have not been known by any of the existing algorithms.

Key words: One-dimensional contiguous bin packing problem; Two-dimensional strip
packing problem; Canonical Form; Branch-and-bound.

1 Introduction

The two-dimensional strip packing problem (25P) requires all given rectangles to be placed or-
thogonally without overlap into one rectangular strip, called the strip, with a fixed width and
a variable height so as to minimize the height of the strip. 2SP is known under various names
including the (orthogonal) rectangular strip packing problem. According to the recent typol-
ogy of packing problems [2]. 2SP without rotations is categorized into the two-dimensional
rectangular open dimension problem with a single variable dimension (2D rectangular ODP).
Most of the variants of the rectangle packing problem, including 2SP, are known to be NP-
hard. Rectangle packing problems have many applications in the steel and textile industries,
and they also have indirect applications in scheduling problems [3] and in other areas [4, 5.

The one-dimensional continuous bin packing problem (1CBP) is a relaxed problem of 2SP,
which is proposed by Martello et al. [1] to obtain a lower bound on the optimal value of 2SP.
In 1CBP, each rectangle split into a set of rectangular bands with height one. 1CBP requires
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all these sets of bands to be placed into the original strip in such a way that the bands in
each set are allowed to take different z-coordinates as long as they are placed at contiguous
y-coordinates. 1CBP also has two variants with and without rotations of 90 degrees, which
are both known to be NP-hard.

In this paper, we design an exact algorithm for 1CBP with and without rotations of 90
degrees based on the branch-and-bound method. For this, we introduce a new idea on a lower
bound on optimal values and a branching operation based on the canonical form of placements
to reduce search space. In this paper, we omit the details of the bounding operations and a
heuristic algorithm to obtain a feasible solution due to the limitation of pages. Experimental
results on benchmark instances revealed that our algorithm can find optimal solutions to most
benchmark instances in a practical time.

1.1 Related Work

Among the many variants of rectangle packing problems, 2SP is one of the problems most
intensively studied [4].

Baker et al. [6] proposed a construction heuristics called the bottom-left-fill (BLF) algo-
rithm for 2SP, and many related papers have appeared, e.g., an efficient implementation [7].
Different types of construction heuristics have also been proposed recently, e.g., the best-fit
heuristics [8]. Construction heuristics are often incorporated in metaheuristics to improve
the quality of solutions. One of the common ways is to use metaheuristics for searching se-
quences from which BLF (or similar heuristics) generates good placements [9, 10, 11, 12, 13].
In this scheme, a sequence is an encoded solution and the heuristic such as BLF is a de-
coding algorithm. Metaheuristics incorporating different types of heuristics have also been
proposed; e.g., GRASP [14]. Murata et al. [15] proposed a simulated annealing and Imahori et
al. [5, 16| presented iterated local search algorithms based on a different coding scheme called
the sequence-pair representation. For more about heuristic algorithms, see a survey [17].

Compared with the research on heuristics to 2SP, the research on exact method to 2SP has
started recently. Martello et al. [1| proposed exact algorithms for 2SP without rotations and
succeeded in solving benchmark instances with up to 200 rectangles. They introduced 1CBP
and proposed a branch-and-bound algorithm to obtain a good lower bound on the optimal
value of 2SP, where the algorithm constructs a solution by placing rectangles one by one.
Alvarez-Valdez et al. [18] developed a new lower bound based on relaxations of an integer
formulations of 2SP and reduced the tree search of their branch-and-bound algorithm using
some dominance criteria. They designed an algorithm for 1CBP by incorporating the bisection
method and the feasibility check using CPLEX. The algorithms in these papers exploit the
constraint that the rectangles are not allowed to be rotated, and therefore they are not directly
applicable to the cases where rotations are allowed. On the other hand, Kenmochi et al. [19]
proposed an exact branch-and-bound algorithm for 2SP with and without rotations of 90
degrees based on the g-staircase placement. Because 1CBP was originally introduced only for
a lower bound for 2SP, the literature is limited. To the best of our knowledge, only Martello
et al. [1] and Alvarez-Valdez et al. [18] proposed algorithms for 1CBP.

Some theoretical aspects and heuristic/exact algorithms for 2SP are summarized in [20].
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1.2 Organization

The organization of this paper is as follows. In Section 2. we formulate 2SP and 1CBP. We
also introduce the decision problem 2S5P with fized height ({1 CBP with fized height) for 25P
(resp., 1CBP). In Section 3. we explain the outline of our entire algorithm EXAcT1CBP.
In Section 4. we introduce a new lower bound for 1CBP. In Section 5, we present an exact
the algorithm BB-1CBPFH based on the branch-and-bound method. The experimental
results on benchmark instances are reported in Section 6 and we give a concluding remark in

Section 7.

2 Formulations

2.1 Two-dimensional Strip Packing Problem (2SP)

We let (1, H) mean a strip with fixed width W and height H. An instance (I,W) of 2SP
consists of a set I = {ry,rs,...,7,} of n rectangles and a width W of a strip, where the
height of the strip is the objective to be minimized. Note that the widths and heights are all
integers. 2SP requires the 7 rectangles to be placed without overlap into the strip (W, H) so
as to minimize the height H of the strip. We designate the bottom left corner of the strip
as the origin of the zy-plane, letting the z-axis be the direction of the width of the strip,
and the y-axis be the direction of the height. We represent the location of each rectangle
¢ in the strip by the coordinate (a;,y;) of its bottom left corner (see Figure 1). The set
m = {(2i,y:) | i € I} of coordinates is called a placement of I.
2SP without rotations is formulated as follows:

minimize H

subjectto a2, +w; < W, r,€l, (1)
yi+hi<H, nel, (2)
z;tw; <x; or r;+w; <x; or

yi+hi <yj or yi+h; <y, r,rjel, i#j, (3)
2,y 20, mi€l, (4)

where the height H and the 2- and y-coordinates z; and y; (r; € I) are variables and the
strip width W and the height h; and width w; (r; € I) are given constants. The constraints
(1), (2) and (4) require all rectangles to he placed within a strip (W, H). The constraint (3)
prevents rectangles from overlapping each other. A placement 7 is feasible to an instance
(I, W) without rotations if it satisfies the constraints (1), (2), (3), and (4). Otherwise, 7 is
infeasible. We denote the optimal value H of a given instance (I.W’) without rotations by
OPTQSP(I, ”/r)

We also define the two-dimensional strip packing problem with fixed height (2SPFH)
without rotations by regarding (I, 1V, H) as an instance such that the rectangles in I are
required to be places in the strip (W, H) without overlap. We call a 2SPFH instance (I, W, H)
Jeasible if it admits a feasible placement of I within strip (W, H) (i.e., H > OPTysp(I,W))
and infeasible otherwise.
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Figure 1: A feasible placement of six rectangles to the strip packing problem

2.2 One-dimensional Contiguous Bin Packing Problem (1CBP)

In 1CBP, each rectangle with width w; and height h; is treated as a set of h; rectangles with
width w; and height 1, each of which we call a band. 1CBP requires all these sets of bands
to be placed into the original strip in such a way that the hands in each set are allowed to
take different x-coordinates as long as their are placed at contiguous y-coordinates. Note
that we do not need to consider a choice of the z-coordinate of each band because every band

has height 1. Let {b¥ | k = 0,...,h; — 1} denote the set of bands obtained from a rectangle
r; € I, and y{‘ denote the y-coordinate of band bf‘ Without loss of generality, we assume that
yf‘ = y9 4k, k=0,...,h; —1 holds. Hence we only need to decide the y-coordinate of the first

band &) of each rectangle r; € I. We denote y0 by y; for all r; € I. A set my = {y; | € J}
of y-coordinates for a subset .J C [ is called a 1CBP-placement of J. For a 1CBP-placement
wy of a subset J C I and a real number y > 0, the set X (y,my) of intersecting rectangles at
y-coordinate y is defined as X(y,7y) = {ri € J | yi <y < yi + hi}. The width &£(y,7;) at

a y-coordinate y > 0 of the placement 7, is defined as &(y,7y) = Zr,-eX(y,wJ) w;. Then the
1CBP problem without rotations is formulated as follows.
minimize H
subject to y; + h; < H, r;,€l, (5)
f(y,{y,lr,ef})SW’, OSy<Ha (6)
yi 20, r el (7)

We say that a 1CBP-placement 7y = {y; | r; € I} is feasible within the strip (W, H) if =
satisfies the constraints (5), (6), and (7). We denote the optimal value H of a given instance
(I, W) without rotations by OPTicpp(I,W). Note that OPT1cp(I, W) < OPTasp(I, W)
holds because 1CBP is a relaxed problem of 2SP.

Analogously with the decision version 2SPFH of 2SP, we consider a decision problem of
1CBP, called 1CBP with a fixed height (1CBPFH), which tests if there is a 1CBP-placement
for all given rectangles in I within the strip (W, H).
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3 Outline of the Entire Algorithm

In this section we introduce the outline of our entire algorithm ExAcTICBP to 1CBP. For
simplicity. we consider C'BP without rotations. Note that the algorithm for 1CBP with
rotations of 90 degrees is obtained analogously. Given an instance (1,1V), ExacT1CBP(I, )
finds the optimal height H* and an optimal placement 7* using a procedure for computing a
lower bound on OPT cpp(/, V) and two procedures as follows:

e RESTRICTEDSTAIR: A heuristic algorithm for 2SPFH.

ziven an instance (I, WV, H) of 2SPFH. RESTRICTEDSTAIR returns a feasible solution if
it succeed to find one. Otherwise, it returns a message “failure.” Note that the message
“failure™ does not guarantee that the 2SPFH instance (1,1, H) is infeasible. There may
exist any feasible solution that RESTRICTEDSTAIR cannot find. Also note that the y-
coordinates of a feasible solution of 2SPFH instance (I, 11, H) is also a feasible solution
of ICBPFH instance (1,1, H) because 1CBPFH is a relaxed problem of 2SPFH. We
omit the detail of RESTRICTEDSTAIR in this paper.

e BB-1CBPFH: An exact algorithm for ICBPFH.
Given an instance (I, W, H) of 1ICBPFH, BB-1CBPFH returns a feasible solution if
any. Otherwise, it returns a message “infeasible.” See Section 5 for detail.

EXAcT1CBP first computes a lower bound using procedures given in Section 4. Then
we set the height H of the strip to the lower bound and consider (I, W, H) as a 1ICBPFH in-
stance, which asks whether there is a feasible placement of I within the strip (W, H). For this
problem, we first apply RESTRICTEDSTAIR(/, VWV, H). which searches a restricted type of place-
ments of I attempting to find a feasible placement quickly. If RESTRICTEDSTAIR(I, W, H)
returns a feasible placement 7 of I, then it is optimal and we halt. Note that RESTRICTED-
STAIR(I, W, H) may not find a feasible placement of I even if OPT cpp(f,W) = H. Hence
if it returns “failure.” then we still need to check whether OPT 1cgp(I. W) = H or not.

We then compute H* = OPTicgp(/,WV) using BB-1CBPFH. We first find a range
(l,u] such that H* € [l,u]. Welet i = 0. lop = H, up = H. step, = 1, and apply BB-
ICBPFH(I, W, ug) to check the feasibility of a 1ICBPFH instance (1,1, ug). Until a 1ICBPFH
instance (I, 1V, u;) is feasible. we increment ¢ by 1 and let [, {1 = u; + 1. u;31 = u; +step;, and
step, ;1 = step; x 2. We then find H* € [[, ] by bisection method. EXAcT1ICBP is formally
described in Algorithm 1.

4 Lower Bounds on Optimal Values

We use two lower bounds on OPT jcpp in our algorithm ExacT1CBP. One is a simple lower
bound introduced by Martello et al. [1]. The other is one that we newly developed, called
partition lower bound.

4.1 Simple Lower Bound

We first review two simple lower bounds by Martello et al. [1]. A lower bound LBj based on
the heights of rectangles is defined by

max,, ey hi if rotations are not allowed,

max,, ey min{w;, h;}  if rotations of 90 degrees are allowed.

LBu(I,W) = {
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Algorithm 1 : ExacT1CBP(I, W)

Input: An instance (I, W) of a set of rectangles and a strip width W.

Ou

2:
3:

NP g e

© ®

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

tput: A pair (H*, 7*) of the optimal value and an optimal placement.

1: Compute a lower bound LB on OPTycgp(I, W);

H « LB;
if RESTRICTEDSTAIR(], W, H) returns a feasible placement 7* of I within a strip (W, H)
then
H* « H;
return (H*,n*)
end if;
l— H; u+« H;step + 1;
while BB-1CBPFH(I, W, u) returns “infeasible” do
l—u+1;
u < u + step;
step <+ step x 2
end while;
while | < u do
m « |[({ +u)/2];
if BB-1CBPFH(/, W, m) returns a feasible placement 7* then
H* « m;
U <~ m;
else
l—m+1
end if
end while;
return (H*, 7).
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A lower bound LB, based on the area of rectangles is defined by
C (=) .

LBAI,W) = | wihi/ W],

ri€l

which is called continuous lower bound. By combining the two lower bounds, we obtain a
lower bound LBo(I,W) = max{LBy(I, W), LB.(I,1¥)}. We easily see that LBo(I,W) <
OPT(I,VV) holds. This lower bound is used in the previous researches [1, 18, 19].

4.2 Partition Lower Bound

We propose a new lower hound partition lower bound for 1CBP without rotations based on
“PARTITION" problem [21], which is known to be NP-complete. The partition lower hound
can be obtained by taking a subset J C I satisfying some conditions and computing a lower
bound on OPT1cpp(J, W). For a set S of rectangles, let h(S) = 3~ ¢ h; denote the sum of
the heights of all the rectangles in S.

Lemma 1. For a given instance (I,W) of 1CBP, let J C I be a set of at least three rectangles
such that the sum of widths of any three rectangles in J is greater than W . For such a subset
J.let w' = min;cyw;, Aw ={rieJ|wi+w >W)} and By = J\ Aw-. and define

LByo(J, W) = h(Aw) + min{h(B') | B' C B, h(B') > h(B)/2}. (8)
Then LByo(J, W) < OPT1cpp(J, W) < OPTicap(I, W) holds. O

Note that the second term of the sum in (8) corresponds to the optimization version of
PARTITION problem, which can be solved by dynamic programming.
Lemma 1 implies that

LBy(I,W) = max{LBno(J,W) | J C I, wi +wj + wi > W, Vri,rj,rp € J}

is a lower bound on OPTicpp(I, W) as well, which we call partition lower bound. We can
compute LB, in O(n?h(I)) time.

5 Branch-and-Bound Algorithm for 1CBPFH

We design algorithms BB-1CBPFH and RESTRICTEDSTAIR bhased on the branch-and-bound
method. BB-1CBPFH is an exact algorithm for ICBPFH and RESTRICTEDSTAIR is a heuris-
tic algorithm for 25PFH. Note that RESTRICTEDSTAIR searches a restricted type of place-
ments to find a feasible solution quickly and may miss a feasible solution due to the restriction
on the search space, but without the restriction, it performs as an exact algorithm.

In this section. we explain the canonical form of 1C'BP-placements and the branching
operation of BB-1CBPFH. We omit the details of bounding operations of BB-1CBPFH
and the entire algorithm of RESTRICTEDSTAIR in this paper.
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5.1 Branch-and-Bound method

The branch-and-bound method is one of the representative methodologies for designing exact
algorithms for combinatorial optimization problems [1, 22, 23|. It is based on the idea that a
problem instance can be solved by dividing it into partial problem instances and then solving
all of them recursively. The operation of dividing a problem instance is called a branching
operation.

In the branch-and-bound method, we check each partial problem instance before the
division, and if we find that the instance has no feasible solution, we terminate the instance
without the division. The operation of the termination of the partial problem instances is
called a bounding operation.

For 1CBPFH, let Py(I,W, H) denote a given problem instance, which requires all rectan-
gles in I to be placed in a strip (W, H). The process of applying branching operations can
be expressed by a rooted tree, called a search tree rooted at the node that corresponds to
Po(I,W, H) and the children of a node correspond to the partial problem instances generated
by the branching operation applied to the node; thus each node in the search tree corresponds
to a partial problem instance. Let Py(I, W, H) denote the kth partial problem instance gen-
erated during an execution of the branch-and-bound algorithm. Each instance Pi(I, W, H),
k > 11is given by a placement 7wy = {(2;,y;) | ; € J} for a subset J C I, and the objective of
instance Py(I, W, H) is to determine whether the remaining rectangles in I\ J can be placed
within the strip (W, H) without changing the placement ;. We call Pi(I,W, H) feasible if
all the remaining rectangles can be placed within the strip together with the placement 7.
For 1CBPFH, we use a branching operation that adds a rectangle r; € I'\ J to the placement
ng of J to form a placement 7, of J U {i}.

If it turns out that Pp(I, W, H) is feasible or infeasible for some reason on the information
that has been obtained so far, then we can skip the generation of the partial problem instances
from Pi(I,W, H) without losing a chance to know the feasibility of the original problem
instance Po(I, W, H). Tf P(I,W, H) is feasible, then so is Po(I,W,H). If P,(I,W, H) is
infeasible, then any partial problem generated from Py (I, W, H) is infeasible. In this case, we
say that a bounding operation terminates Pp(I,W, H). A partial problem instance is called
active if it has been neither terminated nor divided into partial problem instances. The
list of all active partial problem instances is maintained during the execution until either a
partial problem instance is turned out to be feasible or no active partial problem instances
are left. The entire search terminates concluding that Py(I, W, H) is feasible in the former
case and infeasible in the latter. The basic components of the branch-and-bound method
BB-1CBPFH for 1CBPFH are described as follows.

Nodes: The root node represents the empty strip, and a node of depth d in a search tree
represents a placement 7y of a subset J C I of d rectangles.

Branching operation: A branch to a child from a node with a placement 7y of a subset
J C I corresponds to placing a rectangle in I'\ J at a position in the open space of the current
placement m;. A branching operation generates those children corresponding to all possible
positions of all rectangles in I\ J.

Bounding operations: If the algorithm finds that a partial problem does not have a
feasible placement, it terminates the corresponding node. If it obtains a feasible placement
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at a leaf node. then the entire search terminates immediately since in this case the answer is

yves.

Search strategy: We adopt the depth first search. The set of all active nodes, denoted
by A, is maintained as a stack (an ordered list maintained with the last-in first-out rule);
whenever the search moves on to a new active node, it chooses the node most recently added
to A.

The entire framework of BB-1CBPFH(I, W, H) is described in Algorithm 2.

Algorithm 2 : BB-1CBPFH(/, W, H)
1: Renumber the indices of rectangles in I according to the non-increasing order of widths
(breaking ties by non-increasing heights):

2 A« {P(I,W,H)}:

3: while 4 # 0 do

4 Let u € A be the node most recently added to A4;

5. if the 1CBP-placement 7, corresponding to u is a 1C'BP-placement of I then

6: return T,

T end if;

8: if either u has no new child node to be generated or is terminated by one of the
bounding operations then

9: Remove u from A;

10:  else

11: Generate a new child node v of u according to the branching operation in Section 5.4;

12: Add the generated node v to A

13: end if

14: end while;
15: return “infeasible.”

5.2 Canonical Form of 1CBP-placements

In this subsection we introduce the canonical form for 1CBPFH without rotations. Note
that the canonical form with rotations of 90 degrees can be obtained analogously. The key
of r; is defined by (y;,7;). Let = be a 1CBP-placement of J C I. The code c¢(r) of ©
is defined by the sequence [(y¢,,7¢;)s---, (Ytn, 7t,)] Of keys of all rectangles in I sorted in
the lexicographical order, ie., ¥, < yy,., or (yy;, = ¥, and t; < t;) holds for all ¢ =
L,2,...,n — 1. We show an example of a code in Figure 2. Then the code c(xw) of = is
[(O, 7')3)’ (Oa Tﬁ)» (17 TT): (2, 7'1)1 (2’ 7»4)’ (2a 7'5)5 (3, TQ)J'

A ICBP-placement = is called canonical if it has the lexicographically minimum code
among all feasible 1CBP-placements of I. Let © he a 1CBP-placement of a subset J C I. We
call rectangle r; € J is bottom justified if

Yi=0 or &yi—1,m) +w; >W

holds. We call a 1CBP-placement 7 of J bottom justified if all rectangles in J are bottom
justified. We then have a following lemma.

Lemma 2. Every canonical 1CBP-placement is bottomn justified. 0
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Figure 2: A 1CBP-placement 7 of a rectangle set J = {r1,72,...,77}.

5.3 Parent 1CBP-Placement

Let m; be a 1CBP-placement of a subset J C I and §(ry) = max{y; | r; € J}. We call a set
R of rectangles removable if R = {r; € J | y; = g(mws)}. We also call the rectangle r; € R with
the maximum index admissible. The parent 1CBP-placement of 7 is defined as the 1CBP-
placement obtained from =« by removing the admissible rectangle. For any 1CBP-placement
7, the parent 1CBP-placement of 7 is uniquely defined, because the admissible rectangle for
7 is uniquely defined.

Lemma 3. Let m be a 1CBP-placement of J C I and 7' be the 1CBP-placement obtained
from 7 by removing the admissible rectangle r € J. The 1CBP-placement 7 can be obtained
by placing rectangle r at y-coordinate y with y > y(n'). O

Lemma 4. Let @ be a 1CBP-placement of J C I and ' be the 1CBP-placement obtained
from © by removing the admissible rectangle » € J, i.e.. 7 is the parent 1CBP-placement of
m. If ™ is bottom justified, then ' is also bottom justified. g

By Lemma 4, any bottom justified 1('BP-placement can be constructed from the empty
1CBP-placement by placing rectangles so that the resulting 1CBP-placement remains bottom
justified after each 1CBP-placement.

5.4 Branching Rule for 1CBPFH

In the branch-and-bound method, we focus on searching the canonical 1CBP-placements in
order to reduce the entire search space. We show a property of 1CBP-placements before
describing a branching operation.

Let 7w be a bottom justified 1CBP-placement of J C I and r € I\ J be a rectangle. We
say that a real y > 0 is critical to rectangle r if the 1('BP-placement 7’ obtained from =« by
placing r at y-coordinate y is bottom justified. We then have a following lemma and design
a branching operation based on the lemma.

Lemma 5. For a 1CBP-placement ©;, each rectangle r € J has at most one critical value.
O
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Branching Operation 1: For a node u with its 1C'BP-placement of a subset J C I, we
always choose a rectangle » from [\ .J which has a critical value to generate a child node of
u with a partial 1C'BP-placement obtained by placing r to =.

6 Experimental Results

We report the computational results on our algorithm ExacTlCBP. We coded the algorithm
in the C++ language and used a PC with a Intel Xeon X5260 (3.3GHz) CPU and 16GB
memory for computational experiments in this section. The time limit for each instance is
set to one hour.

6.1 Instances

We used 2SP instances available at DEIS - Operations Research Group Library of In-
stances!. The instances used for our computational experiments are categorized into five
groups “ht,” “beng.,” “gcut.,” “cgcut” and “ngcut,” where ht = {htOl,...,/ht09}, beng =
{bengO1,...,bengl0}, geut = {geutOl,...,gcut04}, cgeut = {cgeutOl,...,cgeut03} and

ngceut = {ngeut01,...,ngcut12}. The instances were used in the computational experiments

in [1. 18, 19].

6.2 Experimental Results

In the tables in this subsection, column ‘7’ shows number of rectangles, column ‘W’ shows
widths of a strip, and column *H*’ shows optimal values. Column ‘Tg’ shows the total com-
putation times in seconds of RESTRICTEDSTAIR and column ‘7]’ shows the total computation
times in seconds of BB-1CBPFH. The mark *'T.O.” means that the search did not stop within
the time limit. If RESTRICTEDSTAIR found a feasible placement or BB-1CBPFH did not
terminate in the time limit, ‘' is written in the column 'T).” If EXACT1CBP could not find
the optimal value, we write *—' in the column ‘H*.

Table 1 and Table 2 are the computation results with and without rotations of 90 degrees,
respectively. We observe that our heuristics approach was effective. We succeeded to obtain
the optimal solutions for geut02 and cgeut02 without rotations, which have not been solved
by the existing algorithms.

Martello et al. [1] and Alvarez-Valdez et al. [18] proposed exact algorithms for 1CBP.
However, since they did not separate the computation of 1CBP from the entire algorithm for
2SP. we avoid comparing their results with ours.

7 Conclusion

We proposed an exact algorithm for 1CBP. The algorithm consists of two procedures, an
exact algorithm for 1CBP, called BB-1CBPFH and a heuristics approach to 2SPFH, called
RESTRICTEDSTAIR. Each procedure is designed based on the branch-and-bound method
using canonical forms. We also propose a new lower bound, called partition lower bound.
Through computational experiments, we confirmed that the proposed algorithm is effective.
It is a future work to design an efficient heuristics to 1ICBPFH.

"http://www.or.deis.unibo. it/research_pages/ORinstances/ORinstances.htm



Table 1: Computation results with rotations of 90 degrees

n W H* Tr T
htO1 16 20 20 0.00 -
ht02 17 20 20 0.00 -
ht03 16 40 20 0.01 -
ht04 25 40 15 0.00 -
ht05 25 40 15 0.00 -~
ht06 25 5 15 0.01 ~
ht07 28 60 30 0.10 -
ht08 29 60 30 0.08 -
ht09 28 60 30 0.01 —

beng01 20 25 30 0.00 —
beng02 40 25 57 0.00 -~
beng03 60 25 84 0.25 ~
beng04 80 25 107 0.02 -
beng05 100 25 134 0.86 -
beng06 40 25 36 0.00 -
beng07 80 40 67 0.00 -
beng08 120 40 101 0.01 -
beng09 160 40 126 0.03 -
bengl0 200 40 156 0.31 -
geut01 10 250 696 0.00  0.08
geut02 20 250 - 0.26 T.O.
geut03 30 250 - 1.72 T.O.
geut04 50 250 - 294373 T.O.
cgcut01 16 10 23 0.00 -
cgeut02 23 70 63 0.01 -
cgeut03 62 70 - T.O. -
ngcut01 10 10 20 0.01 0.00
ngcut02 17 10 28 0.00 -
ngecut03 21 10 28 0.00 -
ngcut04 7 10 18 0.00 0.00
ngecut05 14 10 36 0.00 -
ngcut06 15 10 29 0.00 -
ngecut07 8 20 10 0.00  0.00
ngcut08 13 20 33 0.46 0.06
ngecut09 18 20 49 0.01 -
ngcut10 13 30 59 .03  0.00
ngcutll 15 30 51 273 1.21
ngcut12 22 30 77 0.18 -

The experiments are conducted on a Xeon
X5260 (3.3GHz) CPU with the time limit of

3600 secs.
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Table 2: Computation results without rotations of 90 degrees

n I H~ Tr T
ht01 16 20 20 0.00 -
ht02 17 20 20 0.00 -
ht03 16 40 20 0.00 -
ht04 25 40 15 0.00 -
ht05 25 40 15 0.00 -
ht06 25 5 15 0.00 -
ht07 28 60 30 0.01 -
ht08 29 60 30 23.37 -
ht09 28 60 30 0.00 -

beng01 20 25 30 0.25 -
beng02 40 25 57 5.43 -
beng03 60 25 84 0.02 -
beng04 80 25 107 0.01 -
beng(05 100 25 134 0.03 -
beng06 40 25 36 0.00 -
beng07 80 40 67 0.04 -
beng08 120 40 101 0.01 -
beng09 160 40 126 3.65 -
bengl0 200 40 156 0.25 ~
geut01 10 250 1016 0.00 0.00
geut02 20 250 1187 0.70  202.10
geut03 30 250 1803 0.09 -
geut04 50 250 - 6.18 T.O.
cgeut01 16 10 23 0.00 -
cgcut02 23 70 64 27859 515.45
cgecut03 62 70 - T.O. -
ngecut01 10 10 23 0.00 0.00
ngcut2 17 10 30 0.03 0.03
ngcut03 21 10 28 0.00 -
ngcut04 7 10 20 0.00 0.00
ngcut03 14 10 36 0.00 -
ngcut06 15 10 31 0.05 0.11
ngecut07 8 20 20 0.00 -
ngcut08 13 20 33 0.02 0.00
ngcut09 18 20 50 2.71 0.52
ngcut10 13 30 80 0.00 0.01
ngecutll 15 30 52 0.01 0.01
ngcutl2 22 30 87 0.00 -

The experiments are conducted on a Xeon
X5260 (3.3GHz) CPU with the time limit of

3600 secs.
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