0000000000
01676 0 20100 115-129 115

Approximating the Generalized Capacitated Tree-routing
Problem

Ehab Morsy and Hiroshi Nagamochi

Department of Applied Mathematics and Physics,
Graduate School of Informatics
Kyoto University
Yoshida Honmachi, Sakyo, Kyoto 606-8501, Japan

Abstract

We introduce the generalized capacitated tree-routing problem which is de-
scribed as follows. Given a connected graph G = (V, E) with a sink s € V and a
set M C V' —{s} of terminals with a nonnegative demand ¢(v), v € M, we wish to
find a collection of trees rooted at s to send all the demands to s, where the total
demand collected by each tree is bounded from above by a demand capacity x > 0.
Let A > 0 denote a bulk capacity of an edge, and each edge ¢ € E has an instal-
lation cost w(e) > 0 per bulk capacity; each edge e is allowed to have capacity j\
for any integer j, which installation incurs cost jw(e). To establish a desired tree
routing T, each edge e contained in 7T; requires o + 3¢’ amount of capacity for the
total demand ¢’ that passes through edge e along T}, where a > 0 and 3 > 0 are
prescribed constants. Term o means a fixed amount used to separate the inside of
the routing 7 from the outside while term 3¢’ means the net capacity proportional
to g’. The objective of GCTR is to find a collection of trees that minimizes the
total installation cost of edges. GCTR is a new generalization which unifies several
known routing problems in networks with edge/demand capacities.

keyword Approximation algorithm, Graph algorithm, Routing problem,
Network optimization.

1 Introduction

In this paper, we introduce the generalized capacitated tree-routing problem (GCTR),
which is described as follows. Given a connected graph G = (V, E) with a demand
capacity k > 0, a bulk edge capacity A > 0, a sink s € V, and a set M C V — {s}
of terminals with a nonnegative demand q(v), v € M, we wish to find a collection
T ={T1,T»,..., Ty} of trees rooted at s to send all the demands to s, where the total
demand in the set Z; of terminals assigned to tree 7; does not exceed the demand
capacity k. Each edge e € F has an installation cost w(e) > 0 per bulk capacity; each
edge e is allowed to have capacity j\ for any integer j, which requires installation cost
Jw(e). To establish a tree routing T; through an edge e, we assume that e needs to
have capacity at least
o+ Bq(Z; N Dr,(xf))

for prescribed coefficients cv, 3 > 0, where v¢ is the tail of e in T}; @ means a fixed amount
used to separate the inside and outside of the routing T; while term 8¢(Z; N D, (v§))



means the net capacity proportional to the amount q(Z; N Dz, (v{)) of demands that
passes through edge e along T;. Hence. given a set T == {T},T», ..., T;} of trees. each
edge e needs to have capacity hz(e) for the least integer hr(e) such that

Z ((Y I /3Q(Zi N DTi(‘l'f’\))) = ’I'T((i))\,

1;€7T:T; contains €

and the total installation cost of edges incurred by 7 is given as ) g hr(e)w(e),
where hr(e) = 0 if no T; € T contains e. The objective of GCTR is to find a set 7 of
trees that minimizes the total installation cost of edges. We formally state GCTR as
follows.

Generalized Capacitated Tree-Routing Problem (GCTR):

Input: A connected graph G = (V, E), an edge weight function w : F — R%, a de-
mand capacity x > 0, an edge capacity A > 0, prescribed constants «,3 > 0, a sink
seV,aset M CV — {s} of terminals, and a demand function q: Al — R*.
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Feasible solution: A partition M = {Z;,Z>,...,Z;} of Mandaset T = {T1,To,..., T}

of trees of ¢ such that Z; U {s} C V(T;) and q(Z;) < k hold for each i. The
number of copies of an edge e € F installed in the solution is given by hr(e) =
[> 1 cer(ry (@ + 39(Zi 0 Dr,(vf)))/ ], where vf is the tail of e in T;.

Goal: Minimize the total installation cost of 7, that is,

Z hr(e)w(e).

c€E

We have a variant of GCTR if it is allowed to purchase edge capacity in any required
quantity. In this model. for each edge e of the underlying network, we assign capacity
of Ae = a|T'| + B3 e a(Zi N Dr;(v5)) on e, where 77 is the set of trees containing
e. That is, the total cost of the constructed trees equals > . Acw(e). We call this
variant of GCTR. the fractional generalized capacitated tree-routing problem (FGCTR).

We easily see that GCTR and FGCTR contain two classical NP-hard problems, the
Steiner tree problem and the bin packing problem [2]. We see that GCTR with an edge
weighted graph G, o = A = 1, and 8 = 0 is equivalent to the Steiner tree problem in
G when k > 3~ -, q(v). whereas it is equivalent to the bin packing problem with bin
size k when (7 is a complete graph, w(e) = 1 for all edges e incident to s and w(e) = 0
otherwise. We see that FGCTR also has a similar relationship with the Steiner tree
problem and the bin packing problem.

The characteristic of GCTR and FGCTR is their routing capacity which is a linear
combination of the number of trees and the total amount of demands that pass through
an edge. Such a general form of capacity constraint can be found in some applications.

We here observe that our new problem formulation, GCTR, includes several im-
portant routing problems as its special cases such as the Capacitated Network Design
Problem (CND). the Capacitated Multicast Tree Routing Problem (CMTR), and the
Capacitated Tree-Routing Problem (CTR). See [7] for the definitions of these problems.
Table 1 shows a summary of the recent approximation algorithms for CND, CMTR,
CTR, and GCTR.
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Table 1: Approximation algorithms for CND, CMTR, CTR, and GCTR problems,
where 0 — [N/ (a4 Br)|/| N/ (o + BK)].

Problem unit demands general demands
\ a=0,8=1, . ) )
CND fo—= A I\E R+ L+ psr [3 2+ psr (3
; Y = 1 d — O, 8/5 ’1‘ (5/4)p5T [1]. 9 )
'rl / L T \ ' ~ ) 5 4
CMTR Ao 1,ke R 3/2 4 (1/3)psr (8] + psr 4]
a=1,08=0 .
a, B3,k € RY with ;
GCTR . i 20 + psr 20 + pst
(i) Az a+8k (this paper) (this paper)
(i) A< a+ Ok 13.037 (this paper) 13.037 (this paper)

As observed above, GCTR is a considerably general model for routing problems.
In this paper, we first prove that GCTR admits a (2[A/(a + 8r)|/ N/ (a + BK)] + pst)-
approximation algorithm if A > a+ 3k holds. The high-level description of the proposed
algorithm resembles our algorithm for C'TR, but we need to derive a new lower bound
to the problem. Namely, given an instance I = (G,w, &, A, «, 3,8, M, q) of GCTR,
the main idea of our algorithm is to compute an integer capacity A depending on
K, A, «, and 3 and then find a feasible tree-routings solution to the instance I’ =
(G w, k5, N, s, M, qg) of CTR. Here such a capacity A is chosen so that this set of tree-
routings is a feasible solution to the original GCTR instance [.

We observe that it is not straightforward to modify the above algorithm so that
it also delivers a constant-factor approximate solution in the case of A < «a + 3k.
This motivates proposing a different approach for approximating GCTR instances with
A < a + @k. For this, we introduce a new lower bound on GCTR by introducing a
generalization of CND, and use a balanced Steiner tree as a base tree from which we
construct a collection of trees to send demands to sink. We show that our new algorithm
delivers a 13.037-approximate solution to GCTR with A < a + 8x. Based on the same
approach, we also prove that FGCTR is 8.529-approximable.

The rest of this paper is organized as follows. Section 2 introduces some notations
and several lower bounds on the optimal value of GCTR. Sections 3 and 4 introduce
approximation algorithms for GCTR with A > « + 8k and A < a + 8k, respectively.
We present an algorithm to FGCTR in Section 5. Section 6 makes concluding remarks.

2 Preliminaries

This section introduces some notations and definitions. An edge-weighted graph is a
pair (G, w) of a graph (G and a nonnegative weight function w : E(G) — R*. The length
of a shortest path between two vertices v and v in (G, w) is denoted by d(¢ w)(u,v).
Given a demand function ¢ : V(G) — RT and a subgraph H of G, we use g(H) and
q(V(H)) interchangeably to denote the sum 3, - q(v) of demands of all vertices in
V(H).
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Let (G w) be an edge-weighted graph with a terminal set A/ C V() and a desig-
nated vertex s in (. A Steiner minimum tree on (G, w, M U {s}) is a tree of minimum
weight of (¢ that spans ATU{s}. A shortest path tree on (G, w, ATU{s}) rooted at s is a
tree that spans M U {s} such that the distance between s and any vertex v € M in the
tree equals to the shortest distance between s and v in ;. Given a Steiner minimum
tree and a shortest path tree on (G, w, M U {s}). a “balanced™ Steiner tree T is a tree
of (; that spans M U {s} and approximates both the shortest path tree and the Steiner
minimum tree. That is, for some constants ¢y, ¢e > 1, the distance between s and any
vertex v € M in T is at most ¢; times the shortest distance between s and v in G, and
the weight of T is at most ¢ times the weight of a Steiner minimum tree of G.

Let T be a tree. A subtree of T is a connected subgraph of T. A set of subtrees
in T is called a tree cover of T if each vertex in T is contained in at least one of the
subtrees. For a subset X C V(T) of vertices, let T(X) denote the minimal subtree of T
that contains X (note that T(X) is uniquely determined). Now let T be a rooted tree.
We denote by L(T) the set of leaves in T. For a vertex v in T. let C'h(v) and D(v)
denote the sets of children and descendants of v, respectively, where D(v) includes .
A subtree T, rooted at a vertex v is the subtree induced by D(v), i.e., T, = T{(D(v)).
For a rooted tree T,. the depth of a vertex u in T, is the length (the number of edges)
of the path from v to u.

The rest of this section introduces some lower bounds to GCTR. The first lower
bound is based on the Steiner tree problem.

Lemma 2.1. Given a GCTR instance I = (G,w,k, A\, «, 3,8, M, q). the minimum cost
of a Steiner tree to (G,w, M U {s}) is a lower bound on the optimal value to GCTR
instance I. O

The second lower bound is derived from an observation on the distance from vertices
to sink s.

Lemma 2.2. Let I = (G,w,k, A\, «, 3,8, M, q) be an instance of GCTR. Then

(@ + Br)/(KA) Z q(v)d(G ) (8, 7)

vEM

is a lower bound on the optimal value to GCTR instance I. O

3 Approximation algorithm for A\ > o + 3k

In this section we present an approximation algorithm to GCTR instances with A >
a + Ok,

Given an instance I = (G,w,k, A\, «, 3,8, M,q) of GCTR, the main idea of our
algorithm is to find a feasible solution (M = {Z,...,Z¢}, 7 = {T1,...,T¢}) toa CTR
instance I’ = (G, w,k,N,s,M,q), where X = |\/(a+ Bk)|. That is, for each edge e
in G, the number of trees of 7 containing e is at most hr(e)). where hr(e) denotes
the number of copies of e installed in the solution (M, T) of I’. Note that ¢(Z;) < &
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for all i = 1,2,...,¢. Therefore, for each edge e in G with tail v“, we have

S (ot BaDr(HNM) = (a4 AITET [ e BT
T;€T:ecE(T;)
< hr(e)(a+ Br)A/(a+ Br)] < hr(e)A.

This implies that (M, T) is a feasible solution to GCTR instance I.
For seeking a simple presentation, we first discuss GCTR instances with |[A/(a +
Br)] = 1 in the next section.

3.1 Approximation algorithm for [A\/(a+ 3k)] =1

This section provides an approximate solution to GCTR when |A/(a + k)| = 1. The
algorithm is based on the following a “balanced” partition of a set of terminals.

For a tree T rooted at a vertex r, an ordered partition 2 = {Z1,Zs,...,Zp} of a
subset of the terminal set M is called k-balanced if the following holds:

(i) ¢(Z;)) <k fori=1,2,...,p;
(ii) q(Z;) > k/2 for i =1,2,...,p—1, and if p > 2 then ¢(Z,—1 U Z,) > k; and
(ili) Each T(Z;) (j = 1,2,...,p — 1) has no common edge with T(Uj<i<pZ; U {r}).
Lemma 3.1. There always exists a x-balanced partition if max,cpr q(v) < K.

The basic idea of the algorithm is analogous to that for CTR given in the previous
chapter. We first compute an approximate Steiner tree T in (G, w, M U {s}), regard T
as a tree rooted at s, and then find a k-balanced partition M = {Z1, Zs,...,Z,} of M
in T. For each Z; € M, we choose a vertex tz, € Z; and connect the tree T(Z;) to s
by adding a shortest path between s and tz, in (G,w). We describe the algorithm in
the following form which will be used for the case of [A/(a + k)] > 2.

Algorithm ArPROXGCTR
Input: A GCTR instance I = (G, w, &, \,«, 3,8, M, q).
Output: A solution (M,7) to 1.

Step 1. Compute a pgr-approximate solution T to the Steiner tree problem in (G, w)
that spans M U {s} and then regard T as a tree rooted at s.
Define a vertex weight function d : M — R* by setting

d(’U) e d(G,‘w)(S?U)? v E Aj

Step 2. Find a partition M of M.
For each subset Z € M, assign a vertex tz € V(T) as its hub vertex.
Let S be the set of all hub vertices.

Step 3. For each hub vertex t € S, we choose a shortest path SP(s,t) between s and ¢
in (G,w). For each subset Z € M, let Tz be the tree obtained from T{Z U {tz})
by adding the edge set in SP(s,tz). Let T := {Tz | Z € M}. a
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For a GCTR instance with [A/(a + 8k)| - 1, we realize Step 2 as follows. We
compute a s-balanced partition M~ {Z, Za,...,Z,} of M. For j - 1,2,...,p — 1.
we choose a terminal lz; € Z; with the minimum distance d(lzj) as its hub vertex, and
let tyz,: - sforj p.

Theorem 3.1. Given a GCTR instance with |[A/(a 4+ 3k)] — L. algorithm ApPPROX-
GCTR with the above Step 2 delivers a (2M/(a + 3kK) + pst)-approxvimate solution.

Proof. By Property (iii) of k-balanced partition, each edge in T is used at most once in
the union of subtrees in 77 = {T(Z;) | j = 1,2,...,p—1}U{T(Z,U{s})}. Furthermore.
the flow on each edge in T is at most « + Bk < A. On the other hand, the flow
on each edge in SP(s,tz,), i = 1,2,...,p — 1, is at most a + gk < A. Note that
T = {T{(Z;U{tz,}) | Zi € M} by the choice of hub vertices. Therefore, (M, T) is
feasible and the total weight of the edges to be installed for 7 is bounded by the weight
of T plus the sum of the shortest paths used; i.e., it holds

D_hr(ew(e) <w(T+ Y ditz). (1)

€€E 1<i<p—1

For a minimum Steiner tree 7™ that spans A U {s}, we have w(T*) < opt(I) by
Lemma 2.1. Hence w(T) < pst - w(T*) < psr - opt(I) holds. To prove the theorem, it
suffices to show that

> d(tz) <2M/(a+ Br)opt(]). (2)

1<i<p—1

The choice of hub vertices and Property (ii) of s-balanced partition imply that, for
eachi = 1,2,...,p — 1, we have

> a(v)d(v) = d(tz,) Y q(v) > d(tz)k/2. (3)

veED; €L

By summing inequality (3) overall i = 1,2,...,p — L, we have

(a+38)/(20) D) dltz) < (a+8r)/(x)) Y Y av)d)

1<i<p-1 1<i<p—1 v€Z;
< (ack Br)/(8X) Y a(t)d(t).
terM
By Lemma 2.2, this proves (2). |

3.2 Approximation algorithm for |A/(« + 3k)] > 2

This section shows that ApPROXGCTR with an additional step. Step 4, can deliver a
(12X (v + Br)/IAN (v + BK)] + psr)-approximate solution for a GCTR instance with
[A/(a+3k)| > 2. For this. we use the following result on tree covers in a tree to realize
Step 2.

For a partition M of a terminal set A/ in a rooted tree T and hub vertices ¢z,
Z € M. we denote the set of subsets Z € M such that T(ZU{tz}) contains a specified
edge e = (x,y) € E(T) with y € Chr(2) by three disjoint sets:
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M(e)={ZeM|ee E(T{(Z))},
Maun(e) ={Z e M| Z CV(T) - V(T,),tz € V(T,)}, and
Maple) - {Z € M| Z CV(T,), 1z € V(T) - V(T,)}.

Lemma 3.2. Let T be a tree rooted at s with a terminal set M C V(T)—{s}, a demand
function g : M — R*, a real v with k > max{q(v) | v € M}, a real A > 0, and real
constants v, 3 > 0. Given a vertex weight function d : M — R™, there exist a partition
M = Ulgjgfcj of M, and a set S = {t; € {argminygzec, d()} | j < f—1}U{ty = s}
of hub vertices such that:

(i) ¢(Z2) < Kk for all Z € M, and T{Z) and T{(Z') have no common edge for all
distinet Z, 7' € M

(i) [C;] < M+ Br)] forall j =1,2,..., f, and 3 e, a(Z) > [N/ (a + BK)](£/2)
forallj=1,2,...,f—1; and

(ili) Fortz =t; with Z € Cj, j = 1,2,..., f, each edge e € E(T) satisfies
(a) [M(e)| <1,
(b) [Mawn(e)l < [M/(a+ Br)] — 1, and
(c) [Mup(e)] < [N (a+ Br)] — 1. .

We first perform Step 1 of APPROXGCTR. In Step 2, we apply Lemma 3.2 to the
Steiner tree T and the function d obtained in Step 1 to get a partition M = U;<;<fC; of
M and aset S = {t1,%2,...,ts} of hub vertices that satisfy the conditions of Lemma 3.2,
and we set tz = t; for each Z € C;, j = 1,2,..., f. Then we perform Step 3 for the
set T/ = {T(Z U{tz}) | Z € M} of induced subtrees of T. Note that each collection
C;,j=1,2,..., f, contains at most |\/(a+ Bk)| subsets from M, all of which can use
t; as a common hub vertex by installing one copy of each edge in SP(s,t;). We here
analyze the installing cost of the resulting tree-routing. Analogously with the previous
section, we have

D dty) < [2M(a+ Br)l/ [N/ (a + Br)]opt(I),

15751

since it holds by Lemma 3.2(i)-(ii) that

(@ +BR) M (a+Br)I/(2)) D d(ty) < (a+B8r)/(KA) > > aq(t)d()

1<j<f-1 1<j<f-1 teZeC;

< (a+BR)/(KA) Y a(t)d(?).

te M

It should be noted that the flow on an edge e € E(T) may be more than A and (1) may
not hold for the current tree-routing.

Finally we perform Step 4 in order to modify the assignment of hub vertices so
that (1) holds, which implies the ([2A/(a + 3k)]/|A/(a+ Bk)| + pst)-approximability of
GCTR with [ M/ (a+8k)| > 2. Consider an edge e = (z,y) in the Steiner tree T, where
by definition the number of trees in 7’ containing e equals [Mgy,n(e)| + [Myp(e)| +
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|M(e)l. Assume that the total number of trees in 77 containing e exceeds [A/(a + Bk)]:
i.e..

| Maun(€)] + [Mup(€)] 4 [M(e)] > [N (a+ Br)],

which implies
HT' € T'|ee E(T")}| > [M(a+ Bk)].

Step 4 repeats a swapping process for any edge of T shared by more than [A/(a +
3k)] trees of the current 7’. See [7] for the details of such a swapping process. Step 4
never changes the set .S of hub vertices computed in Lemma 3.2.

Therefore, the set 7 = {Tz | Z € M} of tree-routings Tz obtained from each tree
T{(Z U {tz}) of T' by adding the edge set of SP(s,tz) satisfies (1) and is a ([2A/(a +
B/ I/ (e + BK)| + psr)-approximate solution to the given GCTR instance I. Hence
we have the following theorem.

Theorem 3.2. GCTR with |M/(a + Bk)] > 2 is ([2A/(a + BK)]|/| N/ (e + BK)] + pst)-
approxrimable. O

4 Approximation algorithm for A\ < o + 3k

As we mentioned before, it is not straightforward to modify the algorithm in the previ-
ous section so that it also delivers a constant-factor approximate solution in the case of
A < a+ Bk. In this section, we introduce a new lower bound on GCTR by introducing
a generalization of CND in Section 4.1, and use a balanced Steiner tree as a base tree
from which we construct a collection of trees to send demands to sink. We prove an
approximation algorithm of 13.037 for the problem in this case.

The following lemma introduces another lower bound to GCTR based on the Steiner
tree problem which is equivalent to that given in Lemma 2.1 for a GCTR instance with
a < .

Lemma 4.1. Let I = (G,w,k, N\, «a,3,s,M,q) be an instance of GCTR and T be a
minimum cost Steiner tree to (G,w, M U {s}). Then [a/ |w(T*) is a lower bound on
the optimal value to I.

Proof. Coonsider an optimal solution (M* = {Z1,...,Z¢},7* = {Th,...,T¢}) to I
with optimal value opt(I). For each edge e € FE(T;), i = 1,2,...,¢, we assume that
e = (u§, 1), where v§ € Chr,(v). Let E(T*) = Ur,er E(T;) (C E(G)), i.e., the set of
all edges used in the optimal solution. Then

ST Y (a+Bq(Zin Dr,(¥)))/Aw(e)
e€E(T*) T;:e€E(Ty)

> /Al Y we) 2[a/A] Y wle),

e E(T*) ecE(T*)

I

opt(I)

since the edge set E(7™*) contains a tree that spans M U {s} in G. O
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4.1 Generalized capacitated network design problem

In this section, we propose a generalized version of CND, the generalized capacitated
network design problem (GCND), which defines a new lower bound to the optimal value
of GCTR. We show that such a lower bound can be used to construct a constant factor
approximation algorithm to GCTR instances with A < a4 8k. We are given a graph
G = (V, E) with a bulk edge capacity A > 0, asink s € V, and aset M C V — {s} of
terminals with a nonnegative demand q(v), v € M. The problem asks to choose a path
P, from each terminal v € A to the sink along which the demand ¢(v) of v is sent to
s. Each edge e € E has an installation cost w(e) > 0 per bulk capacity; each edge e
is allowed to have capacity jA for any integer j, which requires installation cost jw(e).
Hence, given a set P = {P, | v € M} of paths of G, each edge e in E(P) = Uyep E(P,)
needs to have capacity kp(e)X for the least integer kp(e) such that

atf D @) Skp(e),
vEM:P, contains e
where kp(e) = 0 if no path contains e. The total installation cost of edges incurred
by P is given as EGGE(P) kp(e)w(e). The objective of GCND is to minimizes the total
installation cost of edges. The problem is formally stated as follows.

Generalized Capacitated Network Design Problem (GCND):

Input: A connected graph G = (V, E), an edge weight function w : £ — R™, an edge
capacity A > 0, and prescribed constants , 3 > 0, a sink s € V, aset M C V — {s} of
terminals, and a demand function ¢ : M — R*t.

Feasible solution: A set P = {P, | v € M} of paths of G such that {s,v} C V(P,)
holds for each v € M. The number of copies of an edge e in E(P) = U,em E(P,)
installed in the solution is given by kp(e) = [(a + 3 > wecE(P,) 4(V)) /A

Goal: Minimize the total installed cost, that is,

Z kp(e)w(e).

ecE(P)

The following lemma follows directly from the definitions of GCND and GCTR.

Theorem 4.1. Let I' = (G,w, A\, &, 3,8, M,q) and I = (G,w, k, \, o, 8,8, M, q) be two
instances of GCND and GCTR, respectively. Then the optimal value of I' is a lower
bound to the optimal value of I.

Proof. Let opt(I) and opt(I') denote the optimal values of I and I’, respectively. Con-
sider an optimal solution (M* = {Zy,...,Z,},T* = {T1,...,T¢}) to GCTR instance
I. For each i = 1,2,... ¢ and v € Z;, let P, be the path from v to s in 7;. We
observe that P = {P, | v € M} is a feasible solution to GCND instance I’. More-
over, for E(P) = UyemE(P,) and E(T*) = Ur,er~E(T;), it hold E(P) = E(T*) and
kp(e) < hr+(e). Hence, it holds

opt(I') < Z kp(e)w(e) < Z hr+(e)w(e) = opt(I).

ecE(P) e€E(T*)
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Before constructing an approximate solution to GCND. we present two lower bounds
to the problem. The first lower bound is based on the Steiner tree problem. where the
proof is similar to that of Lemma 2.1.

Lemma 4.2. (fiven a GCND instance I' = (G,w, A\, a, 3,8, M, q). the minimum cost
of a Steiner tree that spans M U {s} is a lower bound on the optimal value to I'. O

The second lower bound is based on a linear combination of both the Steiner tree
problem and the distances from s to all terminals.

Lemma 4.3. Let I' = (G,w,\, 0, 3,5, M,q) be an instance of GCND and T* be a
minimum cost Steiner tree that spans M U {s}. Then

(@A) > wle)+(B/0) D a@)dicu(s,)

e€E(T*) veM
is a lower bound on the optimal value to I'.

Proof. Consider an optimal solution P = {P, | v € M} to GCND instance I’, and let
E(P) = Upear E(P.). Let opt(I’) denote the optimal value to I’. Then we have

opt(I') == Z [(a + 3 Z q(v))/Xlw(e)

ceE(P) v:e€FE(Py)

(@A) D we)+ BN Y (wle) > qv)

e€E(P) e€E(P) vie€ E(Py)

= (a/X) D wle)+(B/N) D @) D we)

e€E(P) veM eeE(P,)

(a/x) Y wle)+(8/2) D q(v)dc e (s.v),

ecE(T*) vEM

v

v

since E(P) contains a tree that spans M U {s} in G and 2 ecEP) W(e) = d¢a)(8,0)
holds for all v € Af. O

Now we construct an approximate solution to a GCND instance I’ = (G, w, A\, «, 3, 8, M, q)

based on a tree balanced an approximate Steiner tree and a shortest path tree in G. Let
T* and T denote optimal and psr-approximate solutions to the Steiner tree problem
to (G, w, M U {s}), respectively. This implies that w(7T*) < pgr - w(T*). Regard T*
and T as trees rooted at s. Let T°P! be a shortest path tree that spans M U {s}
rooted at s. Let T be a balanced Steiner tree that approximates both 795 and T5Pt.
Note that T can be found in polynomial time [5, 6]. Namely, given 7% T*P! and a
real number v > 0, there is a balanced Steiner tree T such that

w(T) < (1 +2/7)w(T*), and (4)
d(1.2)(8,0) £ (1 +V)d(g.u)(s,v), forallve M. (5)
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Let v© denote the tail of edges e in T. Inequalities (4) and (5) imply that

S ot BaTu)/Nwle) = 3 ((at Ba(Te))/A + 1)w(e)

ecE(T) ecE(T)
= (/A Dw(T) +(B/2) Y a()d(u(5,0)

veEM
(/A + 1)psr(1l +2/v)w(T™)
+ (B/M)(A +7) Z q(V)d(c ) (8, V)

veM
pst(1 4 2/7)w(T*) + max{psr (1 + 2/7), (1 +7)}
((a/Mw(T*) + (B/X) Z q(V)d(Gw)(s,v)).  (6)

veM

IN

IN

Hence Lemmas 4.2 and 4.3 prove that the right hand side of (6) is bounded from above
by
(Psr (1 +2/7) + max{psr(1 +2/7), (1 +)})opt(I'),

where opt(I') denotes the optimal value to I’. This proves the following theorem.

Theorem 4.2. Let I' = (G,w, )\, «,83,s,M,q) be an instance of GCND with optimal
value opt(I'). Then, for any v > 0, there is a Steiner tree T that spans M U {s} rooted
at s such that

D [(a+ Bq(Twe))/Nw(e) < - opt(I'),

e€E(T)
where v¢ is the tail of e in T and p = psr(1 + 2/7) + max{psr(1 + 2/%),(1 + 7)}.
Furthermore, such a tree T can be computed in polynomial time. O

4.2 Approximation algorithms to GCTR

In this section we present two approximation algorithms for a GCTR instance with
A < « + Bk. Our proposed algorithms are based on x-balanced partition and the re-
sults described in Section 4.1.

Algorithm AprPROXGCTR
Input: An instance [ = (G, w, &, A\, a, 3,8, M,q) of GCTR.
Output: A solution (M, T) to I.

Step 1. Compute a tree T that spans M U {s} rooted at s.’
Find a s-balanced partition M = {Zy,Z5,...,Z,} of M in T.

Step 2. For each i =1,2,...,p— 1, assign a vertex tz, in T(Z;) as its hub vertex and
let Tz, be the tree obtained from T(Z;) by adding the edge set of a shortest path
SP(s,tz,) between s and tz, in G.

Let tz, := s and Tz, := T(Z, U {s}).

Step 3. Foreach i =1,2,...,p,
Regard Tz, as a tree rooted at s.
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Install [(ev + 3q(Zi N D1, (v5)))/A] copies of each edge e € E(Tyz,) with tail ¢f in
T,.

i

Step 4. Let 7 = {Tz, | i = 1,2,...,p} and output (M, 7). O

Note that the demand capacity constraint on each tree in 7 is obviously satisfied by
the definition of k-balanced partition. It is also easy to observe that the edge capacity
constraint remains satisfied on each edge installed on the graph. Thereby (M, 7T) is
feasible to I. It remains to discuss the approximation ratio of the algorithm. We
consider two versions of algorithm ApPROXGCTR by realizing Steps 1 and 2 in two
different ways as follows.

(A) We compute a tree T in the first step by any psr-approximation algorithm to the
Steiner tree problem, and choose tz, € Z;, i = 1,2,...,p— 1, in Step 2 to be a
terminal of the minimum distance d(¢ .\ (s,tz;) in Z;, and

B) we compute a tree T in the first step by using Theorem 4.2, and, for each i =
I P D g
1,2,....,p—1. we choose tz, in Step 2 to be a vertex of the minimum depth in 7.

Theorem 4.3. For a GCTR instance I with A < a + 3k. algorithm ApPROXGCTR
with Steps 1 and 2 as defined in (A) delivers an approrimate solution (M,T) with
approzimation ratio of 26 + min{[(«a + Bk)/ N, [Bk/A] + 1}psr. where € = A[(a +
BK)/ A1/ (a + Bk). O

Note that the ratio in Theorem 4.3 may not be constant due to the factor [Bk/A].
We show in the next theorem that algorithm APPROXGCTR with Steps 1 and 2 as
defined in (B) admits a constant factor approximate solution.

Theorem 4.4. For a GCTR instance I with A < a + Bk, algorithm ApPROXGCTR
with Steps 1 and 2 as defined in (B) delivers an approximate solution (M,T) with
approximation ratio of 26 + 2pst + 4v/2€psr, where & = A[(a+ Br)/N]/(a+ Br). O

Note that the approximation ratio given in Theorem 4.4 is bounded from above by

(26 4 2psr + 4y 21pst ) < (44 2psr + 8y/Psr ) < 17.057

for the best known ratio psr = 1 + 1"73 to the Steiner tree problem (since £ < 2).
We show that the bound can be improved by choosing the best one from both
solutions constructed by using (A) and (B) in Steps 1 and 2.

Theorem 4.5. For a GCTR instance I with A < a + (k. there exists an approrimate
solution (M, T) with approximation ratio of

min{2§ + [(a + BK)/ A pst, 2§ + 2pst + 41/28psr} < 13.037.

Proof. Let j = [(a+ Bk)/A]. Note that A < a+ Bk implies that j = [(a+ B8k)/A] > 2.
Since j — 1 < (e + Bk)/A < j. & is bounded from above by

&= Ao+ Br)/A/(a+ BK) < j/(J —1).
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First consider the case where [(« + Bk)/A] < 6. In this case, for the best known ratio
Pst = 1+ 1“73 to the Steiner tree problem, the approximation factor 2§+ [(a+3x)/X] psr
proved in Theorem 4.3 is bounded from above by

26 + [(a+ Bk) /A psr < 11.696,

which is obtained when j = [(a + 8k)/A] = 6 (and hence & < j/(j — 1) = 6/5).

Next consider the case where [(a + Bk)/A] > 7. We have £ < j/(j — 1) <7/6 and
hence the approximation factor 2€ + 2psy + 44/2€psr proved in Theorem 4.4 is bounded
from above by

28 + 2pst + 428 psy < 13.037

since 2§ + 2psr + 4v/2€psr is an increasing function of € over [1,2). This completes the
proof of the theorem. O

5 Approximation algorithm to FGCTR

In this section we present an approximation algorithm for a FGCTR instance by modi-
fying the algorithm given in Section 4.2. We first introduce the following lower bound on
the optimal value to FGCTR. The proof of the lemma is similar to that of Lemma 2.2.

Lemma 5.1. Let I = (G,w,k,«, 3,8, M, q) be an instance of FGCTR. Then

(a + /81'“3)/"“' Z Q(v)d(G’,w)(sa ’U)

vEM
is a lower bound on the optimal value to I. O

The fractional generalized capacitated network design problem (FGCND) is a variant
of GCND in which it is allowed to purchase edge capacity in any required quantity.
Namely, we assign capacity of A\c = a + B2 veer(p,) 9(v) on each edge e in E(P) =
Uvem E(P,). That is, the total cost of installed capacities equals > e B(p) Aew(e).
Corresponding results to that in Sections 4.1 and 4.2 can be obtained similarly.

Theorem 5.1. Let I' = (G,w,a,8,5,M,q) and I = (G,w,k,a,(,s,M,q) be two
instances of FGCND and FGCTR, respectively. Then the optimal value to I' is a
lower bound on the optimal value to I. O

Theorem 5.2. Let I' = (G, w, «, 3,5, M, q) be an instance of FGCND and let opt(I')
be the optimal value to I'. Then, for any v > 0, there is a Steiner tree T that spans
M U {s} rooted at s such that

> (a+ Bg(Tue)w(e) < max{per(1 +2/7), (1 + ) }opi(I'),
e€E(T)

where v is the tail of e in T. O
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Now, we are ready to present a formal algorithm to FGCTR based on the above
results.

Algorithm ApPROXFGCTR
Input: An instance I = (G, w, Kk, o, 3,8, M, q) of FGCTR.
Output: A solution (M, 7) to I.

Step 1. Compute a (max{psr(1+2/7), (1+7)})-approximate Steiner tree T that spans
M U {s} rooted at s by Theorem 5.2.
Find a x-balanced partition M = {Z,,Z>,...,Z,} of M in T.

Step 2. For each ¢ = 1,2,....p — 1, choose a vertex tz, in T(Z;) with the minimum
depth in 7" and let Tz, be the tree obtained from T(Z;) by adding the edge set
of a shortest path SP(s,tz,) between s and tz, in G.
Let tz, := sand Tz, := T(Z, U {s}).

Step 3. Let 7 = {Tz, | i =1,2,...,p} and output (M, 7). O

Theorem 5.3. For a FGCTR instance I, algorithm APPROXFGCTR delivers an
approximate solution (M, T) with approximation ratio of 8.529. O

6 Conclusion

In this paper, we have studied the generalized capacitated tree-routing problem (GC'TR),
a new routing problem formulation under a multi-tree model with a general rout-
ing capacity. which unifies several important routing problems such as the capaci-
tated network design problem (CND), the capacitated multicast tree routing problem
(CMTR), and the capacitated tree-routing problem (C'TR). We have proved (2[\/(a +
Br)|/ M/ (a+BEK) ]+ psr)-approximation algorithm and 13.037-approximation algorithm
for GCTR with A > a + 3k and A < « + 3k, respectively. We also have proved that
FGCTR is 8.529-approximable. It would be interesting to design better algorithms to
GCTR and FGCTR without relying on “balanced” Steiner tree.
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