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ABSTRACT
For $n$ positive definite operators $A_{1},$ $\cdots$ , $A_{n}$ , Ando-Li-Mathias defined geo-

metric mean of n-operators $\emptyset(A_{1}, -- , A_{n})$ by symmetric procedure. It has
many nice properties, and is studied by many authors. But the process is
so complicated to compute. In this paper, we shall attempt to make a new
construction of geometric mean of n-operators which we can compute it easier
than geometric mean by Ando-Li-Mathias.

This report is based on the following paper:
[JLY] C. Jung, H. Lee and T. Yamazaki, On a new construction of geometric
mean of n-operators, Linear Algebra Appl., 431 (2009), 1477-1488.

1. INTRODUCTION

In 1975, theory of operator means has been introduced in [14], where operator
means a bounded linear operators on a complex Hilbert space $\mathcal{H}$ . In the operator
case, arithmetic and harmonic means are easily defined (whose definitions will be
introduced later), but since operators are not commutative, geometric mean is not
easy to define. In [14], geometric mean of two operators is defined as follows: $Let$

$A$ and $B$ be positive invertible operators. Then the geometric mean $A\# B$ between $A$

and $B$ is defined bv
$A\# B=A^{1/2}(A^{-1/2}BA^{-1/2})^{1/2}A^{1/2}$ .

If $A$ and $B$ are not invertible, we consider geometric mean $A\# B$ as $\lim_{\epsilon\searrow 0}(A+\in I)\#(B+\in I)$ ,

strongly. As a more important result, KubxAndo [10] obtained that every operator
mean of two positive operators has one to one connection with an operator mono-
tone function. Hence theory of operator means is closely related to one of operator
monotone function.

To extend operator means of two operators to more than three operators case is
quite natural, and many authors have discussed the problem. Of course, arithmetic
and harmonic means of n-operators are easily defined as follows: Let $A_{1},$

$\cdots,$
$A_{n}$ be

positive operators. Then arithmetic mean $\mathfrak{U}(A_{1_{\dot{\text{・}}}}\cdots , A_{n})$ of $A_{1},$ $\cdots,$
$A_{n}$ is defined as

follows:
$\mathfrak{U}(A_{1}, \cdots, A_{n})=\frac{A_{1}+\cdots+A_{n}}{n}$ .
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If $A_{1},$
$\cdots,$

$A_{n}$ are all invertible, we can define harmonic mean $\mathfrak{H}(A_{1}, \cdots, A_{n})$ by
$\mathfrak{H}(A_{1}, \cdots, A_{n})=\mathfrak{U}(A_{1}^{-1}, \cdots, A_{n}^{-1})^{-1}$ .

But to define geometric mean of n-operators is not easy. Recently, some authors have
defined it by several way, for example [1, 16] and also see [3], especially, Ando-Li-
Mathias [3] have given a very good definition of geometric mean of n-operators. It
needs so-called symmetric procedure as follows:
$n=2$ case. Define geometric mean $\mathfrak{G}(A, B)$ by

6 $(A, B)=A\# B=A^{1/2}(A^{-1/2}BA^{-1/2})^{1/2}A^{1/2}$ .

$n=3$ case. Let $A_{n}=B_{n-1}\# C_{n-1},$ $B_{n}=C_{n-}$ itt $A_{n-}i,$ $C_{n}=A_{n-1}\# B_{n-1}$ . Then
there exist $\lim_{narrow\infty}A_{n},\lim_{narrow\infty}B_{n},\lim_{narrow\infty}C_{n}$ in the Thompson metric (Thompson metric will
be introduced later), and all the same. Hence we can define the geometric mean
$\emptyset(A, B, C)$ by

$\emptyset(A, B, C)=\lim_{narrow\infty}A_{n}=\lim_{narrow\infty}B_{n}=\lim_{narrow\infty}C_{n}$ .

$n=4$ case. Let $A_{n}=G(B_{n-1}, C_{n-1}, D_{n-1}),$ $B_{n}=G(A_{n-1}, C_{n-1}, D_{n-1}),$ $C_{n}=$

$G(A_{n-1}, B_{n-1}, D_{n-1}),$ $D_{n}=G(A_{n-1}, B_{n-1}, C_{n-1})$ . Then there exist all limits of op-
erator sequences $\{A_{n}\},$ $\{B_{n}\},$ $\{C_{n}\},$ $\{D_{n}\}$ in the Thompson metric, and all the same.
We define the geometric mean $\emptyset(A, B, C, D)$ by

$\mathfrak{G}(A, B, C, D)=narrow\infty 1inuA_{n}=\lim_{narrow\infty}B_{n}=\lim_{narrow\infty}C_{n}=\lim_{narrow\infty}D_{n}$ .

We can define $\emptyset(A_{1}, \cdots, A_{n})$ in the case $n\geq 5$ by the same way.

It is a very natural definition and interesting. But it is not good for concrete
computation since it requires an enormous calculation. In this paper, we shall discuss
a new construction of geometric mean of n-operators which can be obtained easier
than the geometric mean by Ando-Li-Mathias. This paper consists the following
sections; In section 2, we shall introduce some properties of geometric mean by $And\mathfrak{c}\succ$

Li-Mathias and Thompson metric, briefly. In section 3, we shall introduce a new
idea for construction of geometric mean of n-operators. In section 4, we shall discuss
relations between arithmetic mean and our idea defined in section 3. Lastly, we will
construct a new geometric mean of 4-operators which can be calculate easier than
that of Ando-Li-Mathias.

2. PRIMARILY

In what follows, a capital letter means a bounded linear operators on a complex
Hilbert space $\mathcal{H}$ . An operator is said to be positive (resp. strictly positive) if and
only if $\{Ax, x\}\geq 0$ $($ resp. $\langle Ax,$ $x\}>0)$ for all $x\in \mathcal{H}$ . For self-adjoint operators $A$ and
$B,$ $A\geq B$ means that $A-B$ is positive.

Firstly, we shall introduce some basic properties of geometric mean by Ando-Li-
Mathias as follows: Let $A_{1},$ $\cdots,$

$A_{n}$ be positive operators. Then the following proper-
ties (PI)-(PIO) hold [3]:
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(Pl) If $A_{1},$ $\cdots.A_{n}$ commute with each other, then
$\mathfrak{G}(A_{1}, \cdots, A_{n})=(A_{1}\cdots A_{n})^{1/n}$ .

(P2) Joint homogeneity.

6 $(a_{1}A_{1}, \cdots , a_{n}A_{n})=(a_{1} . . .a_{n})^{1/n}\emptyset(A_{1}, \cdots, A_{n})$

for positive numbers $a_{i}>0(i=1, \cdots, n)$ .
(P3) Permutation invariance. For any permutation $\pi$ ,

6 $(A_{1}, \cdots, A_{n})=\emptyset(A_{\pi(1)}, \cdots, A_{\pi(n)})$ .

(P4) Monotonicity. For each $i=1,2,$ $\cdots,$ $n$ , if $B_{i}\leq A_{i}$ , then

6 $(B_{1}, \cdots, B_{n})\leq\emptyset(A_{1}, \cdots.A_{n})$ .

(P5) Continuity from above. For each $i=1,2,$ $\cdots,$ $n$ , if operator sequences $\{A_{i}^{(k)}\}_{k=1}^{\infty}$

are monotone decreasing with $A_{i}^{(k)}\searrow A_{i}$ as $karrow\infty$ , then

6 $(A_{1}^{(k)}, \cdots.A_{n}^{(k)})\searrow\emptyset(A_{1}, \cdots, A_{n})$ a$s$ $karrow\infty$ .

(P6) Congruence invariance. For any invertible operator $S$ ,

$\emptyset(S^{*}A_{1}S, \cdots, S^{*}A_{n}S)=S^{*}\emptyset(A_{1}, \cdots, A_{n})S$.

(P7) Joint concavity.
$\emptyset(\lambda A_{1}+(1-\lambda)A_{1}’, \cdots, \lambda A_{n}+(1-\lambda)A_{n}’)$

$\geq\lambda\emptyset(A_{1}, \cdots, A_{n})+(1-\lambda)\mathfrak{G}(A_{1}’, \cdots, A_{n}’)$ for $0\leq\lambda\leq 1$ .

(P8) Self-duality.

6 $(A_{1}^{-1}, \cdots, A_{n}^{-1})^{-1}=\emptyset(A_{1}, \cdots, A_{n})$ .

(P9) Determinant identity.

$\det(\emptyset(A_{1}, \cdots, A_{n}))=\{(\det A_{1})\cdots(\det A_{n})\}^{1/n}$ .

(P10) Arithmetic-geometric-harmonic means inequality.

fi $(A_{1}, \cdots, A_{n})\leq\emptyset(A_{1}, \cdots, A_{n})\leq \mathfrak{U}(A_{1}, \cdots, A_{n})$ .

We shall define geometric mean which satisfies the two conditions: (i) not require an
enormous calculation, and (ii) satisfying all properties as above.

Next, we shall introduce an important theory of the cone of positive operators,
briefly. For positive operators $A$ and $B$ , Thompson metric $d(A, B)$ ([15]) between $A$

and $B$ is defined by
$d(A, B)= \max\{\log\Lambda I(A\backslash B), \log\Lambda I(B\backslash A)\}$,

where $\Lambda l(A\backslash B)=\inf\{\lambda>0;A\leq\lambda B\}=\Vert B^{-1/2}AB^{-1/2}\Vert$ . We note that the cone of
positive operators will be complete in Thompson metric ([15]). By the definition of
Thompson metric, we can obtain

(2.1) $d(XAX.X^{*}BX)=d(A, B)$ for any invertible operator $X$ .
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The following properties are important [4, 11]:

(2.2) $d(A_{1}\# A, B_{1}\# B)\leq(1-t)d(A_{1}, B_{1})+td(A_{2}, B_{2})$ ,

where $A\# tB$ means weighted geometric mean defined by
$A\#\iota^{B}=A^{1/2}(A^{-1/2}BA^{-1/2})^{t}A^{1/2}$ .

3. A NEW CONSTRUCTION OF GEOMETRIC MEAN

In this section, we shall consider an operator mean of n-operators which is defined
by only using geometric mean of 2-operators. Throughout the paper, we will consider
two operators as follows: Let $A_{1},$ $\cdots,$

$A_{n}$ be positive operators on a Hilbert space $\mathcal{H}$ ,
and $\mathcal{K}$ be a its direct sum, that is,

$\mathcal{K}=\cdots\oplus \mathcal{H}\oplus$ .

Let $U$ be a bilateral shift and $P$ be a positive operator on $\mathcal{K}$ defined by

(3.1) $U=($
$I$

$0I$
$0.$

$\cdot..\backslash /$ and $P=($

$A_{n-1}$

$A_{n}$

$A_{2}$
$...)$

on $\mathcal{K}=\cdots\oplus \mathcal{H}\oplus$ , where

Theorem 1. Let $A_{1},$ $\cdots,$ $A_{n}$ be positive operators on a Hilbert space $\mathcal{H}$ , and let $U$

and $P$ be defined in (3.1). Assume
$P_{i}=P_{i-}i\# UP_{i-1}U^{*}$ and $P_{0}=P$.

Then there exists a positive operator $L$ on $\mathcal{H}$ such that

$\lim_{iarrow\infty}P_{i}=I\otimes L$ .

in the Thompson metric.

To prove Theorem 1, we prepare the following notion of a kind of convex set.

Deflnition 1 (Convex set under geometric mean). Let $\mathcal{M}$ be a subset of all positive
operators. $\mathcal{M}$ is said to be a convex set under geometric mean if

$A,$ $B\in \mathcal{M}$ implies $A\# tB\in.\mathcal{M}$ for all $t\in[0,1]$ .

For positive operators $A$ and $B,$ $[A, B]=\{A\# tB;t\in[0,1]\}$ is a typical example
of convex set under geometric mean. For positive operators $A_{1},$ $\cdots$ , $A_{n},$ $[A_{1}, \cdots, A_{n}]$

means a convex set under geometric mean which is generated by $\{A_{1}, \cdots, A_{n}\}$ .

Proof of Theorem 1. Noting that by concrete computation, we have

$UPU^{*}=$ diag$(\cdots, A_{n-1},$ .

Then we have $P=U^{n}PU^{n*}$ .
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Bv the definition of $P_{l}$ , we have

$[P_{1}, UP_{1}U^{1}, \cdots , U^{n-1}P_{1}U^{n-1^{*}}]\subset[P, UPU^{*}.\cdots. U^{n-1}PU^{n-1} ‘]$ .

Hence there exists a convex set under geometric mean $\mathcal{M}$ such that

$\mathcal{M}=\bigcap_{i=0}^{\infty}[P_{i}, UP_{i}U^{*}, \cdots, U^{n-1}P_{i}U^{n-1^{*}}]$ .

Here we shall prove that $\mathcal{M}$ is a singleton of a positive operator. To prove this, we
have to prove

$\lim_{iarrow\infty}d(P_{i}, U^{k}P_{i}U^{k^{s}})=0$ for all $k=1,2,$ $\cdots,$ $n-1$ ,

since the cone of positive definite operators is complete under the Thompson metric

Since $U$ is unitary, (2.1) and (2.2), we have

$\sum_{k=1}^{n-1}\alpha_{k}d(P_{1}, U^{k}P_{1}U^{k^{*}})=\sum_{k=1}^{n-1}\alpha_{k}d(P\# UPU^{*}, U^{k}PU^{k}‘\# U^{k+1}PU^{k+1} ‘)$

$\leq\sum_{k=1}^{n-1}\frac{\alpha_{k}}{2}\{d(P, U^{k+1}PU^{k+1^{*}})+d(UPU^{*}, U^{k}PU^{k^{*}})\}$

$= \sum_{k=1}^{n-1}\frac{\alpha_{k}}{2}\{d(P, U^{k+1}PU^{k+1^{*}})+d(P, U^{k-1}PU^{k-1^{*}})\}$

$= \frac{\alpha_{2}}{2}d$( $P,$ UPU ) $+ \sum_{k=2}^{n-2}\frac{\alpha_{k-1}+\alpha_{k+1}}{2}d(P, U^{k}PU^{k^{*}})$

$+ \frac{Cf_{n-2}}{2}d(P, U^{n-1}PU^{n-1^{*}})$ ,

for positive numbers $\alpha_{1},$ $\cdots.\alpha_{n-1}$ .
By this procedure, the $n-1$-tuple of coefficients $(\alpha_{1}, \cdots , \alpha_{n-1})$ changes into

$( \frac{(y_{2}}{2}\cdot\frac{\alpha_{1}+\alpha_{3}}{2},$ $\frac{\alpha_{2}+\alpha_{4}}{2}.\cdots,$ $\frac{\alpha_{n-3}+\alpha_{n-1}}{2}\frac{\alpha_{n-2}}{2})$ .

This operation can be represented by an $n-1-by-n-1$ matrix $A$ as follows:

$A= \frac{1}{2}(\begin{array}{lllll}0 1 l 0 1 1 0 .\cdot. .1 1 1.0\end{array})$ .

Hence we only prove $\lim_{iarrow\infty}A^{i}=0$ .
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Define an $n-1-by-n-1$ matrix $T$ by

$T=$ $(^{0}$

$01$

$01$

$1$

.
.

$\cdot$

.

$01)$ .

We note that the numerical radius $w(T)$ of $T$ is known as $w(T)= \cos\frac{\pi}{n+1}<1$ (see
[13], also [8, p. 8, Example] $)$ . Moreover,

$w(A) \leq\frac{1}{2}(w(T)+w(T^{*}))=w(T)=\cos\frac{\pi}{n+1}$ .

Hence we have

$\frac{1}{2}\Vert A^{i}\Vert\leq w(A^{i})\leq(w(A))^{i}\leq\cos^{i}\frac{\pi}{n+1}arrow 0$ $(as iarrow\infty)$ ,

that is, $\lim_{iarrow\infty}A^{i}=0$ . Hence $\mathcal{M}$ is a singleton.

Next, we shall prove $\lim_{iarrow\infty}P_{i}=I\otimes L$ . Since $\mathcal{M}$ is a singleton, there exists a positive
operator $X$ on $\mathcal{K}$ such that $\mathcal{M}=\{X\}$ and

$\lim_{iarrow\infty}P_{i}=\lim_{iarrow\infty}UP_{i}U^{*}=\cdots=iarrow\infty 1in1U^{n-1}P_{i}U^{n-1^{*}}=X$ .

Since $U$ is a bilateral shift and every $U^{k}P_{i}U^{k^{*}}$ is diagonal for $k=0,1,2,$ $\cdots$ , $n-1,$ $X$

must be the form $X=I\otimes L$ . It completes the proof. $\square$

As in the proof, Theorem 1 can be rewritten as the following form:

Theorem 1’. Let $A_{1},$ $\cdots$ , $A_{n}$ be positive operators on a Hilbert space $\mathcal{H}$ . Assume
$A_{k}^{(i)}=A_{k}^{(i-1)}\# A_{k+1}^{(i-1)}$ and $A_{n}^{(i)}=A_{n}^{(i-1)}\# A_{1}^{(i-1)}$ .

Then there exists a positive operator $L$ on $\mathcal{H}$ such that

$iarrow\infty 1in1A_{k}^{(i)}=L$ for all $k=1,2,$ $\cdots,$ $n$

in the Thompson metric.

In what follows, for positive operators $A_{1},$ $\cdots,$
$A_{n}$ , we denote the above limit $L$ by

$L(A_{1}, \cdots, A_{n})$ . Of course, for positive operators $A,$ $B,$ $C,$ $\emptyset(A, B, C)=L(A, B, C)$ .
Next, we shall check that $\mathcal{L}(A_{1}, \cdots, A_{n})$ satisfies properties (Pl) $-(P10)$ which is
introduced in the second section. Obviously, $L(A_{1}, \cdots, A_{n})$ satisfies properties (P4)
$-(P8)$ . We obtain that $L(A_{1}, \cdots, A_{n})$ satisfies (Pl), (P2) and (P9) by the following
proposition:

Proposition 2. Let $A_{1},$ $\cdots,$
$A_{n}$ be positive operators such that they commute with

each other. Then $L(A_{1}, \cdots, A_{n})=(A_{1}\cdots A_{n})^{1/n}$ .
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Proof. Let $P$ and $U$ be defined in (3.1). Since $P=$ diag$(\cdots A_{n}.$ ,

$UPU^{r}=$ diag$(\cdots A_{n-1}.$ . Hence we have

$P_{1}=$ diag$(\cdots, A_{n}\# A_{n-1}, Ai\# A_{n}, A_{2}\# A_{1}, \cdots.A_{n}\# A_{n-1}. \cdots)$

$=$ diag $(\cdots, \sqrt{A_{n}A_{n-1}}. \sqrt{A_{1}A_{n}}. \sqrt{A_{2}A_{1}}, \cdots . \sqrt{A_{n}A_{n-1}}. \cdots)$.

Here we note that $\sqrt{A_{1}A_{n}}\sqrt{A_{2}A_{1}}\cdots\sqrt{A_{n}A_{n-1}}=A_{1}\cdots A_{n}$ holds. Then, for

$\lim_{iarrow\infty}P_{i}=$ diag$(\cdots, L(A_{1}, \cdots, A_{n}), L(A_{1}, \cdots, A_{n}).L(A_{1}. \cdots, A_{n}), \cdots)$ ,

we have
$L(A_{1}. \cdots.A_{n})^{n}=A_{1}\cdots A_{n}$ ,

that is, $L(A_{1}, \cdots.A_{n})=(A_{1}\cdots A_{n})^{1/n}$ . $\square$

We shall discuss (P3) and (P10) in the later.

4. ARITHMETIC AND HARMONIC MEANS

In the previous section, we consider a kind of operator mean via geometric mean
of 2-operators. But we have not known whether it is the same of geometric mean by
Ando-Li-Mathias or not. In this section, we will give a new construction of arithmetic
mean of n-operators by using the same method of the previous section.

Theorem 3. Let $A_{1},$ $\cdots,$ $A_{n}$ be positive operators on a Hilbert space $\mathcal{H}$ . Let $U$ and
$P$ be defined in (3.1). Assume

$P_{i}= \frac{P_{i-1}+UP_{i-}iU^{*}}{2}$ and $P_{0}=P$.

Then
$\lim_{iarrow\infty}P_{i}=I\otimes\frac{A_{1}+A_{2}+\cdots+A_{n}}{n}$

in the norm topology.

Proof. Noting that by concrete computation, we have

$UPU^{*}=diag(\cdots, A_{n-1}.$ .

Hence we have $P=U^{n}PU^{n*}$ .

Let
$P_{i}=\alpha_{1}^{(i)}P+n_{2}^{(i)}UPU^{*}+\cdots+\alpha_{n}^{(i)}U^{n-1}PU^{n-1^{*}}$ .

Then
$UP_{i}U^{*}=(\gamma_{n}^{(i)}P+\alpha_{1}^{(i)}UPU^{*}+\cdots+\alpha_{n-1}^{(i)}U^{n-1}PU^{n-1^{*}}$ ,

and we have

$P_{i+1}= \frac{P_{i}+UP_{i}U^{*}}{2}$

$= \frac{\alpha_{n}^{(i)}+ry_{1}^{(i)}}{2}P+\frac{\alpha_{1}^{(i)}+\alpha_{2}^{(i)}}{2}UPU^{*}+\cdots+\frac{(J_{n-1}’+CV_{n}(i)(i)}{2}U^{n-1}PU^{n-1^{*}}$ .
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By this procedure, the n-tuple of coefficients $(\alpha_{1}^{(i)}, \cdots , \alpha_{n}^{(i)})$ changes int $0$

$( \frac{\alpha_{n}^{(i)}+\zeta x_{1}^{(i)}}{2}\dot{\mathcal{Y}}\frac{(v_{1}^{(i)}+\alpha_{2}^{(i)}}{2},$

$\cdots,$ $\frac{\alpha_{n-1}^{(j)}+c\nu_{n}^{(i)}}{2})$ .

This operation can be represented by an $n-by-n$ matrix $A$ as follows:

$A= \frac{1}{2}$ $(^{1}1$

$01$

.

$0^{\cdot}$

$..\cdot.\cdot$

$01^{\cdot}$ $00:11:)= \frac{I+N}{2}$ ,

where $N$ is a unitary matrix such that

$N=(\begin{array}{llllll} \end{array})$ .

Let $U$ be an $n-by-n$ unitary matrix with the following form:

$U= \frac{1}{\sqrt{n}}(\begin{array}{ll}1 \vdots l *\end{array})$

such that $U^{*}NU=$ diag $(1, \omega, \cdots , \omega^{n-1})$ , where $\omega$ means the n-th root of 1 with $\omega\neq 1$ .
Then

$A^{i}=( \frac{I+N}{2})^{i}$

$=U(\begin{array}{llll}1 (\frac{1+\omega}{2})^{i} \ddots (\frac{1+(v^{1-1}}{2})^{i}\end{array})U^{*}$

$arrow U(\begin{array}{llll}1 0 \ddots 0\end{array})U^{*}= \frac{1}{n}(\begin{array}{lll}1 \cdots 1\vdots \ddots \vdots 1 \cdots l\end{array})$ $(as iarrow\infty)$ .

Hence for each $k=1,2,$ $\cdots,$ $n$ , we have

$i arrow\infty 1in1\alpha_{k}^{(i)}=\frac{\alpha_{1}^{(0)}+\alpha_{2}^{(0)}+\cdots+\alpha_{n}^{(0)}}{n}$ .
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Here, by $P_{0}=P$ , we have $\alpha_{k}^{(0)}=\{01$ $(k\neq(k=1)1)$ , and

$\lim_{iarrow\infty}\alpha_{k}^{(i)}=\frac{1}{n}$ for all $k=1,2,$ $\cdots$ , $n$ .

Hence we Iiave
$\lim_{iarrow\infty}P_{i}=\frac{1}{n}(P+UPU^{*}+U^{2}PU^{2^{*}}+\cdots+U^{n-1}PU^{n-1^{*}})=I\otimes\frac{A_{1}+\cdots+A_{n}}{n}$ ,

that is, the proof is complete. 口

By the same way, we can define harmonic mean $\mathfrak{H}(A_{1}, \cdots , A_{n})$ of n-operators.
Moreover we can see that $L(A_{1}, \cdots, A_{n})$ satisfies (P10) (arithmetic-geometric-harmonic
means inequality) by using

$\mathfrak{H}(A, B)\leq A\# B\leq \mathfrak{U}(A, B)$

for all positive invertible operators $A$ and $B$ .
Theorem 3 can be rewritten as the following form, too:

Theorem 3’. Let $A_{1},$ $\cdots,$
$A_{n}$ be positive operators on a Hilbert space $\mathcal{H}$ . Assume

$A_{k}^{(i)}= \frac{A_{k}^{(i-1)}+A_{k+1}^{(i-1)}}{2}$ and $A_{n}^{(i)}= \frac{A_{n}^{(i-1)}+A_{1}^{(i-1)}}{2}$ .

Then
$i arrow\infty 1in)A_{k}^{(i)}=\frac{A_{1}+\cdots+A_{n}}{n}$ for all $k=1,2,$ $\cdots,$ $n$

in the norm topology.

5. ON PERMUTATION INVARIANT

We have already obtained that $L(A_{1}, \cdots, A_{n})$ satisfies properties (PI)-(PIO) except
(P3). We hope that $L(A_{1}, \cdots , A_{n})$ satisfies (P3), i.e., permutation invariant. But
there is a counterexample for the problem as follows:

Theorem 4. There exist positive matrices $A,$ $B,$ $C$ and $D$ such that
$L(A, B, C, D)$ , $L(A, B, D, C)$ and $L(A.C, B, D)$

are all different from each other.

Proof. Let $U(\theta)$ be a unitary matrix defined by

$U(\theta)=(\begin{array}{ll}cos\theta -sin\thetasin\theta cos\theta\end{array})$ ,
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and let $A,$ $B,$ $C$ and $D$ be positive matrices as follows:

$A=(\begin{array}{ll}l 00 1\end{array})$ ,

$B=U( \frac{\pi}{6})(\begin{array}{ll}1 00 100\end{array})U( \frac{\pi}{6})^{*}$ ,

$C=U( \frac{10}{9}\pi)(\begin{array}{ll}1 00 20\end{array})U( \frac{10}{9}\pi)^{*}$ ,

$D=U( \frac{7}{9}\pi)(\begin{array}{ll}10 00 4\end{array})U( \frac{7}{9}\pi)^{*}$ .

Then concrete computing by MATLAB says that

$L(A, B, C, D)=(\begin{array}{ll}7.830092 1.6140801.614080 2.480581\end{array})$ ,

$L(A, B, D, C)=(\begin{array}{ll}8.20l878 1.8824471.882447 2.482545\end{array})$ ,

$L(A, C, B, D)=(\begin{array}{ll}7.773366 l.6757091.675709 2534766\end{array})$ .

Hence the proof is complete. 口

Since $L(A_{1}, \cdots, A_{n})$ does not satisfy permutation invariant, we obtain $\emptyset(A_{1}, \cdots, A_{n})\neq$

$L(A_{1}, \cdots , A_{n})$ for $n\geq 4$ , generally. Moreover we obtain the following fact:

Theorem 5. There exist positive matrices $A,$ $B,$ $C$ and $D$ such that
(5.1) 6 $(A, B, C, D)=6(A\# B, B\# C, C\# D, D\# A)$

does not hold.

Proof. If (5.1) holds for all positive operators, since the definition of $L(A, B, C, D)$ ,
we have

6 $(A, B, C, D)=6(A\# B, B\# C, C\# D, D\# A)$

$=6((A\# B)\#(B\# C), (B\# C)\#(C\# D), (C\# D)\#(D\# A), (D\# A)\#(A\# B))$

$=\emptyset(L(A, B, C, D), L(A, B, C, D), L(A, B, C, D), L(A, B, C, D))$

$=L(A, B, C, D)$ .

Hence $L(A, B, C, D)$ satisfies (P3). It is a contradiction to Theorem 4. $\square$

Hence we have
$\mathfrak{G}(A_{1}, \cdots, A_{n})\neq 6(A_{1}\# A_{2}, \cdots, A_{n}\# A_{1})$

for $n\geq 4$ , generally.

At the end of the paper, we construct a new geometric mean of 4-operators which
satisfies (Pl)$-(P10)$ .
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Definition 2. Let $A,$ $B,$ $C$ and $D$ be positive operators. The geometric mean
$\mathfrak{G}L(A. B, C, D)$ is defined $|_{J\backslash }$

,

$\emptyset L(A, B, C, D)=L(L(A, B, C, D), \mathcal{L}(A, B. D, C), L(A, C, B, D))$ .

Theorem 6. Let $A,$ $B,$ $C$ and $D$ be positive operators. The geometric mean
$6L(A, B, C, D)$ satisfies $(Pl)-(P10)$ .

Proof. We have only to prove that $\emptyset L(A, B, C, D)$ satisfies (P3). By the definition of
$L(A, B. C, D)$ , it invariants under some permutation, exactly, rotation and reflection.
So we only consider the case $\mathcal{L}(A, B, C, D),$ $L(A, B, D, C)$ and $\mathcal{L}(A, C, B, D)$ . Since
$\mathcal{L}(X, Y, Z)=\mathfrak{G}(X, Y, Z)$ for each positive operators $X,$ $Y$ , and $Z,$ $\mathcal{L}(X, Y, Z)$ satisfies
(P3). Hence $\emptyset L(A, B, C, D)$ is so. $\square$

We remark that $\emptyset L(A, B, C, D)$ is different from $\emptyset(A, B, C, D)$ , for example, let $A$ ,
$B,$ $C$ and $D$ be defined in the proof of Theorem 4. Then MATLAB says

$\emptyset L(A, B, C, D)=(\begin{array}{ll}7.931468 1.7232811.72328l 2.494825\end{array})$ ,

6 $(A, B, C, D)=(\begin{array}{ll}7.935831 l.7229891.722989 2.493326\end{array})$ .

In the number case, geometric mean is only defined by $(a_{1}\cdots a_{n})^{1/n}$ . But since
operators are non-commutative, geometric mean can be defined by some forms. So
one might think that some geometric means of n-operators are useful in some cases,
but some ones also useful in other cases. We can apply geometric mean of n-operators
according to the situation. The above geometric mean $\emptyset L(A, B, C, D)$ is better for
computing than the geometric mean by Ando-Li-Mathias.
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