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The tensor structure of the original Navier-Stokes equations
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Abstract
The two-constants theory introduced first by Laplace in 1805 is currently accepted theory describing
isotropic, linear elasticity. The original, macroscopically-descriptive Navier-Stokes equations [ MDNS equa-
tions ] were derived in the course of the development the two-constants theory. From the viewpoint of MDNS
equations, we trace the evolution of the equations and the notion of tensor following in historical order the
various contributions of Navier, Cauchy, Poisson, Saint-Venant and Stokes®, and note the concordance be-
tween each.

Keywords : the microscopically descriptive equation, the Navier-Stokes equations, mathematical history.

1 Preliminary Remarks

In this report, we use the following definition of the stress tensor, due to I. Imai(7, p.178]: we calla P of 3x 3
matrix such as P a stress tensor that returns a new vector P, when multiplied from the right by the column
vector of directional cosines :

P, Pzzx Pyz DPzz l
Pny = Pzy Pyy Pzy m = P,=P-n
P, Prxz Pyz DPzz n

Moreover, if p;; = pj; for all i,j = z,y, z then this tensor is said to be symmetric. If we suppose for example
ti; is the (i,j) element of a matrix, and t;; = —t;; then anti-symmetric or skew-symmetric. = Troughout the
paper, we display for brevity a tensor by specifying its components, such as d;; of the well-known Kronecker 4.
Furthermore, we write v r = Z?zl —2—;’? = i—;‘ + g—; + % .-+ where we have the Einstein convention?. Simpli-
fications occur as, for example, in Navier’s elasticity of (1-1) in Table 4 where the tensor can be expressed as
follows:

d d d d d dw |, du €+ 24u du , du dw 4 du
3d—;‘+fy‘}+£) ('&1—;4‘2% E;‘*‘dlzt d'j_ ddzu dy+cé:c gz +ddz
=—g| 4 gl b dw
—e du 4 dv du | gdv  dw dv | dw €| dy T de dy dz 7 dy 1)
dy " dz dz dy 7 dz dz " dy dw 4 du dv 4 dw €+ 24w ’
dw | du dv | dw du | dv | gdw de ~ dz dz ©ody . B
=t it ay =T @ T34 where €= 9%+ G0 + G
Expressions in Poisson’s elasticity (3-1) in Table 4 are also of similar style.
Moreover, we can easily express Navier’s stress tensor ¢;; of elasticity in the form: t;; = —e(dijur k+ui j+u;:)-
Stokes’ fluid theory (20) or (5) in Table 4 affords a second illustration: t;; = (~p — 2pvk k)di; + p(vi; + v;.4),
or the equivalent expression o;; = —pdi; + u(%}‘, + %;i":-) — %&j%”:.a In what follows, “tensor” means the stress

tensor as defined by I. Imai. 4 When referring to a “fluid”, an “elastic fluid” is implied.

2 Introduction

We have studied the original MDNS equations as the progenitors®, Navier, Cauchy, Poisson, Saint-Venant
and Stokes, and endeavor to acertain their aims and conceptual thoughts in formulations these new equations.
“The two-constants theory” was introduced first introduced in 1805 by Laplace® in regard to capillary action
with constants denoted by H and K (cf. Table 2, 3). Thereafter, various pairs of constants have been proposed
by their originators in formulating MDNS equations or equations describing equilibrium or capillary situations.
It is commonly accepted that this theory describes isotropic, linear elasticity.” We argue that Poisson had
already pointed out the special aspect deduced by Laplace when, in 1831, he states, ‘elles renferment les deux
constantes spéciales donc j’ai parlé tout & I’heure’ [18, p.4]. Poisson was, we think, one of the persons who were
aware of this issue.

! Navier(1785-1836), Cauchy(1789-1857), Poisson(1781-1840), Saint-Venant(1797-1886), Stokes(1819-1903).

2Remark: in general, vk k # Vi,j, because the summation convention is in force when there is a repetition of indices.

3¢.f. Schlichting {20}, in our footnote(19).

4Numbers on the Left-hand-side of equations refer to those given by the author in the original paper while numbers on the
right-hand-side correspond to our indexing. The subscript to the original indexing, for example N"‘/Nf, refer to author and type
of theory, such as “elastic/fluid by Navier”. For equations indexed by section, the citation is then in the format “section no.-no.
by author”.

5The order followed is by date of proposal or publication.

6Of capillary action, Laplace[8, V.4, Supplement p.2 | achnowledges Clailaut(3, p.22], and Clailaut cites Maupertuis[10].
"Darrigol [4, p.121].
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3 A universal method for the two-constants theory

Now, we would like to propose the uniformal methods to describe the kinetic equations for isotropic, linear
elasticity such as :
e The partial differential equations of the elastic solid or elastic fluid are expressed by using one or the pair
of C1 and C5 such that :
in the elastic solid : 28 — (C1 Ty + CoTy) = f,
In the elastic fluid : 22 — (C1 Ty + C2T3) + -+ =,
where 71, T»,--- are tensors or terms consisting our equations, where we suppose the tensor as the first kind.
For example, the MDNS equationsions corresponding to incompressible fluid is composed of the kinetic equation
along with the continuity equation and are conventionally written, in modern vector notation, as follows :
du .
—a—t——,uAu-Fu-Vu—}-Vp:f, div u = 0. (2)
e C; and C, are the two coefficients of the two-constants theory, for example, € and E by Navier, or R and
G by Cauchy, k and K by Poisson, € and § by Saint-Venant, or 1 and 4§ by Stokes. Moreover C; and Cz can
be expressed in the following form:

Cy = Lr1g:1 51, Sy = [fgs — Cs, N Cy = CsLrigy = ELng,
Ca = Lr2g25>, Sz = [[ g4 — Cu, Cz = CsLrags = L Lrags.

e The two coefficients are expressible in terms of the operator £ ( Z? or f0°° ) by personal principles or
methods, where r; and 73 are the radial functions related to the radius of the active sphere of the molecules.

e g1 and g2 are the certain functions which depend on r and are described with attraction &/or repulsion.

e S; and S, are the two expressions which describe the surface of active unit-sphere at the center of a molecule
by the double integral ( or single sum in case of Poisson’s fluid ).

e g3 and g4 are certain compound trigonometric functions to calculate the momentum in the unit sphere.

e C3 and Cj are indirectly determined as the common coefficients from the invariant tensor. Except for
Poisson’s fluid case, C3 of C; is 27"', and C4 of C; is %’—5’-, which are calculated from the total momentum of the
active sphere of the molecules in computing only by integral, and which are independent on personal manner.
In Poisson’s case, after multiplying by 117?7 we get the same as above.

o The ratio of the two coeflicients including Poisson’s case is always same as : %} = %

4 A genealogy and convergence of stress tensor

We show in the figure 1, a genealogy tracing in paticular the form of the tensor t;; appearing in the Navier-
Stokes equations. In Table 4, we differentiate the tensors associated with elastic solids or elastic fluids. From this
genealogy, it could be asserted that Cauchy[l, 2] was the inventor or the first user of tensors, a view supported
by the admission of Poisson{17] that he received the idea of symmetric tensor from Cauchy. Moreover, the idea
of Saint-Venant reappears in the work of Stokes. Here, we denotethe two routes as NCP and PSS, both of which
are portrayed in our figure, and by which, we can explain the genealogy of tensor as it applies to the MDNS
equations. cf. Table 4.

(fig-1) A genealogy of stress tensors in the prototypical Navier-Stokes equations

Navier[12, 13] : t§; = —e(dijur.kx + Ui,; + u5.4), t{j = (p — eur,x)dij — e(us,j + uji)

/ ¢ ~
(Euler) = - || Poisson[15, 17]e —> Saint-Venant[19]t == Stokes[21]}
N L O /
Cauchy][1, 2] : tfj’-'f = Avg k0i; + p(vi; + vj,4)
e Poisson : t§; = —‘gi(éijuk,k + i + Uji), tifj = —pbij + Avk,k0i; + pu{vij + vj.:)

1 Saint-Venant : tifj = (%(Pz'r ~+ Pyy -+ Pzz) - %Evk,k)éij + E(’Ui,j + vj,i), %(Pz:z -+ Pyy -+ Pzz) = —p
1 Stokes : t{J = (—p — 2pvkk)6i; + p(vi; + v51),
@ Poisson says his reducing of tensor elements to 6 from 9 is due to Cauchy. (cf.§5.2).

5 Deductions of two constants and tensor

Recently Darrigol [4, p.121] has concluded: it is called that the two-constants theory is the one now accepted
for isotropic, linear elasticity,” but Poisson [18, p.4] has stated already in 1831: ‘elles renferment les deux
constantes spéciales donc j’ai parlé tout & 'heure.’ Moreover, we believe that the first proposer of “two-
constants” theory was Laplace {9] in Table 3.
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the constant of definitions and computing of total momentum of molecular actions by
Navier, Cauchy, Poisson, Saint-Venant & Stokes

[no[name/problem

[elastic solid

[elastic fluid

[remark

( Navier[13] only : )
( Navxer[l?] only : ) Ci=e=22 = J5° dp- p*f(p)

) I\{a"if’? 12 Cl"E— %o deptfe Cz—E‘ "f dp - p*F(p) g:pcosicosgp.
elasticity: = pcosYsinyp,
Auid:[13] Cs = I 2, dy i7" cospdp g3 = {12, &, 2} Cz= fg,f do fo cos di g3 S = psiny

=>izl6 - 21 =>{1Q 36) = 15
Cy = fo dcpfo cos Ydy g4 = —
( Cauchy[ ] )
=R= %A fco 3 f(r)dr cos @ = COs p,
:tzfsA [T4f'(7‘) — r3f(r)]dr cos B = sinpcos g,
5 Cauchy C2 = G 5= "A 5 3f(")dT‘ ( Cauchy[2] : ) cos~y = sinpsing
elastic and fluid[2]{C3 = 3 fo cos 2 qdq fy cos? acos? Bdp, samely as in elastic solid A= %‘- : mass of
= é 02" cos? quf cos? psin® psin pdp —’5' molecules per
Cy = fo cos? asin pdqdp volume.
=1rf0 cos? psin pdp = 22,
( Poisson[17] : both elastic and fluid )
1
( Poisson[15] only : ) C1=-k= 5'6?5 S 3d fr
5 dlfr 3 di In Poisson[17],
Ci=k= Z 3, SE =-%F> z,,—is =7 he treates as the same
Poisson Cz = Z '—sz' Cy = “K =gz rrfr as both elastic and fluid.
3 |elasticity:[15, 17] |5, = [27 4 dB an = {27 21} — 27 =-2Y I fr
ﬂuid:[l7] 3 7f0 cos Bsin 3dB g3 {5 s 15}=> 15 G = ez 3d-isr .L/,. z1 = rcos Fcos,
Cs = [*™ dvy f02 cos Bsin 3dB g4 = " Cs jo=T d,lj y1 = rsin Bsin-,
E= F~—23 a = —rcos
Remark: Cj3 is choiced as the common factor of {-, -} = {10 , 0} - L <
:(3-2)py N = —gﬁzrfr'—%—ﬁ
4 [Saint-Venant[19] Cr=¢, Cy=¢%
5 [Stokes[21] Ci=A, C:=B Ci=up, Co=%"
Table 2: The two constants in the kinetic equations
[no[name Jproblem  [C1]C2|C3 [Cs L [rilr2gn g2 [remark
Navier . . 2 ES 4 ;
1 12] elastic solid e 2z I3 dplp®| |fe p : radius
2 E;}ner fAuid e s I3 dolp?| [f(p) p : radius
E T o de| |0? F(p)
system
Cauchy of particles 2m oo 3 _ ,
3 2] in elastic R TA fo drir f(r) f(r) = x£[rf'(r) — £(r)]
and fluid
f(r) #f(r),
G A dr| {r® +f(r)|A = 4L mass of molecules
per volume.
Poisson . . po- 1 |5 d.Lfr
4 [15] elastic solid [k & s e
K -2{5 ;15' r3 fr
Poisson elastic solid 1 1 |3 dlfr 1l2r _ 1
3 (17] and fluid 30 Ta dr Ca=a1 =5
K Los sl fr_Ca=&% =1
Saint-Venant |, . .
6 (19) fluid € 13
Stokes
i ©
7 [21) fluid uoik
S . .
8 [2t10]kes elastic solid |[A |B A =5B
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Table 3: The two constants in equations describing equilibrium or capillary situations

[nolname [problem [CllC2ICQ, IC4 [C I'r1 17'2 lg1 lgz lremark j
Laplace
1 |[8, V.4, Supplement p.9 ]|capillary action |H 2m Jo7 dz|z W(z) z : distance
(9, V.4, p.700]
K 2 |[7dz U(z) |cf.Gauss
2 ﬁ(;l]sson capillary action |H zp? I dr|rt pr [18, p.14]
K 22 02| [0 dr 3 or  |[18, p.12]
Navier
3 [fluid equiliblium of fluid|p 13’1 fooo dp|p® f(p) p : radius
(13]
Poisson R . 1 1 _ 127 _ 1
4 (17, §5, 946, p.104] equiliblium of fluid|p 5 = T R Cs= -2 =3¢
q i > & riZR|Ca=Ln=1

5.1 Navier’s two constants and tensor

In his theory of elasticity, Navier deduced the single constant ¢ in(1). The corresponding Navier-Stokes equations
by Navier himself for the incompressible fluid (2) are as follow :
a2 42w

1ldp __ d?u u d2u d®v | 9 d?w ) _ du _ du . . au ., __ au .
pdx_X+E(3d—x7+m+p-+2—dxdy+2d:dz at az U dy "V dz W

1dp __ d2v d%v | d?*v d?u dw\ _dy _dv ., _dv_ . _ dv_ _ .

pdy — Y+e dz? + 3dy2 + dz2 + 2d:cdy + 2dydz dt dz U dy v dz W (3)
ldp _ Pw | dw dw 4’y d?v \ _dw _dw , _dw . _dw . .

pd: =2 tel G+ 4o T3EE t 241 + 255dz dt " dr YT ay VT g W

along with the equation of continuity: % + % + ‘3—‘;’ = 0. Navier supposes two constants as follows :

8 o 4 ot 4 e 2 had
(3-10)ys €= — dpp*f(p) = — / dpp*f(p), E=—2 / dpp®F(p) = = / dpp® F(p)- (4)
30 J, 15 J, 6 Jo T3

In the case of fluid, Navier was well aware of necessity for the equation of continuity, because from (3) he
obtained €A, by defferentiating the equation of continuity with Ed;, %, %. For example, the e-terms in (3) ,
as well as (5) are reduced to €éAu in (6). This is solely due to the mass conservative law, according to the
explaination given by Navier.

As an aside, Navier always used his well-used mathematical methods involving a four-steps procedure to solve
the three equations such as the equilibrium equation for the fluid [13], the kinetic equation for the elastic (12],
and the kinetic equation for the fluid [13] with the general methods as follows:

e initially, to deduce one or two constants including uncomputable functions: g1, g2 i.e. fp, f (p) or F(p) in
Table 2,

e then, to construct the indeterminate equation, which he denoted the nomencrature of “equation undeter-
minant” ( cf. §5.1.1),

e then, to make Taylor series expansion and partial integration, exchanging d and §, and pairing with the
same integral operator,

e and finally, to solve the indeterminate equation from the two points of view, the interior and the boundary.
We present more details of this procedure by outlining Navier’s analysis of fluid flow[13].

5.1.1 Indeterminate equation

The indeterminate equation, so-called then by Navier, is as follows:

[P—gf—p %‘+uj—;‘+vj—;‘+w§—z ]511.
G2 0 = [[[dvayad Q-2 - p(% 1 ut 4o 4 wiz)]ov
[R~ g2~ (% + e +vie +wi2)]su

du ddu du édu du $du dv ddu dv édu dw ddu
dz dz +Edy +Edz)+(dy dx +dz: dy)+(dz

+
du ddv du ddv dv édv dv ddv dv 8dv dw § dw ddv
5// dzdydz Edy+zgdx)+(zd:+3dydy+dzdz)+ dy dz T 4z dy

y z
du ddw du ddw dv ddw dv ddw dw ddw dw ddw dw ddw
dz dz +Edz)+d_ydz+dzdy)+(dzdz+dy y+3zdz)

+  Sds’E(ubu + vév + ww). (5)
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5.1.2 Determinated equation operated by Taylor expansion and partial integral

Putting Sds? E(udu + vév + wdw) = 0 of indeterminate equation (5) and performing a Taylor series expansion
to first-order and neglecting higher-order terms, we get as follows:

2 2 2
(P-4 _, ‘Ciilt‘+udr+Udy+wd“)+s(§—z—%+%—y%+‘;—z%)]5u
2 2 2
(3-29)ns O = ///dxdydz @-2 - zlt’—%—udx—i—v—-{—w 2) re( Ly + 55+ 53))ov (6)
[R gf p ‘fi‘f +v +wd—“’-)+e %%’-—%—%%-{-dz )]5w

From (6) we get (3) i.e. the kinetic equation which is the first expression of (2).

5.1.3 Determinated equation deduced from boundary condition

As the boundary condition, Navier uses two constants in one equation. In this aspect, his method is the
unique among the original formulators. Navier explains as follows: regarding the conditions which react at the
points of the surface of the fluid, if we substitute
e dydz — ds?cosl, where ! : the angles by which the tangent plane makes with the yz-plane on the
surface frame,

e dzdz — ds?cosm, where m : similarly m is the angles with the zz-plane,

edrdy — ds?cosn, where n : samilarly, n is the angles with the zy-plane,

e [[dydz, [[dxdz, [[drdy — Sds?, where S is the unit normal to the surface at this point,

then because the factors multiply du, dv and dw respectively reduce to zero, the following determinated equations
should hold for any points of the surface of the fluid element:

(3-32) v s Ev+ s[cosl(% + E) + cosm2d” + cosn(j ) (7)
9dw
T] =

Here the value of the constant E must vary in accordance with the nature of solid with which the fluid is in
contact. The equations of (7) are an expression of conditions prevailing on the boundary condition of the surface
and constitute the so-called boundary conditions. The first terms of the left-hand-side of (7) are defined in (4)
for the expression that we seek for the sum of the momenta ofall interactions arising between the molecules on
the boundary and the fluid, while the second terms are the normal derivatives. Here, derivative terms on the
left-hand-side of (7) are expressible as v; ; + v;,;.

%'e

Eu+ ¢[cos 23 +cosm(‘;; + %) +cosn(%E

IE“

Ew—i—s[cosl(f’i—fﬂ-%;)—kcosm( +g§)+cosn

5.2 Cauchy’s two constants and tensor

( Definition ) We suppose that :
e a, b, c: the coordinate values of a molecule m in the rectanglar axesby z, y, z; e a+Aa, b+Ab, c+Ac: the
coordinates of an arbitrary molecule m ; e &, n, ¢ : the functions of a, b, ¢, which represent the infinitesimal
displacements, and are parallel to the axes of a molecule m ; e (z, y, z), (x + Az, y+ Ay, z+ Az) : the
coordinates of the molecules m and m in the new state of the system ; e r(1 +¢) : the distance between the
molecule m and m ; e ¢ : the dilatation of the length 7 in the path from the first state to the second, and
then we have x =a+ €, y=b+7n, z=c+(; e X, Y, Z: the quantities of the algebraic projections.
Cauchy deduces the three elements X, Y, Z in the sysytem of meterial points of elasticity after calculating
the interactions of molecules, the details of which are omitted for sake of brevity. Moreover we start with the
following equation of elasticity

X = (L Gy + (R )Gif + (Q+ DEE + 2R3 + 204,
(40)c —(R+(’) +(M+H)db +(P+I)dc +2P—5@5;+2Ragdb,
(Q+G)£§+(P+H)'£§'+ N+I)a§+2Q0c3a+2deac

( The invariants of the tensor are represented by the two constants of G and R. )
Cauchy says about the elements of tensor i.e. the invariable values : G, H, I, L,M.N,P,Q,R :

If we suppose that the molecules m,m’,m”,--- are originally allocated by the same way in relation to the
three planes made by the molecule m in parallel with the plane coordinates, then the values of these quantities
come to remain invariable, even though a series of changes are made among the three angles : a, 3, 7.

Cauchy considers symmetric tensor such that :
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(R+G( §+ 5 + 33) + 2R,
“6)c QY = (R+G) (53 + 53 + 53) + 2R, (47)c
Z=(R+G)( %5+ 5 + 55) + 2R,

_9¢ on o¢
" ac

Cauchy may be the inventor of the nomenclature® of “tensor”, and Poisson backs up the structure of symmetry
such that his idea reducing from 9 to 6 elements is due to Cauchy, as follows :

D’un autre cbté, il faut, pour lequilibre d’un parallélépipéde rectangle d’une étendue insensible, que
les neuf composantes des pressions appliquées a ses trois faces non-parallélles, se réduisent & six forces qui
peuvent étre inégales. Cette proposition est due & M.Cauchy, et se déduit de la considération des momens.
[17, §38, p.83]

Continuing, we define the density of molecules as: (48)c A = 55, where, M is the sum of the mass of molecules
contained in the sphere and V is the volume of the sphere. We the find expression for the two constants, G and
R:

50) G==+%[7 02" Jo m*f(r) cos® asin pdrdgdp = £2%2 [ r*f(r)dr, 8
(B0)c Y R = &% [27 1712 (1) cos? acos? Bsinpdrdadp = 222 [ 12 f(r)dr = +228 [ [ (r) = r°8(r) | ar ®)
When we calculate these values in the general case then (8) yieldsthe following expressions:
A= (L+G)%§+(R_G)%;}+(Q_G)%§]A, D= |(P+D2 +P+H)%|A,
(66)c {B=|(R-H)E+M+MF+(P-MED,  6Nc (E=[Q+O%E+Q+DEA,
C={@-DNE+(EP-NB+(N+NLK]A, F=[(R+M%+[R+G)Z|a,

By (41)¢ and % 5)c, we obtain the following reduced form: .
=2(R+G)% + (R - G)v 8 =2R+G) 8 +(R-Glv, £ =2R+G)E +(R-GC)y,

A
N
el i
D= (R+G)(ab %), E=(R+0)(%+%), £=R+0)(%+2)
For convenience’ sake, in the paticular case when both (41)¢ and (45)¢ hold, it is sufficient to have: (59)¢ (R+
G)A = 3k, (R-G)A =K, = 2R = k2K Equations (56)c and (57)c can be displayed in a more
convenient manner
Qé 1,94
AP E K%+ Ku k(% +
(60)c = F B D| = | —§+ k22 +

el

) ah(3+%

Kv 3k(22+% 9)
+5§> k% + Kv

Here, we must remark that the layout of symmetric tensor of (58)¢ or (60)c¢ is the Cauchy’s invention. If,
moreover, the condition (54)c : R = —G holds, then k& = 0 holds, thus yielding the following identities:
(61)¢c A=B=C=Kv, D=E=F=0.

5.2.1 Equilibrium and kinetic equation of fluid by Cauchy

In what follows, equations referring to Cauchy’s work on fluids will be designated in the form (-)¢- instead
by (-)c to distinguish these from equations appearing in his work on elasticity above.
( Verification of equations in fluid. )
By replacing (a, b, ¢) of (56)¢ and (57)¢ with (z, y, z), we derive an equvalent set of equations for fluid as for
elasticity. We omite for the sake of brev1ty the pricese processes in leading to the two constants or equations
and present the final form

aA oF

I’a?+ay+a + XA =0, A F FE 'a?} X
(16)c- (FE+E +82+vA=0, = F B D 5 | vA Y | =0

98 + 90+ 9C 1 ZzA =0, E D C 3 z

We follow the layout of Cauchy’s symmetric tensor as presented originally in (76)¢.. By replacing R + G and
2R with Cauchy’s usage C; = R+ G = £, C» = 2R = 52X we can reduce these equations of fluids in
motion and in equilibrium to the same form (46)¢ found for elasticity. However, here, we would like to adopt
not Cauchy’s Cy and Cs, but C; = R and Cy = G, because it is more rational to do so, as we can seen by

checking the reciprocal coincidence in Table 2.°

8The editors of Hamilton’s papers [6, p.237, footnote] say, ” The writer believes that what originally led him to use the terms
’modulus’ and ’amplitude,’” was a recollection of M. Cauchy’s nomenclature respecting the usual imaginaries of algebra.”
9Here, C1 and C2 are not the two-constants by ours but named temporarily by Cauchy himself.
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( Comparison with and commentd on Navier’s equation in elasticity. )

Cauchy states: for the reduction of the equations (79)¢- and (80)¢- to Navier’s equations( [12] ) to determine
the law of equilibrium and elasticity, it is necessary to assume such as the condition which we have mentioned
above : k = 2K. According to Cauchy’s assertion, if G = 0 then we get as the equations of equiliblium and
the kinetic equations in equal elasticity, then the tensor is equivalent with the tensor not only of the elastic but
also of € in Navier’s fluid equation (3) ( c.f. Table 4 ).

5.3 Poisson’s two constants and tensor

5.3.1 Principle and equations in elastic solid

Below, we deduce K and k according to Poisson[15, pp.368-405, §1-§16]. For brevity, we introduce the
following definitions:

azy + by + c(z1 — G1) = ¢, ¢ +pRt Lo = ¢,
'z +Vy + (2 - G) =9, &+ «/; d" =, (10)
a’//x1 + b//y1 + c"(z1 _ Cl) = 9’ ¢dw + '/)dw dw =g

We assume that a is the average molecular distance, w presents a finite surface area, and 7 is the average
number of molecules in w. We then get the pressure terms.

/ Y4
p= Z ¢+¢)C 2(1/)‘*'1/))( Y/ R= Z 9+9)C . (1)
By using his so-called effective tmnsfarmation,w, we get from (11) the following:
P=[F [ [(g+d) S S fr+ (g9 +h +1)g Y 4300 A,
Q=Jf 2" (h+h) S Sy fr+ (99 + hh' + WY 42 TIA, A :=cosB-sinf dB dy, (12)
R=[F [T 0+1)S L fr+ (g9 + hb' + N Iy dr’]A,

Later, Poisson recalculates this problem in another book [17]!!, in which he deduces the general principles
behind elasticity and fluid, and hence derives the representive two-constants with K and k for both elasticity
and fluids as follows:

P=|K(1+%)+k(3% + 4 4 2 c+[K%+k(dT’;+ﬂ)]c’+ K 4 k(e 4 42 ),
Q= |K(1+%4)+k d“+3‘§”y+ &)l + K‘f;“+k( +d“) c+ K4+ k(4 + )i, (13)
R= K(1+d"’)+lc du 4 odv g gdu)ier KdTu;+k(d—;“§+ﬁ) [KdW+k(d;;+ 2 )]e,

where, for abbreviation, he uses similarly K and k. Moreover, instead of a in (11), he introduces € as the
average distance between molecules, and from the following considerations:

e on voit que la pression N restera la méme en tous sens autour de ce point : elle sera normale & ce plan et
dirigée de dehors en dedans de A, ou de dedans en dehors, selon que sa value sera positive ou negative, [ = we
see that the pressure N orients omnidirectionally around an arbitrary point : A, and from outward into inward
or from inward to outward, according to that the value will be positive or negative, ( then we ought to consider
as 3 )|

e from the supposition of isotropy and homogeneity, 72 = 2?2 +y?+ 22, = Ez—: fr=33rfr, (cf. Poisson
[17], pp. 32-34) :

i _ r_fr _ 3d fr_2_7r 1 3d%fl
(3-8) P = 6e3 Z Jr 4ned’ - 3053 Z dr 15 Z 47re3r dr ’ (14)

et étendant les sommes ¥ & tous les points matériels du corps qui sont compris dans la sphére
d’activité de M. [ = and extending the summation ¥ to all the material points contained in the
active sphere by M. ] (cf. Poisson [17], p. 46) :

0L frr = Lfr 4 (¢¢ + Y’ +9e')—,%f—’ (117, p-42)).
1lIn Poisson [17], the title of the chaper 3 reads “Calcul des Pressions dans les Corps élastiques ; équations defferentielles de

l’équilibre et du mouvement de ces Corps.”
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5.3.2 Fluid pressure in motion

12 Poisson’s tensor of the pressures in a fluid, which he assumes compressible, reads as follows :

u w dy du
U, U, Uz ’ﬁ(%;- + %‘; ﬂ( d:r) p—«o gtt - Xt dt +2ﬁ
(7-7) ps w vz 5 = [3(‘“ + ‘fi—’;— p— oLt ; dx +2ﬂ__ 5(@ T dv) 7
W, W. Wa o

d d d d
p-afft - Gbt 4o .3(z§+7i§) ﬂ(é”fﬁ)

(k+Kla=8 (k-Ka=8, p=vt=K, = B+0 =2ka,

where xt is the density of the fluid around the point M, and vt is the pressure. Here K and k are the same
one as in (3-8) pe (=(14)) of the elastic body. The velocity and pressure are defined as follows :

dr _dy  dz _ dyt B+ 8 dxt (
a - et TEPTO T T a

which substituted into the equation yields

w =p, if incompressible.)

u = (u,v,w),

2 2

—,—‘;;:‘fi’t‘+udz+vdy+wdz, p()(~‘j[2tQE +B(_§+_E+EI

d _

d—%g = j§+ud”+v +wgg, = (7-9)ps p(Y — ‘fizt ) = +,8( +_’g +—;dz )s (15)
d’z __ d +

F= el Udy +wg. p(Z - G#) = +ﬁ( dz’i + dy’ dz§

5.4 Saint-Venant’s tensor

Saint-Venant!® explains that the object of his paper [19] is to simplfy the description and calculation of
molecular interactions without specifying the molecular function. We show Saint-Venant’s tensor, which from
the extract [19] seems to hint Stokes[21]. For this section we introduce the following parameters: &,7,( are
the velocity components at the arbitrary point m of a fluid in motion in the coordinate directions z,y, z
respectively, Pyz, Pyy, P;, are the normal pressures and P,,, P, Py, are the tangential pressures with sub-
index pair indicating the perpendicular plane and direction of decomposition. His expressions are:

PxI_Pyy Pzz_Pza: Pyy_Pzz Pyz Pzz _ Pa:y

(Dsv dE _dny — ordd _dny = =5
2£f-0) 2AX-P) 2AL-% L+E LK E L&
where, %(PM + Pyy + Pzz) - —(—§ + 3—3 + %) = m. From this last equation, we solve for normal pressure

respectively as follows: (2)gy Pz = 7+ 26%, Py =7+ 25—-3 P,, =7+ 25-—5 From (1)sv, we then
obtain the tangential pressures : P,,, P,, Py, which then reduces the tensor to symmetrlc form

d de | d ¢, d
P T T ™+ 25, 5(?5"’«1_3) e(3§+;§)
_ de | d d dn | d
;s ;2 ;.Cl = € ;5—1—(—& ™+ 2640 s(-&2+3§) , (16)
2 T P d¢ | d dn , d d
e( 4 4 &£ 5(;{2‘*’3&) ™+ 2e%

Saint-Venant says that by using his theory, we can obtain concordance with Navier, Cauchy and Poisson:
Si 'on remplace 7 par w — e( + 3; + ‘;’;’) et si Pon substitue les équations (2)sv et (3)sv dans
les relations connues entre les pressmns et les forces accélératrices, on obtient, en supposant € le méme en
tous les points du fluide, les équations différentielles données le 18 mars 1822 par M.Navier ( Mémoires de
UInstitut, t.V1 ), en 1828 par M.Cauchy ( Ezercices de Mathématiques, p.187 )'*, et le 12 octobre 1829 par
M.Poisson ( méme Mémoire, p.152 )*®*.  La quantité variable @ ou 7 n’est autre chose, dans les liquides,

que la pression normale moyenne en chaque point. {19, p.1243]

Saint-Venant’s paper[19] seems to provide Stokes a clue to the notion of tensor (20) and his principle, because
we can see the close correspondence by comparing'® Saint-Venant’s ¢;;:

ti; = (7r + 2ev; 5 — 'y)é'ij +7, (where, v =e(vij+vji)),
_ (1 d¢ dn  d¢ _ _
- ( (P$I+Pyy+Pzz)— 3(dl‘+d +E“>+25Uz,]—"7)5u+’y
= ( (Pz:r + Pyy + Pzz) - ’Uk k)51] + E(’Uz 7 + vy, ,) <~ 25’1),;,]'52"7‘ = S(’Ui‘j + Uj7i)5ij = '761;]' (17)

121n Poisson [17], the title of the chaper 7 rea,ds “Calcul des Pressions dans les Fluides en mouvement ; équations defferentielles
de ce mouvement.”

13Adhémar Jean Claude Barré de Saint-Venant (1797-1886).

4 Cauchy [1, p.226]

15Poisson (17, p.152] (7-9) ps.

18In our paper, we cite the source of the tensorial description of t;; of the tensor : of Poisson and Cauchy from C.Truesdell[23],
of Navier from G.Darrigol [4], and othewise by ourself or Schlichting[20].
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with Stokes’s t;; (21). Here, using (17), if we put!’” P, = wy = P:: = —p by assuming isotropy and
homogeneity, which Stokes similarly takes as his principle in § 5.5, then (17) is equivalent to Stokes’ t;; as
follows. For example, if we put € = p, and choose t,, component of Saint-Venant’s tensor form (16):

rezg = n (2o gem) -5 (G g = (5E s (H  w)
= -1)+26{g—§—§(d§+£+g—§—)}=~p+2e(j—i——) = P, of Stokes’ (20).

The other tensor components are likewise demonstrated but we omit the proof here for brevity. Moreover, Saint-
Venant proposes that putting 7 = w—¢ (—§ + w T -—5) = w-—evgx then t;;= (w—svk,k+25vi,j ——’y) Oij+y =
(w0 — vk k)0 +e(vi j +vj;). This form of hlS tensor plays the key role in common with Navier’s, Cauchy’s and
Poisson’s constants.

5.5 Stokes’ equations and tensor

In expressing the fluid equations in the following form

p 2 2 2
( Du X) g.r 'u'(gzu! (cilyg ‘ciizu! ) 13i dcfr (d: z;} ‘(111:) 0’
Dv Y d d? d? d? d (d dv dw
(12)s /’( )+l‘“(ﬁ+ﬁg+ﬁ)_§?ﬁ(_§+@+d_lz =0, (18)
Z E 2 2 2
p D‘w ) H(‘(ii:l;!u ltiiyw! zzw!) %ddz (gz g; dlzu) 0

Stokes points out the coincidence with Poisson with the correspondence:
w=p+3(K+k)(L+L+%) = Ve=Vp+4V (V- u).
Stokes also makes the comment.

The same equations have also been obtained by Navier in the case of an incompressible fluid
(Mém. de I’Académie, t. VI. p.389 )!® but his principles differ from mine still more than do
Poisson’s. [21, p.77, footnote]

Stokes says : observing that a(K + k) = 3, this value of w reduces Poisson’s equation (7-9) psy (=(15) in our
renumbering ) to the equation (12)s of this paper.  Stokes proposes the Stokes’ approximate equations in {21,
p.93]:

p X)+d:““(gﬁ+zf+z§)=0,

&2y . d%v du dv dw__o 19

(13)s pﬁ—y)'*‘dy-/i('d_,i.‘f‘f‘_i‘*‘ £3) =0, E‘F@'*‘E—. (19)
p(B -2+ Z - u(ly+ e+ Ty =0,

which are identical to (7-9) ps (=(15), adding that: “these equations are applicable to the determination of the
motion of water in pipes and canala, to the calculation of the effect of friction on the motions of tides and waves,

and such questions.”  ([21, p.93]). Here we shall trace his deduction with the Stokes tensor in the form:
d
P T3 T3 p—2p<ﬁ— ) —#(%+£) —-#(%4—%) d d d
T3 P, Ty = ——p(d;‘—F% p—QM(Q— ) —u(%%—j—’;’ ,where35=ﬁ+£+izﬂ (20)
> T P w u w
2o —u(f+g2) —p(mrd) po2u(e-

He remarks: “it may also be very easily provided directly that the value of 36, the rate of cubical dilatation®.
We find that Stokes’ tensor can be described compactly as follows:

—ti; = {p—2u(vij; — 8) +v}bi; — 7, <= where, = p(vi; + vj5:),
= {p - 2;“)1"]'}51']' + 7(—51']’ + 5,']- -1) < where, 2/.1,111"]'52‘]‘ = ,U,(U,‘,j + ”UJ,,‘)(S,’]* = 76,-]-,
2
= (p+2uy)bi; —v=(p+ MUk, k)0i; — p(vi; + vji) (21)
Therefore, the sign of —¢;; depends on the location of the tensor in the equation.!® Now, in considering the
coincidence of (16) with (19), we see Stokes’ tensor may have originated with Saint-Venant’s tensor. The article

by J.J.O’Connor and E.F.Robertson[14] point out this resemblance. Moreover, in 1846, Stokes has reported on
the then academic activities within hydromechanics (22}, in which he cites Saint-Venant(19]. It reads that, “the

17¢f.1.Imai (7, p.185).

18Navier[13].
19Schlichting writes Stokes’ tensor with the minus sign as follows : o;; = —pd;; +u(g—;"¥ + g—}’-) - %6,,‘ g—’é’: [20, p.58, in footnote].
3 i
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same subject has been considered in a quite different point of view by Barré de Saint-Venant, in a communication
to the French Academy in 1843, an abstruct of which is contained in the Comtes Rendus.” Therefore, Stokes
says : “I shall therefore suppose that for water, and by analogy for other incompressible fluids.” ([21, p.93]).
At any rate, we get (13)s (=(19)) with (20) and the following (22) :

Du apPy dTa aTy __ Du _
p B?—X)+dx+dy+dz -p(ﬁt—_x)+P_O’ P P T3 P di
P(Br-Y)+ 4+ 4= p(B-v)+Q=0, where, QI =|T 2T 5| @
d
Dw R T2 T1 P3 i

p ﬁ—Z)+%+%+%=p(%%~Z)+R=0’
6 Conclusions

It is called that “the two-constants theory” is the one now accepted for isotropic, homogeneous, linear elas-
ticity. (Darrigol[4, p.121]). We showed in our report :

e the original mathematical evidence to clarify the genealogy of tensor; of which,

e tensors and the corresponding equations as developed historically by Navier(1822), Cauchy(1828), Pois-
son(1829), Saint-Venant(1843) and Stokes(1849) ( sic. in order ) ; and

e the appearance of the notion of tensors especially in the work of Saint-Venant. It is our contention that
his was an epock-making contribution, by simplifying and identifying the concordance between these pioneers
of MDNS equations, for using only tensor without the microscopically descriptions, and providing context for
the contribution of Stokes.
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Table 4: Concurrences and variations of tensors

[1 [name

Jtensor (3x3)

[coefficient matrix (3 x 5) in equations

ti; = —€(0;up k& Uy g + Uys . .
(;-)J_4)NE (Biyth ke v + 50) We define the coefficient matrix in elasticity : C% as follows :
C% . the coefficient of
3ﬂ+y_v+yg) (g+d_v dw 4 du T 2. 57w 8% 8% 82
dx dy dz dy dx dx dz 8—‘7" 3_1-21_ ﬁ ax;; az{;uz
—£ d_“+4£ EE+3¢_"+d_“-' ﬂ_&_d_“.' 3 . 32 50V 2
. dy dx dx dy dz dz dy Q_g d_g. a_g. 9w %y
Navier dw du dv dw du dv dw 321 ay 6'12 6!"22 8z9y ’
1-1 elasticit ax + a—;) d= + 2;) (3; + dy +3'd—,) *w *w B*w %u 3%y
Y du du dv dw du - 9z2 ay2 922 920z 9dydz
win wLE sz then
— au av av ay fw
=€ dy+d:c 6+2d} dz T dy ) 311 2 2
%_‘_:_u dv 4 dw e+ 28w 6nye = C&= —e| 1 3 1 2 2 = (3)
2o Faw 4 113 2 2
where e=§—‘x‘+:—;+%‘—;’—
ti; = (P — euk,k)bij — e(ui,; + uj,i)
3) Samely, we define the coefficient matrix in fluid : C{.
Lo Navier e — 25% - e(j—; + g—;) - 5(% + j—'z‘ , which contains p in (1,1)-, (2,2)- and (3,3)-element.
“*| Aiuid _5(%.’_& e'—25% ..5(Q+tcil_w , p—3 —€¢ - -2 -2
_5(4_34_ d_uz) — (g ; dw) 5:_253_:;:) @B = cf= —& p—-3 -¢ -2 -2
L dz/ dx d dd: ddy dz —c —eg p—3¢ — 2 —2¢e
where ¢ =p_5(d_:+d_:;+_l:)
tij = Avg k0ij + p(vij + v54) L R Q 2R 2
Cauch , , ) Q
syzltlecmy (69)0(2; k({3 , 8 k(3¢ . € (46)c = C% = R M P 2P 2R
2 (contains kaa + Kv 5(35 + ?)‘3) 2\%a T Bc Q P N 20 2P
both E(%+21) x2+ky E(224 , - R :1‘ é i g g
elasticity k(@ P k(2 3 3 ’
and Aaid) HETE 5(52+5§ k2 4+ K 113 2 2
where v = 2 4 97 4 & where P=Q=R, L=A=N, L=3R
02((5 ) (6)P= 2 2 2 2 2 2
tij = — 5 (05uk k + ui,; + uj, _d%u _ 2(d 2.d d 1d 1d
8 7T Gtk s 4 X=f - (Ly+3gn+ 38 + 358 +559),
du du | dv dw | du y==Lo _g2(dy 2% 24w | 1d% | 1d%
pPomen | [er2l g g S U L Tk ko)
~ ici —at du  dy dy dv | dw —d 2(d 2d 2d 1d 1d
elasticity 3 ddy+‘fiiz €d+2d§ %t :(i;; ; Z="gGF -a (ﬁ+§d:;z+§dy;z+5d_x¥+§7ﬁ{)’
=+ d—;’+d-“y’ e+28¢ .31 1 2 2
where e= 4du 4 dv 4 duw = Ct = ~% 1 3 1 2 2
dr T dy T dz 113 2 2
w+B8 B B 0 0
. f_
Li; = —pbi; + Avg x8i5 + p(vi,; + vj,i) 9es = Cr g g+w +g g 8
("7 ps According to Stokes : if we put
ﬁﬂ+d_‘” B(d_"+ﬂ) +2ﬁd_“ d
3.2 Poisson :‘ :I dy d dx dzx w=p+ (K + k)(% + 3—; + '3%)
uid Bgr+92) nr28 B(2+2) |, pr% 8 8§ ¢
a d d d d S - 4
m+20%2 g4 g a4+ 42) = Ccl= B p+—f~45 73
wherewzp—a%_%% B B P+T 3 3
= (12)s (= (18)).
Remark : a(K + k) = 8.
tij = (%(Pzz ~+ Pyy + Pz;) — %vk_k)é,-,- +€(v,-,,- +1)j,,')
= (—p — vk )b + (i j +vj,0)
d d d d d
- d d d d d
4 |Venant € 3_5 +a@ T+ 253'3 5(7;1 + FE ’ non description in [19].
; d d d d d
fluid f(E+%) (R+%) nrosk
where 7= %(Pzz+Pyy+Pzz) - 2;(55+g-3+gg)
- 26 (d d d
=-p-Z(L£+8+%) (e
tij = (—p — vk k)01; + p(viy + v54),
tensor = —1 x —p+ 3 u & &
p_zu(d_u_g) _M(QJF@) _u(d_w+@) (12)s = Cl= 2 ap %
5 Stokes dx vy T dz dz S T — K P+ 3 4# 3 3
fluid —u(d+ 2 p—2u("—;—6) —u(%+d—‘;) (20) R 2
= .
—ﬂ(‘i—’;’+§—l‘ _“(%+%)p—2”(%—5) Remark : $u=2u(1 - 3)
where 36 = Z—; + g—; + ‘Z—':— (20)




