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Abstract

We introduce the generalized capacitated tree-routing problem which is de-
scribed as follows. Given a connected graph $G=(V, E)$ with a sink $s\in l^{r}$ and a
set $\lrcornerVI\subseteq l\prime^{7}-\{s\}$ of terminals with a nonnegative demand $q(v),$ $v\in M.$ we wish to
find a collection of trees rooted at $s$ to send all the demands to $s$ , where the total
demand collected by each tree is bounded from above by a demand capacity $\kappa>0$ .
Let $/\backslash >0$ denote a bulk capacity of an edge, and each edge $e\in E$ has an instal-
lation cost $u$) $(e)\geq 0$ per bulk capacity; each edge $e$ is allowed to have capacity $j\lambda$

for any integer $j$ , which installation incurs cost $jw(\epsilon)$ . To establish a desired tree
routing $T_{i}$ , each edge $\epsilon$ contained in $T_{i}$ requires $Cy+\beta q’$ amount of capacity for the
total demand $q’$ that passes through edge $\epsilon$ along $T_{i}$ , where $\alpha\geq 0$ and $\beta\geq 0$ are
prescribed constants. Term $\alpha$ means a fixed amount used to separate the inside of
the routing $T_{i}$ from the outside while term $\beta q’$ means the net capacity proportional
to $q’$ . The objective of GCTR is to find a collection of trees that minimizes the
total installation cost of edges. GCTR is a new generalization which unifies several
known routing problems in networks with edge/demand capacities.

keyword Approximation algorithm, Graph algorithm, Routing problem,
Network optimization.

1 Introduction
In this paper, we introduce tlie $ge\uparrow ierali\approx ed$ capacitated tree-routing problem (GCTR),
which is described as follows. Given a connected graph $G=(V, E)$ with a demand
capacity $\wedge^{-},$ $>0$ , a bulk edge capacity $\lambda>0$ , a sink $s\in V$ , and a set $M\subseteq V-\{s\}$

of terminals with a nonnegative demand $q(v),$ $c^{1}\in$ A4, we wish to find a collection
$\mathcal{T}=\{T_{1}, T\underline{)}, \ldots, T_{\ell}\}$ of trees rooted at $s$ to send all the demands to $s$ , where the total
demand in the set $Z_{i}$ of terminals assigned to tree $T_{i}$ does not exceed the demand
capacity $\kappa$ . Each edge $e\in E$ has an installation cost $\tau\iota$ ) $(e)\geq 0$ per bulk capacity; each
edge $e$ is allowed to have capacity $j\lambda$ for any integer $j$ . which requires installation cost
$ju\}(e)$ . To establish a tree routing $T_{i}$ through an edge $e$ , we assume that $e$ needs to
have capacity at least

$\alpha+\beta q(Z_{i}\cap D_{T_{i}}(v_{i}^{e}))$

for prescribed coefficients $\alpha,$ $\beta\geq 0$ , where $v_{i}^{\epsilon}$ is the tail of $e$ in $T_{i};\alpha$ means a fixed amount
used to separate the inside and outside of the routing $T_{i}$ while term $\beta q(Z_{i}\cap D_{T_{i}}(v_{i}^{e}))$
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means the iiet $(a])a(it\}[)\Gamma(1^{\gamma(rtioiia1}$ to $t1l()$ arnount $q(\ulcorner/\lrcorner j\cap l)_{7^{\tau}},$ $(\iota_{j}^{\epsilon}’))$ of demands that
passes through edge $\rho$ along $T_{i}$ . Hence. given a set $\mathcal{T}=\{T_{1} , T\underline{)}, \ldots , \tau,\}$ of trees. $(^{)}a(1\iota$

edge $e$ needs to have capacity $l_{T}(c)\lambda$ for the $1eatb^{\urcorner}$ integer $\tau_{7_{\mathcal{T}()}}\supset$ such that

$\sum_{\Gamma_{1}\in \mathcal{T}:T_{j}containse}(\alpha+\beta q(Z_{i}\cap D_{T_{j}}(\iota_{j}^{1}\epsilon)))\leq h_{T}(e)\lambda$
,

and th $e$ total installation cost of edges incurred by $\mathcal{T}$ is given as $\sum_{e\in E}h_{\mathcal{T}}(e)u(e)$ ,

where $h_{\mathcal{T}}(e)=0$ if $1\iota oT_{i}\in T$ contains $e$ . The objective of GCTR is to find a set $\mathcal{T}$ of
trees that minimizes the total installation cost of edges. $\backslash t^{r}e$ formally state GCTR as
follows.

Generalized Capacitated Tree-Routing Problem (GCTR):
Input: A $(^{1}O111\iota ected$ graph $G=(V, E)$ , an edge weight function $u$ ’ : $Earrow R^{+}$ , a de-
mand $(^{\}}apac\cdot ity\kappa>0$ , an edge capacity $\lambda>0$ , prescribed constants $\alpha,$ $\beta\geq 0$ , a sink
$s\in V.$ a set $\Lambda l\subseteq V-\{s\}$ of terminals, and a demand function $q:\Lambda Iarrow R^{+}$ .
Feasible solution: A partition $\mathcal{M}=\{Z_{1}, Z_{\sim}), \ldots, Z_{l}\}$ of $\Lambda 1$ and a set $\mathcal{T}=\{T_{1}, T_{2}, \ldots , T_{\mathcal{L}}\}$

of trees of $G$ such that $Z_{j}\cup\{.9\}\subseteq V(T_{i})$ and $q(Z_{i})\leq\kappa$ hold for each $i$ . The
number of copies of an edge $\prime^{\supset},\in E$ installed in tbe solution is given by $h_{\mathcal{T}}(e)=$

$\lceil\sum_{T,\epsilon\in F(T_{r})}(\zeta)+\prime^{jq(Z_{i}}\cap D_{T_{i}}(t_{j}^{1^{c}})))/\lambda\rceil$ , where $1_{j}^{\prime^{e}}$ is the tail of $e$ in $T_{i}$ .
Goal: Minimize the total installation cost of $\mathcal{T}$ . that is,

$\sum_{e\in E}/?\tau(e)u^{t}(e)$
.

$11^{7}e$ have a variant of GCTR if it is allowed to purchase edge capacity in any required
quantity. In this niodel. for each edge $e$ of the underlying network, we assign capacity
of $\lambda_{\epsilon}-0|\mathcal{T}’|+\beta\sum_{T_{j}\in T},$ $q(\lrcorner 7_{i}\cap D_{T_{j}}(t_{j}’e))$ on $e$ . where $\mathcal{T}’$ is the set of trees containing
$e$ . That is, the total cost of the constructed trees equals $\sum_{e\in E}\lambda_{e}u|(e)$ . $W’ e$ call this
variant of GCTR. the fractional $ge\uparrow ierali\approx ed$ capacitated tree-routing problem (FGCTR).

$W^{\tau}e$ easily see that GCTR and FGCTR contain two classical NP-hard problems, the
Steiner tree problein and the $bl\uparrow l$ packing problent [2]. We see that $GC^{t}TR$ with an edge
weighted graph $G$ , cv $=\lambda=1$ , and $\beta=0$ is equivalent to the Steiner tree problem in
$G$ when $\kappa\geq\sum_{\iota\in I_{1}1}q(\iota’)$ . whereas it is equivalent to the bin packing problem with bin
size $\kappa$ when $(_{r}^{\gamma}$ is a coniplete graph, $u’(e)=1$ for all edges $e1_{11(}\cdot id\supset$ to $s$ and $u|(e)=0$
otherwise. We $sc\epsilon\supset$ that $l^{4}\urcorner C^{t}\cdot C^{1}TR$ also has a siiiiilar relationship with tlie Steiner tree
problem and tlie bin $pa\langle ki_{1l}g$ problem.

The characteristic of GCTR and FGCTR is their routing capacity which ls a linear
contbination of the nuniber of trees and the total ainount of deinands that pass through
an edge. Such a general forni of capacity $(Ollstrail\iota t$ can be $fo$und in soine applicatioiis.

$W^{r}e$ here observe that our new probleni forniulation, $GC^{t}\cdot TR$ , includes several $i_{l}n-$

portant routing probleins as its special cases such as the $C,cipacitated$ Network Design
$Proble\uparrow n$ (CND). the (lapacitated $\lrcorner lI\iota/ltica,st$ Tree Routing $Proble\uparrow n$ (CMTR), and the
Capacltated Tree-Routin9 $Proble\uparrow ii$ (CTR). See [7] for the definitions of these probleins.
Table 1 shows a summary of the recent approximation algorithms for CND, C’MTR,
CTR. and GCTR.
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As observed above. $GC^{t}TR$ is a considerably general model for routing problelns.
In this paper, we first prove tbat GCTR admits a $(2[\lambda/(\alpha+\beta\kappa)]/\lfloor\lambda/(\alpha+\beta\kappa)\rfloor+\rho_{ST})$ -

approximation algorithm if $\lambda\geq\alpha+\beta\kappa$ holds. The high-level description of the proposed
algorithm resembles our algorithm for CTR, but we need to derive a new lower bound
to the problem. Namely, given all instance $I=$ $(G, u1, \kappa, \lambda, cy\beta, s, 1lI, q)$ of GCTR,
the inain idea of our algorithm is to coinpute an integer capacity $\lambda’$ depending on
$\kappa,$ $\lambda,$ $\alpha$ , and $\beta$ and then find a feasible tree-routings solution to the instance $I’=$
$(G, u’, \kappa, \lambda’, s, A\#, q)$ of CTR. Here such a capacity $\lambda’$ is chosen so that this set of tree-
routings is a feasible solution to the original GCTR instance $I$ .

We observe that it is not straightforward to modify the above algorithm so that
it also delivers a constant-factor approximate solution ill the case of $\lambda<$ ct $+\beta\kappa$ .
This motivates proposing a different approach for approximating GCTR instances with
$\lambda<\alpha+\beta\kappa$ . For this, we introduce a new lower bound on GCTR by introducing a
generalization of CND, and use a balanced Steiner tree as a base tree from which we
construct a collection of trees to send deinands to sink. We show that our new algorithm
delivers a 13.037-approximate solution to GCTR with $\lambda<\alpha+\beta\kappa$ . Based on the saine
approacli. we also prove that FGCTR is 8.529-approxiinable.

The rest of tltis paper is organized as follows. Section 2 introduces soine notations
and several lower bounds on the optimal value of GCTR. Sections 3 and 4 introduce
approximation algorithms for GCTR with $\lambda\geq$ cr $+\beta\kappa$ and $\lambda<\alpha+\beta\kappa$ , respectively.
We present an algorithin to FGCTR in Section $\backslash \ulcorner)$ . Section 6 makes concluding remarks.

2 Preliminaries

This section introduces some notations and definitions. An edge-weighted graph is a
pair $(G, w)$ of a graph $G$ and a nonnegative weight function $u$ ’ : $E(G)arrow R^{+}$ . The length
of a shortest path between two vertices $u$ and $v$ in $(G, u|)$ is denoted by $d_{(G,w)}(u, v)$ .
Given a demand function $q$ : $V(G)arrow R^{+}$ and a subgraph $H$ of $G$ , we use $q(H)$ and
$q(V(H))$ interchangeably to denote tbe sum $\sum_{v\in\ddagger^{r}(H)}q(v)$ of deinands of all vertices in
$V(H)$ .
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Let ( $(;$ . $t(’)$ be $aI1$ edge-weighted graph with a terntinal set $\lrcorner lJ\subseteq V(G)$ and a desig-
$1lat(\backslash db\zeta^{1}rt0_{\wedge}\backslash ,b$ in (;. A Steiner minimum $tr\xi^{1}\xi^{1}$ on $(G, n$ . $<lI\cup\{,s\})$ is a tree of mininuim
weight of (; that pans $\lrcorner t/\cup\{.s\}$ . A shortest path tree ( $11(C^{\gamma},$ $\iota\{$

” $pll\cup\{.s\})$ rooted at $(g$ is a
tree that spans $\lrcorner 1/\cup\{_{s}s\}$ sucli that the distance between $\backslash ’$ and any vertex $c^{1}\in 111$ in the
tree equals to the shortest distance $betweeii.9$ and $\iota$ in $(_{I}^{\gamma}$ . Giv$\zeta^{1}11$ a $Steiller$ miniinuin
tree and a shortest path $tI^{\cdot}C\Theta$ on $((I, zi\lambda l\cup\{_{\backslash }9\}).$ a $1)alall(’ ed$ ’ Steiner tree $T$ is a tree
of (; that spans $f\uparrow[\cup\{.9\}$ and approximates both the shortest path tree and the Steiner
miniinuin tree. That is, for some constants $c_{1},$ $c\underline{\rangle}\geq 1$ , the distance between $s$ and any
vertex $\iota\in 1\mathfrak{h}[$ in $T$ is at most $c_{1}$ times the shortest distance between $s$ and $v$ in $G$ , and
th $e$ weight of $T$ is at most $c_{2}$ tiines the weight of a Steiner minimum tree of $G$ .

Let $T$ be a tree. A subtree of $T$ is a connected subgraph of $T$ . A set of subtrees
in $T$ is called a toee $co\iota\dagger(Jr$ of $T$ if each vert $ex$ in $T$ is contained in at least one of the
subtrees. For a subset $X\subseteq l^{\Gamma}(T)$ of vertices. let $T\{X\rangle$ denote the miniinal subtree of $T$

that contains $X$ (note that $T\{X\}$ is uniquely determined). Now let $T$ be a rooted tree.
$Tb^{7}e$ denote by $I_{J}(T)th_{f)}$ set of leaves in $T$ . For a vertex $\iota$ in T. let $Cli(v)$ and $D(t’)$

denote the sets of children and descendants of $\iota$ , respectively, where $D(?)$ includes $1^{1}$ .
A subtree $T_{\iota}$ rooted at a vertex $\iota$ is the subtree induced by $D(\iota)$ . i.e., $T_{\iota},$ $=T\{D(\iota)\}$ .
For a rooted tree T... the depth of a vertex $n$ in $T_{1}$ is the length (the $nn$ inber of edges)
of the path from $c’$ to $c\iota$ .

The rest of this section introduces soine lower bounds to GC $\{TR$ . The first lower
bound is based on the Steiner tree problem.

Lemma 2.1. $Gj_{\iota\}}e\uparrow\iota$ a $GC^{1}TR$ instance $I=(G, ?l^{1}, \kappa, \lambda, 0, \beta, s, \Lambda I_{\gamma}q)$ . the minimum cost
of a Steiner tree to $(G, u, 1tJ\cup\{.s\})$ is a $lo\iota ver$ bound on the $opti\uparrow\gamma\iota al$ value to GCTR
instance I. $\square$

The second lower bound is derived from an observation (11 tbe distance from vertices
to sink $s$ .

Lemma 2.2. Let $I=(G, u, \kappa, \lambda, ct, \beta, s_{\}1II, q)$ be an instance of GCTR. Then

$( \alpha+\beta\kappa)/(\kappa\lambda)\sum_{\iota’\in\iota 1}q(\iota^{1})d_{(G.u)}(s, \iota)$

is a $lo\iota ferbo$ und on the optimal value to $GC^{t}TR$ instance I. $\square$

3 Approximation algorithm for $\lambda\geq\alpha+\beta/\sigma$

In this section we present an approximation algorithm to GCTR instances with $\lambda\geq$

$c\iota+\beta\kappa$ .
Given an instance $I=(G, u. \kappa, \lambda, \alpha, \beta, s, \Lambda I, q)$ of $C_{\tau}^{1}CTR$ , the main idea of our

algorithm is to find a feasible sohition $(\mathcal{M}=\{Z_{1}, \ldots , Z_{f}\}, \mathcal{T}=\{T_{1} , . . . , T_{\ell}\})$ to a CTR
instance $I‘=(G, r\iota\dagger, \kappa, \lambda’, s. \Lambda l, q)$ . where $\lambda’=\lfloor\lambda/((Y+\beta\kappa)\rfloor$ . That is, for each edge $e$

in G. the number of trees of $\mathcal{T}$ containing $e$ is at inost $fi_{T}(e)\lambda’$ . where $h_{\mathcal{T}}(e)$ denotes
th $e$ number of copies of $e$ installed 111 the solution $(\mathcal{M}, \mathcal{T})$ of $I$‘. Note that $q(Z_{i})\leq\kappa$
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for all $i=1,2,$ $\ldots$ , $l$ . Therefore, for each edge $e$ in $G$ with tail $c^{e}$ , we have

$\sum_{T_{j}\in T.\epsilon\in E(T_{j})}(\alpha+\beta q(D_{T_{i}}(v^{e})\cap\Lambda I))$

$\leq$ $(\alpha+\beta\kappa)|\{T_{i}\in \mathcal{T}|e\in E(T_{i})\}|$

$\leq$ $h_{\mathcal{T}}(e)(\alpha+\beta\kappa)\lfloor\lambda/(\alpha+\beta\kappa)\rfloor\leq h_{\mathcal{T}}(e)\lambda$ .

This implies that $(\mathcal{M}, \mathcal{T})$ is a feasible solution to GCTR instance $I$ .
For seeking a simple presentation, we first discuss GCTR instances with $\lfloor\lambda/(\alpha+$

$\beta\kappa)\rfloor=1$ in the next section.

3.1 Approximation algorithm for $\lfloor\lambda/(\alpha+\beta\kappa)\rfloor=1$

This section provides an approximate solution to GCTR when $\lfloor\lambda/(\alpha+\beta\kappa)\rfloor=1$ . The
algorithm is based on the following a “balanced“ partition of a set of terminals.

For a tree $T$ rooted at a vertex $r$ , an ordered partition $\mathcal{Z}=\{Z_{1}, Z_{2}, \ldots, Z_{p}\}$ of a
subset of the terminal set $M$ is called $\kappa$ -balanced if the following holds:

(i) $q(Z_{i})\leq\kappa$ for $i=1,2,$ $\ldots,p$ ;

(ii) $q(Z_{i})>\kappa/2$ for $i=1,2,$ $\ldots,$ $p-1$ . and if $p\geq 2$ then $q(Z_{p-1}\cup Z_{p})>\kappa$ ; and

(iii) Each $T\{Z_{j}\}(j=1,2, \ldots, p-1)$ has no common edge with $T\{\cup Z\cup\{r\}\rangle$ .

Lemma 3.1. There $alc\iota$) $ayse;i^{\backslash }ists$ a $\kappa$ -balanced partition if $1nax_{\tau)\in M}q(v)\leq\kappa$ .

The basic idea of the algorithm is analogous to that for CTR given in the previous
chapter. We first compute an approximate Steiner tree $T$ in $(G, u’, M\cup\{s\})$ , regard $T$

as a tree rooted at $s$ . and theii find a $\kappa$-balanced partition $\mathcal{M}=\{Z_{1}, Z_{2}, \ldots, Z_{p}\}$ of $M$

in $T$ . For each $Z_{i}\in \mathcal{M}$ . we choose a vertex $t_{Z_{i}}\in Z_{i}$ and connect the tree $T\langle Z_{i}\rangle$ to $s$

by adding a shortest path between $s$ and $t_{Z_{i}}$ in $(G, n^{1})$ . We describe the algorithm in
the following form which will be used for the case of $\lfloor\lambda/(\alpha+\beta\kappa)\rfloor\geq 2$ .

Algorithm APPROXGCTR
Input: A GCTR instance $I=(G, u),$ $\kappa,$

$\lambda,$ $\alpha,$ $\beta,$ $s,$ $\Lambda l,$ $q)$ .
Output: A solution $(\mathcal{M}, \mathcal{T})$ to $I$ .

Step 1. Compute a $\rho_{ST}$-approximate solution $T$ to the Steiner tree problem in $(G, w)$

that spans Al $\cup\{s\}$ and then regard $T$ as a tree rooted at $s$ .
Define a vertex weight function $d:Marrow R^{+}$ by setting

$d(v)$ $:=d_{(G,w)}(s, v)$ , $v\in M$ .

Step 2. Find a partition $\mathcal{M}$ of $M$ .
For each subset $Z\in \mathcal{M}$ , assign a vertex $t_{Z}\in V(T)$ as its hub vertex.
Let $S$ be the set of all hub vertices.

Step 3. For each hub vertex $t\in S$ , we choose a shortest path $SP(s, t)$ between $s$ and $t$

in $(G, u\})$ . For each subset $Z\in \mathcal{M}$ , let $T_{Z}$ be the tree obtained from $T\langle Z\cup\{t_{Z}\}\}$

by adding the edge set in $SP(s, t_{Z})$ . Let $\mathcal{T}:=\{T_{Z}|Z\in \mathcal{M}\}$ . $\square$
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For a $GC^{\tau}TR$ instance with $\lfloor\lambda/($ ci $\dagger$ $xi_{\hat{\iota}})\rfloor$ 1, we realize St $()p2$ as follows. $w_{\xi^{Y}}$

compute a $\kappa$ -balanced partition $\mathcal{M}-\{Z_{1\prime}^{r}Z\underline{)}\ldots. , Z_{p}\}$ of $1\mathfrak{h}1$ . $l^{t}\urcorner t1^{\cdot}j-1,2,$
$\ldots$ , $p-1$ ,

we choose a terminal $t_{Z_{j}}\in Z_{j}$ with the minimum distance $d(t//j)$ as its liul) vertex, and
let $t_{Z}$. : $\searrow f_{oI}\cdot j$ $p$ .

Theorem 3.1. $Gi\iota’ c\uparrow\iota$ a $G(\{TR$ instance [fith $\lfloor\lambda/(\cap+\beta\kappa)\rfloor-1$ . $algorith\uparrow n$ APP $\iota\backslash ox-$

$C_{T}^{\tau}\mathfrak{c}^{1}$ TR $n;itfi$ the $abo\{e$ $Step\sim^{J}delit^{1}crs$ a $(2\lambda/(c\iota+\beta\kappa)+\rho_{S\Gamma})$ -approximate solution.

Proof. By Property (iii) of $\kappa$-balaitced partition. each edge in $T$ is used at most once in
the union of subtrees in $T’=\{T\langle Z_{j}\rangle|j=1,2, \ldots , p-1\}\cup\{T\{Z_{\rho}\cup\{s\}\rangle\}$ . Furthermore,

the flow (11 each edge in $T$ is at inost $\cap\{\beta\kappa\leq\lambda$ . On the otlier hand, the flow
(11 each edge in $|b’ P(s, t_{Z_{j}}),$ $i-1,2,$ $\ldots$ , $p-1$ , is at most a $+1^{i\kappa}\leq\lambda$ . Note tbat
$\mathcal{T}’=\{T\{Z_{i}\cup\{t_{Z_{j}}\}\rangle|Z_{i}\in \mathcal{M}\}$ by the choice of hub vertices. Tlierefore, $(\mathcal{M}, \mathcal{T})$ is
feasible and the total weight of tlie edges to be $instal1_{P}d$ for $T$ is bounded by the weiglit
of $T$ plus the sum of the shortest paths used; i.e., it $1\iota$ olds

$\sum_{\epsilon\in F_{-}}h_{T}(e)u\dagger(e)\leq u|(T)+\sum_{1\leq i\leq p-1}d(t_{Z_{j}})$
. (1)

For a niinimum Steiner tree $\tau*$ that spans $\Lambda I\cup\{s\}$ , we have $n\dagger(T^{*})\leq opt(I)$ by
$I_{\lrcorner}e111111a2.1$ . Hence $u(T)\leq\rho_{bT}\cdot\uparrow;)(T^{*})\leq\rho_{ST}\cdot opt(I)$ holds. To prove the theorein. it
suffices to sbow that

$\sum_{1\leq i\leq p-1}d(t_{Z_{i}})\leq 2\lambda/(\alpha+\beta\kappa)opt(J)$
. (2)

The choice of hub vertices and Property (ii) of $\kappa- balaiIced$ partition iinply that, for
each $i-1,2,$ $\ldots,$ $p-1$ , we have

$\sum_{\iota’\in Z_{j}}q(t^{1})d(\iota^{1})\geq d(t_{Z_{i}})\sum_{\iota\in Z_{/\iota}}q(v)>d(t_{7_{\mathbb{Z}i}})\kappa/2$
. (3)

By sumniing inequality (3) overall $i=1,2,$ $\ldots$ , $p-1$ , we have

$( n+f9\kappa)/(2\lambda)\sum_{j1\leq\leq p-1}d(t_{Z}, )$
$<$

$(0+ \beta\kappa)/(\kappa\lambda)\sum_{1\leq j\leq\rho-1}\sum_{t\in Z_{j}}q(t^{1})d(1^{1})$

$\leq$

$( \alpha+\beta\kappa)/(\kappa\lambda)\sum_{t\in\Lambda I}q(t)d(t)$
.

By Leinlna 2.2. this proves (2). $\square$

3.2 Approximation algorithm for $\lfloor\lambda/(\alpha+l3\kappa)\rfloor\geq 2$

This section shows that $APPRoxGC^{Y}TR$ with an additional step, St $ep4$ . can deliver a
$(\lfloor 2\lambda/(cv +3\kappa)]/\lfloor\lambda/(\alpha+\beta\kappa)\rfloor\vdash\rho_{SN})- approxiiJ]ate$ solution for a GCTR instance with
$\lfloor\lambda/((\gamma \dagger \beta\kappa)\rfloor\geq 2$ . For this. we use the followiiig result $011$ tree covers in a tree to realize
Step 2.

For a partition $\mathcal{M}$ of a terininal set $I|l$ in a rooted tre$eT$ and hub vertices $t_{Z}$ ,
$Z\in \mathcal{M}$ . we denote the set of subsets $Z\in\Lambda t$ such that $T\{Z\cup\{t_{Z}\}\rangle$ contains a specified
edge $e=(.x\cdot, y)\in E(T)$ with $y\in Ch_{T}(x)$ by three disjoint sets:
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$\mathcal{M}(e)=\{Z\in \mathcal{M}|e\in E(T\{Z\})\}$ ,

$\mathcal{M}_{d\alpha 7t}(e)=\{Z\in \mathcal{M}|Z\subseteq V(T)-V(T_{y}), t_{Z}\in V(T_{y})\}$ , and
$\Lambda 4_{\iota’ p}(e)=\{Z\in J|Z\subseteq V(T_{y}), t_{Z}\in V(T)-V(T_{y})\}$ .

Lemma 3.2. Let $T$ be a tree rooted at $s$ nfith a terminal set $M\subseteq V(T)-\{s\}$ , a demand
function $q$ : $1|\prime Iarrow R^{+}$ , a real $\kappa\iota$ ) $lth \kappa\geq\max\{q(\iota^{1})|v\in Af\}$ , a real $\lambda>0$ , and real
constants $\alpha,$ $\beta\geq 0$ . $Gi\iota$ en a vertex $\iota$)$eight$ function $d:1IIarrow R^{+}$ . there e.vist a partition
$\mathcal{M}=\bigcup_{1\leq j\leq}{}_{f}C_{j}$ of $\Lambda I$ , and a set $S= \{t_{j}\in\{\arg\min_{t\in Z\in C_{j}}d(t)\}|j\leq f-1\}\cup\{t_{f}=s\}$

of $hub$ vertices such that:

(i) $q(Z)\leq\kappa$ for all $Z\in \mathcal{M}$ , and $T\langle Z\}$ and $T\langle Z’\rangle$ have no common edge for all
distin$ctZZ’$}

$\in \mathcal{M}$ ;

(ii) $|C_{j}|\leq\lfloor\lambda/(\alpha+\beta\kappa)\rfloor$ for all $j=1,2,$ $\ldots,$
$f$ , and $\sum_{Z\in C_{j}}q(Z)>\lfloor\lambda/(\alpha+\beta\kappa)\rfloor(\kappa/2)$

for all $j=1,2,$ $\ldots$ , $f-1$ ; and

(iii) For $t_{Z}=t_{j}$ rvlth $Z\in C_{j}$ . $j=1,2,$ $\ldots,$
$f$ , each edge $e\in E(T)$ satisfies

(a) $|\mathcal{M}(e)|\leq 1$ ,
(b) $|\mathcal{M}_{d_{((\}}n}(e)|\leq\lfloor\lambda/(\alpha+\beta\kappa)\rfloor-1$ . and
(c) $|\mathcal{M}_{tl}p(e)|\leq\lfloor\lambda/(\alpha+\beta\kappa)\rfloor-1$ . $\square$

We first perform Step 1 of APPROXGCTR. In Step 2, we apply Lemma 3.2 to the
Steiner tree $T$ and the function $d$ obtained in Step 1 to get a partition $\mathcal{M}=\bigcup_{1\leq j\leq f}C_{j}$ of
$A/I$ and a set $S=\{t_{1}, t_{2}, \ldots , t_{f}\}$ of hub vertices that satisfy the conditions of Lemma 3.2,
and we set $t_{Z}=t_{j}$ for each $Z\in C_{j},$ $j=1,2,$ $\ldots,$

$f$ . Then we perform Step 3 for the
set $\mathcal{T}’=\{T\{Z\cup\{t_{Z}\}\rangle|Z\in \mathcal{M}\}$ of induced subtrees of $T$ . Note that each collection
$C_{j},$ $j=1,2,$ $\ldots,$

$f$ . contains at most $\lfloor\lambda/(\alpha+\beta\kappa)\rfloor$ subsets from $\mathcal{M}$ , all of which can use
$t_{j}$ as a coniinon hub vertex by installing one copy of each edge in $SP(s, t_{j})$ . We here
analyze the installing cost of the resulting tree-routing. Analogously with the previous
$sectio\iota i$ , we have

$\sum_{1\leq j\leq f-1}d(t_{j})\leq[2\lambda/(\alpha+\beta\kappa)]/\lfloor\lambda/(\alpha+\beta\kappa)\rfloor opt(I)$
,

since it holds by Leinma $3.2(i)-(ii)$ that

$( \alpha+\beta\kappa)\lfloor\lambda/(\alpha+\beta\kappa)\rfloor/(2\lambda)\sum_{1\leq j\leq f-1}d(t_{j})$
$<$

$( \alpha+\beta\kappa)/(\kappa\lambda)\sum_{1\leq j\leq f-1}\sum_{t\in Z\in C_{j}}q(t)d(t)$

$\leq$

$( \alpha+\beta\kappa)/(\kappa\lambda)\sum_{t\in\lambda l}q(t)d(t)$
.

It should be noted that the flow on an edge $e\in E(T)$ may be more than $\lambda$ and (1) may
not hold for the current tree-routing.

Finally we perform Step 4 in order to modify the assignment of hub vertices so
that (1) holds, which implies the $([2\lambda/(\mathfrak{a}+\beta\kappa)]/\lfloor\lambda/(\alpha+\beta\kappa)\rfloor+\rho_{ST})$-approximability of
GCTR with $\lfloor\lambda/(\alpha+\beta\kappa)\rfloor\geq 2$. Consider an edge $e=(x, y)$ in the Steiner tree $T$ , where
$|)Y$ definition the nuinber of trees in $\mathcal{T}’$ containing $e$ equals $|\mathcal{M}_{dwn}(e)|+|\mathcal{M}_{up}(e)|+$
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$|\mathcal{M}(e)|$ . Assume that the total number of trees in $T’$ containing $e$ exceeds $\lfloor\lambda/(\cap+\beta\kappa)\rfloor$ :
$i.e.$ .

$|_{d}\vee t_{d_{tl}n}(e)|+|\mathcal{M}_{\iota\prime p}(e)|+|\mathcal{M}(e)|>\lfloor\lambda/(\alpha|\beta\kappa)\rfloor$ ,

which implies
$|\{T’\in \mathcal{T}’|e\in E(T’)\}|>\lfloor\lambda/(\alpha+\beta\kappa)\rfloor$ .

Step 4 repeats a swapping process for any edge of $T$ shared by more than $\lfloor\lambda/(\zeta)+$

$\beta\kappa)\rfloor$ trees of the current $\mathcal{T}’$ . See [7] for the details of such a swapping process. Step 4
never changes the set $S$ of hub vertices computed in Lemma 3.2.

Therefore, the set $\mathcal{T}=\{T_{Z}|Z\in \mathcal{M}\}$ of tree-routings $T_{Z}$ obtained from each tree
$T\{Z\cup\{t_{Z}\}\rangle$ of $\mathcal{T}’$ by adding the edge set of $SP(s, t_{Z})$ satisfies (1) and is a $([2\lambda/(\alpha+$

$\beta\kappa)|/\lfloor\lambda/(\zeta)+\beta\kappa)\rfloor+\rho_{ST})$-approximate solution to the given GCTR instance $I$ . Hence
we have the following theorein.

Theorem 3.2. GCTR $\iota$ ) $ith\lfloor\lambda/(a+\beta\kappa)\rfloor\geq 2$ is $([2\lambda/(()+\beta\kappa)]/\lfloor\lambda/(\alpha+\beta\kappa)\rfloor+\rho_{ST})$-

$oppro.\iota\cdot i\uparrow\uparrow\iota able$ . $\square$

4 Approximation algorithm for $\lambda<\alpha+\beta\kappa$

As we inentioned before. it is not straightforward to modify tlie algorithm in the $pre$vi-
ous section so that it also delivers a constant-factor approxiinate solution in the case of
$\lambda<\alpha+\dot{(}9\kappa$ . In this section, we introduce a new lower bound on $C_{\tau}^{1}C^{t}TR$ by introducing
a generalization of CND in Section 4.1, and use a balanced Steiner tree as a base tree
from which we coiistrn$(t$ a collection of trees to send deniands to sink. We prove an
approximation algorithm of 13.037 for the problem in this case.

The following lemma introduces another lower bound to GCTR based on the Steiner
tree problem which is equivalent to that given in Lemma 2.1 for a GCTR instance with
$\alpha\leq\lambda$ .

Lemma 4.1. Let $I=(G, u’, \kappa, \lambda, \alpha, \beta, s, M, q)$ be an instance of GCTR and $T^{*}$ be a
minimum cost Stelner tree to $(c_{u}|, \lrcorner \mathfrak{h}I\cup\{s\})$ . Then $r\cap/\lambda\rceil u’(T^{*})\uparrow s$ a $lon;er$ bound on
the optimal $\iota alue$ to $I$ .

Proof. $C^{1}oiisider$ an optimal solution $(\mathcal{M}^{*}=\{Z_{1}, \ldots, Z_{l}\}, \mathcal{T}^{*}=\{T_{1}, \ldots, T_{\ell}\})$ to $I$

with optimal value opt(I). For each edge $e\in E(T_{i}),$ $i=1,2,$ $\ldots,$
$\ell$ , we assume that

$e=(n_{i}^{e}, \iota_{i}^{1}\epsilon)$ . where $t_{i}^{7}e\in C^{\gamma}h_{T_{i}}(c\iota_{i}^{e})$ . Let $E(\mathcal{T}^{*})=\cup\tau_{i}\in\tau*E(T_{i})(\subseteq E(G))$ , i.e., the set of
all edges used in the optimal solution. Then

opt(I) $=$
$\sum_{e\in E(\mathcal{T}^{*})}r_{T_{i}}\sum_{\epsilon\in E(T_{i})}(\alpha+\beta q(Z_{i}\cap D_{T_{i}}(1_{i}’e)))/\lambda\rceil w(e)$

$\geq$

$\lceil\alpha/\lambda\rceil\sum_{e\in E(\mathcal{T}^{*})}u)(e)\geq\lceil\alpha/\lambda\rceil\sum_{e\in E(T^{*})}uf(e)$
,

since the edge set $E(\mathcal{T}^{*})$ contains a tree that spans $M\cup\{s\}$ in G. $\square$
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4.1 Generalized capacitated network design problem

In this section, we propose a generalized version of CND, the $generali_{4}^{-}ed$ capacitated
netufork design problem (GCND), which defines a new lower bound to the optimal value
of GCTR. We show that such a lower bound can be used to construct a constant factor
approximation algorithm to GCTR instances with $\lambda<\alpha+\beta\kappa.$ . We are given a graph
$G=(V, E)$ with a bulk edge capacity $\lambda>0$ , a sink $s\in V$ , and a set $M\subseteq V-\{s\}$ of
terminals with a nonnegative demand $q(v),$ $t)\in Al.$ The problem asks to choose a path
$P_{v}$ from each terminal $v\in ilI$ to the sink along which the demand $q(v)$ of $v$ is sent to
$s$ . Each edge $e\in E$ has an installation cost $u|(e)\geq 0$ per bulk capacity; each edge $e$

is allowed to have capacity $j\lambda$ for any integer $j$ , which requires installation cost $jw(e)$ .
Hence. given a set $\mathcal{P}=\{P_{v}|v\in M\}$ of paths of $G$ , each edge $e$ in $E( \mathcal{P})=\bigcup_{v\in M}E(P_{v})$

needs to have capacity $k_{\mathcal{P}}(e)\lambda$ for the least integer $k_{P}(e)$ such that

$\alpha+\beta\sum_{v\in\Lambda l\cdot P_{v}containse}q(v)\leq k_{P}(e)\lambda$
,

where $k_{\mathcal{P}}(e)=0$ if no path contains $e$ . The total installation cost of edges incurred
by $\mathcal{P}$ is given as $\sum_{e\in E(P)}k_{\mathcal{P}}(e)w(e)$ . The objective of GCND is to minimizes the total
installation cost of edges. The problem is formally stated as follows.

Generalized Capacitated Network Design Problem (GCND):
Input: A connected graph $G=(V, E)$ , an edge weight function $w:Earrow R^{+}$ , an edge
capacity $\lambda>0$ . and prescribed constants $\alpha,$ $\beta\geq 0$ , a sink $s\in V$ , a set $M\subseteq V-\{s\}$ of
terminals, and a demand function $q$ : Al $arrow R^{+}$ .
Feasible solution: A set $\mathcal{P}=\{P, |v\in M\}$ of paths of $G$ such that $\{s, v\}\subseteq V(P_{v})$

holds for each $v\in M$ . The number of copies of an edge $e$ in $E( \mathcal{P})=\bigcup_{v\in M}E(P_{v})$

installed in the solution is given by $k_{\mathcal{P}}(e)= \lceil(\alpha+\beta\sum_{\tau.e\in E(P_{v})})q(v))/\lambda\rceil$ .
Goal: Minimize the total installed cost, that is,

$\sum_{\epsilon\in E(\mathcal{P})}k_{\mathcal{P}}(e)w(e)$
.

The following lemma follows directly from the definitions of GCND and GCTR.
Theorem 4.1. Let $I’=(G, u|, \lambda, \alpha, \beta, s, M, q)$ and $I=(G, w, \kappa, \lambda, \alpha, \beta, s, M, q)$ be two
instances of GCND and GCTR, respectively. Then the optimal value of $I’$ is a lower
bound to the optimal value of $I$ .

Proof. Let opt(I) and opt(I’) denote the optimal values of $I$ and $I’$ , respectively. Con-
sider an optimal solution $(\mathcal{M}^{*}=\{Z_{1}, \ldots, Z_{\ell}\}, \mathcal{T}^{*}=\{T_{1}, \ldots , T_{\ell}\})$ to GCTR instance
I. For each $i=1,2,$ $\ldots,$

$l$ and $v\in Z_{i}$ , let $P_{v}$ be the path from $v$ to $s$ in $T_{i}$ . We
observe that $\mathcal{P}=\{P_{v}|v\in M\}$ is a feasible solution to GCND instance $I’$ . More-
over, for $E( \mathcal{P})=\bigcup_{z’\in M}E(P_{t},)$ and $E(\mathcal{T}^{*})=\cup\tau_{i}\in\tau*E(T_{i})$ , it hold $E(\mathcal{P})=E(\mathcal{T}^{*})$ and
$k_{P}(e)\leq h_{\mathcal{T}}*(e)$ . Hence, it holds

opt
$(I’) \leq\sum_{e\in E(\mathcal{P})}k_{\mathcal{P}}(e)u’(e)\leq\sum_{e\in E(\mathcal{T}^{*})}h_{\mathcal{T}^{*}}(e)u|(e)=opt(I)$

.

$\square$
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Before constructing an approximate solution to GCND. we present two ] $\supset$

to the problem. The first lower bound is based $011$ the Steiner tree problem, where the
proof is similar to that of Lemma 2.1.

Lemma 4.2. $Gi\iota|e?l$ a $C_{T}^{t}C^{1}ND$ instance $I’arrow(G_{tl^{1}}, \lambda, \alpha, \beta, s, \lrcorner ll, q)$ . the mlnimum cost
of a Steiner tree that spans $\Lambda l\cup\{s\}$ is a lomer bound on the $opti\uparrow nal$ valu $e$ to $I’$ . $\square$

The second lower bound is based on a linear combination of both the Steiner tree
problem and the distances from $s$ to all terminals.

Lemma 4.3. Let $I’=(G, u^{1}, \lambda, \alpha, \beta, s, ilI, q)$ be an instance of GCND and $T^{*}$ be a
$\uparrow ni\uparrow\iota i\uparrow n$ um cost Steiner tree that spans $ilI\cup\{s\}$ . Then

$( \alpha/\lambda)\sum_{e\in E(T^{*})}u^{I}(e)+(\beta/\lambda)\sum_{\iota\in jf}q(\tau)d_{(G,w)}(s, \tau’)$

is a lower bound on the $optl\uparrow nal\iota|alt/e$ to $I’$ .

Proof. Consider an optimal solution $\mathcal{P}=\{P_{v}|v\in\lrcorner lI\}$ to GCND instance $I’$ . and let
$E( \mathcal{P})=\bigcup_{\iota’\in\Lambda},E(P_{\iota}.)$ . Let opt $(I’)$ denote the optimal value to $I’$ . Then we have

opt $(I’)$ $=$
$\sum_{e\in E(P)}\lceil(c)+\beta\sum_{\iota’.e\in E(P_{v})}q(v))/\lambda\rceil u(e)$

$\geq$

$( \alpha/\lambda)\sum_{e\in E(\mathcal{P})}u^{1}(e)+(\beta/\lambda)\sum_{e\in E(\mathcal{P})}(u\}(e)\sum_{\iota’ e\in E(P_{1}.)}q(t^{1}))$

$=$
$( \alpha/\lambda)\sum_{e\in E(P)}u\cdot(e)+(\beta/\lambda)\sum_{v\in\Lambda I}(q(c))\sum_{)e\in E(P_{c}}u\dagger(e))$

$\geq$

$( \mathfrak{a}/\lambda)\sum_{e\in E(T^{*})}u’(e)+(\beta/\lambda)\sum_{\iota^{\backslash }\in\Lambda I}q(v)d_{(G,u\cdot)}(s, v)$
,

since $E(\mathcal{P})$ contains a tree that spans $\lrcorner lI\cup\{s\}$ in $G$ and $\sum_{\epsilon\in E(P_{t})}u|(e)\geq d_{(c_{u\rangle})}(S_{t}t^{1)}$

holds for all $\iota^{t}\in\lrcorner lI$ . $\square$

Now we construct an approximate solution to a GCND instance $I’=(G, w, \lambda, \alpha, \beta, s, M, q)$

based on a tree balanced an approximate Steiner tree and a shortest path tree in $G$ . Let
$T^{*}$ and $T^{ost}$ denote optimal and $\rho_{ST}$ -approximat $e$ solutions to the Steiner tree problem
to $(G, u, \lrcorner lI\cup\{s\})$ . respectively. This implies that $u(T^{ast})\leq\rho_{ST}\cdot u’(T^{*})$ . Regard $\tau*$

and $T^{ost}$ as trees rooted at $s$ . Let $T^{s\rho t}$ be a shortest path tree that spans $M\cup\{s\}$

rooted at $s$ . Let $T$ be a balanced Steiner tree that approximates both $T^{ost}$ and $T^{spt}$ .
Note that $T$ can be found in polynoinial time [5, 6]. Nainely, given $T^{ast},$ $T^{s\rho t}$ , and a
real number $\gamma>0$ . there is a balanced Steiner tree $T$ such that

$u)(T)\leq(1+2/\gamma)u\dagger(T^{ost})$ , and (4)
$d_{(T.u;)}(s, v)\leq(1+\hat{/})d_{(G,u\cdot)}(S, t’)$ , for all $v\in\mathfrak{h}I$ . (5)
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Let $\iota^{1}\epsilon$ denote the tail of edges $e$ in $T$ . Inequalities (4) and (5) iinply that

$\sum_{e\in E(T)}\lceil(\alpha\}\beta q(T_{v^{\epsilon}}))/\lambda\rceil u\}(e)$

$\leq$

$\sum_{\epsilon\in E(T)}((\alpha+\beta q(T_{\tau\prime^{e}}))/\lambda+1)w(e)$

$=$
$( \alpha/\lambda+1)w(T)+(\beta/\lambda)\sum_{t)\in\lambda l}q(t^{1})d_{(T,u)}(s, v)$

$\leq$ $(\alpha/\lambda+1)\rho_{ST}(1+2/\gamma)w(T^{*})$

$+( \beta/\lambda)(1+\gamma)\sum_{v\in\lambda I}q(v)d_{(G,w)}(s, v)$

$\leq$ $\rho_{ST}(1+2/\gamma)u\}(T^{*})+\iota nax\{\rho_{bT}(1+2/\gamma), (1+\gamma)\}$

$(( \alpha/\lambda)w(T^{*})+(\beta/\lambda)\sum_{\iota\in M}q(v)d_{(G,w)}(s, v))$
. (6)

Hence Lemmas 4.2 and 4.3 prove that the right hand side of (6) is bounded from above
by

$( \rho_{ST}(1+2/\wedge/)+\max\{\rho_{ST}(1+2/\gamma), (1+\gamma)\})opt(I’)$ ,

where opt $(I’)$ denotes the optimal value to $I’$ . This proves the following theorem.

Theorem 4.2. Let $I’=(G, w, \lambda_{7}\alpha, \beta, s_{7}M, q)$ be an instance of GCND with optimal
$i$ alue opt $(I’)$ . Then, for any $\gamma>0$ , there is a Steiner iree $T$ that spans $M\cup\{s\}$ rooted
at $ss|ich$ that

$\sum_{e\in E(T)}\lceil(\alpha+\beta q(T_{v^{e}}))/\lambda\rceil u)(e)\leq\mu\cdot opt(I’)$
,

where $\iota^{e}$ is the tail of $e$ in $T$ and $\mu=\rho_{ST}(1+2/\gamma)+\max\{\rho_{ST}(1+2/\gamma), (1+\gamma)\}$ .
Furthermore, such a tree $T$ can be computed in polynomial time. $\square$

4.2 Approximation algorithms to GCTR
In this section we present two approximation algorithms for a GCTR instance with
$\lambda<\alpha+\beta\kappa$ . Our proposed algorithms are based on $\kappa$-balanced partition and the re-
sults described in Section 4.1.

Algorithm APPROXGCTR
Input: An instance $I=(G, u),$ $\kappa,$

$\lambda,$
$\alpha,$ $\beta_{\}s,$ $M,$ $q)$ of GCTR.

Output: A solution $(M, T)$ to $I$ .

Step 1. Compute a tree $T$ that spans $M\cup\{s\}$ rooted at $s$ .
Find a $\kappa$-balanced partition $\mathcal{M}=\{Z_{1}, Z_{2}, \ldots, Z_{p}\}$ of $A/l$ in $T$ .

Step 2. For each $i=1,2,$ $\ldots,$ $p-1$ , assign a vertex $t_{Z_{i}}$ in $T\langle Z_{i}\rangle$ as its hub vertex and
let $T_{Z_{i}}$ be the tree obtained from $T\{Z_{i}\rangle$ by adding the edge set of a shortest path
$SP(s, t_{Z_{i}})$ between $s$ and $t_{Z_{j}}$ in $G$ .
Let $t_{Z_{p}}$ $:=s$ and $T_{Z_{p}};=T\langle Z_{p}\cup\{s\}\}$ .

Step 3. For each $i=1,2,$ $\ldots,$ $p$ .
Regard $T_{Z_{i}}$ as a tree rooted at $s$ .
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Install $\lceil(\cap|\beta q(Z_{i}\cap[)_{T_{Z}}, (t_{1}^{\epsilon})))/\lambda\rceil$ copies of each edge $e\in F_{arrow}(T_{Zl})$ with tail $1_{j}^{C}$ in
$T_{Z},$

$\cdot$

Step 4. Let $\mathcal{T}=\{T_{Z_{j}}|;-1,2, \ldots , p\}$ and output $(_{e}\mathcal{M},$ $\mathcal{T})$ . $\square$

Note that the deinand capacity constraint on each tree in $T$ is obviously satisfied by
th $e$ definition of $\kappa$-balanced partition. It is also easy to observe that the edge capacity
constraint remains satisfied (11 each edge installed on the graph. Thereby $(\mathcal{M}, \mathcal{T})$ is
feasible to $I$ . It remains to discuss the approximation ratio of the algorithm. We
consider two versions of algorithm APPROXGC‘TR by realizing Steps 1 and 2 in two
different ways as follows.

(A) XVe compute a tree $T$ in the first step by any $\rho_{ST}$-approximation algorithm to the
Steiner tree problem. and $clJooset_{Z;}\in Z_{i},$ $i=1,2,$ $\ldots,$ $p-1$ . in Step 2 to be a
terminal of the minimum distance $d_{(G.u)}(s, t_{Z_{j}})$ in $Z_{j}$ , and

(B) we conrpute a tree $T$ in the first step by using Theorem 4.2. and, for each $i=$

$1,2,$ $\ldots.p-1$ . we choose $t_{Z_{j}}$ in Step 2 to be a vertex of the ininimum depth in $T$ .

Theorem 4.3. For a $C_{\tau}^{t}C^{t}TRi\uparrow\iota sta\uparrow iceI\iota$) $ith\lambda<$ a $+\beta\kappa$ . algorithm $APPRoxGC^{\tau}TR$

ivith Steps 1 $and\sim 0$) as $defi\uparrow iedi\uparrow l(A)delii’ ers$ an $approxi\uparrow nate$ solution $(\mathcal{M}, \mathcal{T})$ mith
approximation ratio of $2\xi+11lin\{\lceil(\alpha+\beta\kappa)/\lambda\rceil, \lceil\beta\kappa/\lambda\rceil+1\}\rho_{ST}.$ [fhere $\xi=\lambda\lceil(\alpha+$

$\beta\kappa)/\lambda\rceil/(\alpha+\beta\kappa)$ . $\square$

Note that the ratio in Theorem 4.3 may not be constant due to the factor $\lceil\beta\kappa/\lambda\rceil$ .
We show in the next theorem that algorithm APPROXGCTR with Steps 1 and 2 as
defined in (B) admits a constant factor approxiinate solution.

Theorem 4.4. For $a$ GCTR instance $I$ [fith $\lambda<\alpha+\beta\kappa$ , algorithm APPROXGCTR
$n;ith$ Steps 1 and 2 as defined in (B) deli $t^{1}ers$ an approximate $solut?on(\mathcal{M}, \mathcal{T})$ with
approx $i\uparrow$} $l$ ation ratio of $2\xi+2\rho_{ST}+4\sqrt{2\xi\rho_{ST}}$ . $\iota$)$[\iota ere\xi=\lambda\lceil(\alpha+\beta\kappa)/\lambda\rceil/(\alpha+\beta\kappa)$ . $\square$

Note that the approximation ratio given in Theoreni 4.4 is bounded froni above by

$(2\xi+2\rho_{ST}+4\sqrt{2\mu\rho_{ST}})<(4+2\rho_{ST}+8\sqrt{\rho_{ST}})<17.057$

for the best known ratio $\rho_{bT}=1+\frac{\ln 3}{2}$ to the Steiner tree problem (since $\xi<2$ ).
We show that the bound can be improved by choosing the best one from both

solutions constructed by using (A) and (B) in Steps 1 and 2.

Theorem 4.5. For $a$ GCTR instance I nflth $\lambda<\alpha+\beta\kappa$ . there exists an appro,rimate
solution $(M, \mathcal{T})$ rvith approximatlon ratio of

mi11 $\{2\xi+\lceil(\alpha+\beta\kappa)/\lambda\rceil\rho_{ST}, 2\xi+2\rho_{ST}+4\sqrt{2\xi\rho_{ST}}\}\leq 13.037$.

Proof. Let $j=\lceil(\alpha+\beta\kappa)/\lambda\rceil$ . Not $e$ that $\lambda<\alpha+\beta\kappa$ implies that $j=\lceil(\alpha+\beta\kappa)/\lambda\rceil\geq 2$ .
Since $j-1<(\alpha+\beta\kappa)/\lambda\leq j,$ $\xi$ is bounded from above by

$\xi=\lambda\lceil(\alpha+\beta\kappa)/\lambda\rceil/(\alpha+\beta\kappa)<j/(j-1)$.
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First consider the case where $\lceil(\alpha+\beta\kappa)/\lambda\rceil\leq 6$ . In this case, for the best known ratio
$b=1+\frac{\ln 3}{\underline{Q}}$ to the Steiner tree problem, the approximation factor $2\xi+\lceil(\alpha+\beta\kappa)/\lambda\rceil\rho_{ST}$

proved in Theorem 4.3 is bounded from above by

$2\xi+\lceil(\alpha+\beta\kappa)/\lambda\rceil\rho_{ST}\leq 11.696$ ,

which is obtained when $j=\lceil(\mathfrak{a}+\beta\kappa)/\lambda\rceil=6$ $($ and hence $\xi<j/(j-1)=6/5)$ .
Next consider the case where $\lceil(\alpha+\beta\kappa)/\lambda\rceil\geq 7$ . We have $\xi<j/(j-1)\leq 7/6$ and

hence the approximation factor $2\xi+2\rho_{ST}+4\sqrt{2\xi\rho_{ST}}$ proved in Theorem 4.4 is bounded
from above by

$2\xi+2\rho_{ST}+4\sqrt{\underline{)}\xi\rho_{ST}}\leq 13.037$

since $2\xi+2\rho_{ST}+4\sqrt{2\xi\rho_{ST}}$ is an increasing function of $\xi$ over [1, 2). This completes the
proof of the theorem. $\square$

5 Approximation algorithm to FGCTR

In this section we present an approximation algorithm for a FGCTR instance by modi-
fying the algorithm given in Section 4.2. We first introduce the following lower bound on
the optimal value to FGCTR. The proof of the lemma is similar to that of Lemma 2.2.

Lemma 5.1. Let $I=(G, uf, \kappa, \alpha, \beta, s, \Lambda I, q)$ be an instance of FGCTR. Then

$( \alpha+\beta\kappa)/\kappa\sum_{v\in M}q(v)d_{(G,w)}(s, v)$

is a $lou/er$ bound on the optimal value to I. $\square$

The fractional $general?\approx ed$ capacitated network design problem (FGCND) is a variant
of GCND in which it is allowed to purchase edge capacity in any required quantity.
Namely, we assign capacity of $\lambda_{e}=\alpha+\beta\sum_{v:e\in E(P_{v})}q(v)$ on each edge $e$ in $E(\mathcal{P})=$

$\bigcup_{v\in M}E(P_{v})$ . That is. the total cost of installed capacities equals $\sum_{e\in E(P)}\lambda_{e}w(e)$ .
Corresponding results to that in Sections 4.1 and 4.2 can be obtained similarly.

Theorem 5.1. Let $I’=(G, u” \alpha, \beta, s, M, q)$ and $I=(G, w, \kappa, \alpha, \beta, s, M, q)$ be two
instances of FGCND and FGCTR, respectively. Then the optimal value to $I’$ is a
lower bound on the optimal $?$ ) $alne$ to I. $\square$

Theorem 5.2. Let $I’=(G, w, \alpha, \beta, s, M, q)$ be an instance of FGCND and let opt $(I’)$

be the optimal value to $I’$ . Then, for any $\gamma>0$ , there is a Steiner tree $T$ that spans
$M\cup\{s\}$ rooted at $s$ such that

$\sum_{e\in E(T)}(\alpha+\beta q(T_{v^{\epsilon}}))u\dagger(e)\leq 1nax\{\rho_{ST}(1+2/\gamma), (1+\gamma)\}opt(I’)$
,

where $v^{e}$ is the tail of $e$ in $T$ . $\square$
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Now, we ar) ready to present a formal algorit]nn to FG $(^{t}TR$ based on the above
results.

Algorithm $APPROXF^{\neg}GC^{\tau}TR$

Input: An instance $I=((r, \iota, \kappa, \mathfrak{a}, \beta, s, \Lambda 1, q)$ of FGCTR.
Output: A solution $(\mathcal{M}, \mathcal{T})$ to $I$ .

Step 1. Compute a $(11\iota ax\{\rho_{ST}(1+2/\gamma), (1+\gamma)\})$ -approximate Steiner tree $T$ that spans
$\lrcorner \mathfrak{h}I\cup\{s\}$ rooted at $s$ by Theorem 5.2.
Find a $\kappa$-balanced partition $\mathcal{M}=\{Z_{1}tZ_{\underline{9}}, \ldots, Z_{p}\}$ of $ilI$ in $T$ .

Step 2. For each $i=1,2,$ $\ldots$ , $p-1$ , choose a vertex $t_{Z_{j}}$ in $T\langle Z_{i}\}$ with the minimum
depth in $T$ and let $T_{7_{\lrcorner\prime}}$ be tlie tree obtained froin $T\{Z_{j}\rangle$ by adding the edge set
of a shortest path $,\supset’ P(.\backslash \cdot, t_{Z_{j}})$ between $s$ and $t_{Z_{i}}$ in $G$ .
Let $t_{Z_{p}}$ $:=s$ and $T_{Z_{p}}:=T\langle Z_{\rho}\cup\{s\}\}$ .

Step 3. Let $\mathcal{T}=\{T_{Z_{i}}|i=1,2, \ldots , p\}$ and output $(\mathcal{M}, \mathcal{T})$ . 口

Theorem 5.3. For $a$ FGCTR instance $I$ , algorithm APPROXFGCTR delivers an
approximate solution $(\mathcal{M}, \mathcal{T})$ with approximation ratio of 8.529. $\square$

6 Conclusion

In $t$ his paper, we have studied the generalized capacitated tree-routing problem (GCTR),
a new routing problem formulation under a multi-tree model with a general rout-
ing capacity, $w1_{1}ic\cdot 1i$ unifies several important routing probleins such as the capaci-
tated network design problem $(C_{\perp}^{\tau}\backslash YD)$ , the capacitated multicast tree routing problem
(CMTR). and th $e$ capacitated tree-routing problem (CTR). $l1^{\gamma}e$ have proved $(2[\lambda/(\alpha+$

$\beta\kappa)]/\lfloor\lambda/(\alpha+\beta\kappa)\rfloor+\rho_{ST})$-approxiination algorithin and 13.037-approxiination algorithm
for GCTR with $\lambda\geq\cap+\beta\kappa$ and $\lambda<\alpha+\prime 3\kappa$ , respectively. We also have proved that
FGCTR is $8.529- app_{\Gamma oxi1\Pi a1)}1e$ . It would be interesting to design better algorithms to
GCTR and FGCTR without relying $011$ ‘balaiiced” Steiner tree.
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