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1 Introduction

Let $p$ be an odd prime and let $Z/p$ be the cyclic group of order $p$ . Let $V_{p}$ be a vector
space with the basis $\{v0, \ldots, v_{p-1}\}$ and suppose that the cyclic group $Z/p$ acts on $V_{p}$

by permuting this basis. Then, the cohomology $H^{*}(Z/p, Z/p[V_{p}])$ is well-known as
the cohomology of wreath products. See, for example, [1], Proposition 4.2.8 in [11]

for $H^{0}$ which is the rings of invariants and [12]. In this paper, we consider similar but
slightly different situation.

$l$

We fix a generator of $Z/p$ and denote it by $g$ . Let $A_{p}=Z/p[x_{0}, \ldots,x_{p-1}]$ be a
polynomial algebra in $p$ variables $x_{0},$ $\ldots$ , $x_{p-1}$ . There exists a derivation $\partial$ on $A_{p}$

such that $\partial(x_{0})=0,$ $\partial(x_{j})=x_{i-1}$ for $i=1,$ $\ldots,p-1$ . Using this derivation, we may
consider the action of the cyclic group $Z/p$ on $A_{p}$ given by $g(x)=x-\partial(x)$ .

We compute the cohomology $H^{*}(Z/p,A_{p})$ and discuss its application to the cohomol-
ogy of classifying spaces of compact connected Lie groups.

Our computational result is as follows:

Theorem 1.1 With the notation as above, we have

$H^{i}(Z/p,A_{p})=Z/p[\nearrow_{p-1}]$

for $i>0$ .
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Theorem 1.2 Suppose that $p$ is an odd prime. Let $A_{p-1}=Z/p[x_{0}, \ldots,x_{p-2}]\subset A_{p}$ .
Then, we have

$H^{2i}(Z/p,A_{p-1})=Z/p[\parallel_{p-2}]\{1,x_{0}\}$

and
$H^{2i-1}(Z/p,A_{p-1})=Z/p[l_{p-2}]\{1,x_{p-2}\}$

for $i>0$ .

After proving these theorems, we give their applications to the computation of coho-
mology of classifying spaces of compact connected Lie groups, in particular, simply-
connected exceptional Lie groups.

2 Preliminaries on $A_{k}$ and $H_{k}^{\epsilon}$

For $k=1,$ $\ldots$ , $p$ , let $A_{k}$ be the polynomial algebra

$A_{k}=Z/p[x_{0}, \ldots,x_{k-1}]\subset Z/p[x_{0}, \ldots,x_{p-1}]=A_{p}$

together with the derivation $\partial$ given by $\partial(x_{0})=0,$ $\partial(x_{j})=x_{i-1}$ for $i=1,$ $\ldots,p-1$

and $\partial(x\cdot y)=x\cdot\partial(y)+\partial(x)\cdot y$ for $x,y\in A_{p}$ .
We also consider the length and the weight of monomial $x$ as follows: For a monomial
$x=x_{0^{0}}^{i}\cdots x_{p-1}^{i_{J-l}}$ , let us define $\ell(x),$ $w(x)$ by

$P(x)=i_{0}+\cdots+i_{p-1}$ ,

$w(x)=0\cdot i_{0}+1\cdot i_{1}+\cdots+(\rho-1)\cdot i_{p-1}$ .

Let $A_{k}^{\ell,w}$ be the subspace spanned by monomials $x$ in $A_{k}$ whose length is $\ell$ and whose
weight is $w$ .

Now, we recall the definition of Poincar\’e series of bigraded $Z/p$ -modules. For a
bigraded $Z/p$ -module $M$ , say

$M= \bigoplus_{i_{\dot{d}}\geq 0}M^{j_{\sqrt{}}}$
,

we define the Poincar\’e series PS$(M, s, t)$ in $Z[[s, t]]$ by

$PS(M, s, t)= \sum_{ij\geq 0}(\dim M^{ij})s^{i}t^{j}$
.

For instance, we have

$PS(A_{k}, s, t)= \frac{1}{(1-s)(1-st)\cdots(1-st^{k-1})}$ .
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The derivation $\partial$ maps $A_{k}^{\ell,w}$ to $A_{k}^{\ell,w-1}$ , so we may think of $A_{k}$ as bigraded vector space
over $Z/p$ where the degree is given by $\ell(x)$ and $w(x)$ and $\partial$ is a homomorphism of
graded vector spaces whose degree is $(0, -1)$ .

We denote
$H^{even}(Z/p,A_{k})^{\ell,w}=(Ker\partial/{\rm Im}\Psi^{-1})^{\ell_{1}w}$

by $H_{k}^{even,\ell,w}$ . Also we denote

$H^{odd}(Z/p,\mathcal{A}_{k})^{\ell,w}=(Ker\partial^{\rho-1}/{\rm Im}\partial)^{\ell,w}$

by $H_{k}^{odd,\ell,w}$ . Thus, we have

$H_{k}^{even}=H^{even}( Z/p,A_{k})=\bigoplus_{\ell_{l}w}H_{k}^{even,\ell,w}$

and

$H^{odd}=H^{odd}( Z/p,A_{k})=\bigoplus_{\ell,w}H_{k}^{odd,\ell,w}$
.

Proposition 2.1 For $k=1,$ $\ldots$ , $p$ , there holds

$PS(H_{k}^{even}, s, 1)=PS(H_{k}^{odd}, s, 1)$ .

Proof Since
$H_{k}^{even}=Ker\partial/{\rm Im}\partial^{\rho-1}$ ,

we have
$PS$$(H_{k}^{even}, s, 1)=PS(Ker\partial, s, 1)-PS({\rm Im}\partial^{\rho-1}, s, 1)$

and
$PS({\rm Im} ff^{-1}, s, 1)=PS(A_{k}, s, 1)-PS(Ker\partial^{\rho-1}, s, 1)$,

Hence, we have

$PS$$(H_{k}^{even}, s, 1)=PS(Ker\partial, s, 1)+PS(Ker\partial^{\rho-1}, s, 1)-PS(A_{k}, s, 1)$ .

Similarly, we have

PS$(H_{k}^{odd}, s, 1)$ $=$ PS$(Ker\partial, s, 1)+PS(Ker\partial^{\rho-1}, s, 1)-PS(A_{k}, s, 1)$ .

Therefore, we have PS$(H_{k}^{odd}s, 1)=PS(H_{k}^{even}, s, 1)$ . $\square$
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Let us consider the following short exact sequence of $Z/p$ -modules:
$0arrow A_{k}^{l,w}arrow^{\cdot\cdot x_{0}}A_{k}^{\ell+1,w}arrow(A_{k}/(x_{0}))^{\ell+1,w}arrow 0$ .

There is an isomorphism
$(A_{k}/(x_{0}))^{f+1,w}arrow A_{k-1}^{\ell+1,w-\ell-1}$

sending $x_{i}$ to $x_{i-1}$ for $i=1,$ $\ldots$ , $k-1$ and $x0$ to $0$ . We denote by
$\phi:H_{p}^{even_{2}\ell,w}arrow H_{p}^{even,\ell+1,w},$ $\phi:H^{odd,\ell,w}arrow H^{odd\ell+1,w})$

the induced homomorphisms induced by the multiplication by $x_{0}$ . We also denote by
$\psi:H_{p}^{even\ell,w})arrow H_{p-1}^{even,\ell,w-\ell}$ ,

the homomorphism induced by the composition of the projection
$A_{p}arrow A_{p}/(x_{0})$

and the isomorphism
$A_{p}/(x_{0})arrow A_{p-1}$ .

This short exact sequence induces a long exact sequence

. . . $arrow H_{k}^{even,\ell,w}arrow^{\phi}H_{k}^{even\ell+1,w})arrow^{\psi}H_{k-1}^{even\ell+1,w-\ell-1})arrow^{\delta}H_{k}^{odd,\ell,w-1}arrow H_{k}^{odd_{1}\ell+1,w-1}arrow\cdots$

Proposition 2.2 For $\epsilon=even$ , odd, the multiplication by $x_{0}$ induces the zero homo-
morphism

$\phi:H_{p}^{\epsilon,\ell w})arrow H_{p}^{\epsilon,\ell+1,w}$ .

Proof If $\partial f=0$ , we have
$x_{0}f=\partial^{\rho-1}(x_{p-}f)$ .

If $\partial^{\rho-1}f=0$ , we have
$\chi_{\circ f=\partial(x_{1}f-x_{2}\partial\varphi+\cdots+x_{p-1}\partial^{\rho-1}(f))}$ . $\square$

Remark 2.3 This proposition does not hold for $k<p$ .

With this proposition, the above long exact sequence splits in the short exact sequences
for $k=p$ and we have the following exact sequence

$0arrow H_{p}^{even\ell,w})arrow^{\psi}H_{p-1}^{even,\ell,w-\ell}arrow^{\delta}H_{p}^{odd,\ell-1,w-1}arrow 0$ .

In particular, we have the following proposition.

Proposition 2.4 There holds

$\dim H_{p}^{even,\ell,w+1}=\dim H_{p}^{odd_{1}\ell-1,w}-\dim H_{p-1}^{even,\ell,w+1-\ell}$ .

From now on, we assume $k$ is $p$ or $p-1$ .
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3 Lower bound for the Poincar\’e series

In this section, we give lower bounds for

$H_{k}^{\epsilon,\ell,w}$

where $\epsilon=even$ , odd and $k=p-1,$ $p$ .

Let us define

$\sum_{\ell_{l}w}\varphi_{p}^{even,\ell,w}s^{\ell}t^{w}=\sum_{\ell,w}\varphi_{p}^{odd,\ell,w_{S}\ell_{f^{w}}}=\frac{1}{1-s^{p}t^{p(\rho-1)}}$

$\sum_{wp_{1}}\varphi_{p-1}^{even,\ell,w}s^{\ell}t^{w}=\frac{1+s}{1-s^{p}t^{\rho(p-2)}}$

$\sum_{\ell,w}\varphi_{p-i^{\ell_{w_{S}}\ell_{t^{w}}}}^{odd}’=\frac{1+sl^{\rho-2}}{1-s^{p}t^{p(p-2)}}$

These Poincar\’e series are Poincar\’e series of
$\iota$

$Z/p[/_{p-I}],$ $Z/p[x_{p-2}^{p}]\{1,x_{0}\},$ $Z/p[l_{p-2}]\{1,x_{\rho-2}\}$ ,

respectively. Considering the weight of $x_{p-2}^{mp},$ $x_{0}x_{p-2}^{mp}$ , it is clear that $x_{\rho-2}^{mp},$ $x_{0}x_{p-2}^{mp}$ are
not in the image of $\partial^{\rho-1}$ . Thus, it is clear that $\dim H_{p-1}^{even,\ell,w}\geq\varphi_{p-1}^{even,\ell,w}$ . It is also easy
to see that $\dim H_{k}^{\epsilon,\ell w}$)

$\geq\varphi_{k}^{\epsilon,\ell,w}$ for $k=p-1,p,$ $6=even$ , odd. Moreover, we have
the following proposition.

Proposition 3.1 There holds

$\varphi_{p}^{even,\ell,w+1}=\varphi_{p}^{odd\ell-1,w})-\varphi_{p-1}^{even,\ell,w+1-\ell}$ .

Proof Consider the short exact sequence

$0arrow Z/p[/_{p-1}]arrow^{\psi}Z[l_{p-2}]\{1,x_{0}\}arrow^{\delta}Z/p[\nearrow_{p-1}]arrow 0$ ,

where $\psi(x_{p-1}^{mp})=x_{p-2}^{mp},$ $\delta(x_{p-2}^{mp})=0,$ $\delta(x_{0}x_{\rho-2}^{mp})=x_{\rho-2}^{mp}$ . $\square$

For $\epsilon=even$ , odd and for $k=p,$ $p-1$ , we say the condition $\Phi_{k}^{\epsilon,\ell,w}$ holds if and only
if

$\dim H_{k}^{\epsilon\ell’,w’})=\varphi_{k}^{\epsilon,\ell’,w’}$
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for $\ell’<\ell$ and for $\ell/=\ell$ and $w’\leq w$ . In $te$rms of Poincar\’e series, the condition $\Phi_{k}^{\epsilon,\ell,w}$

is equivalent to say that
PS

$(H_{k}^{\epsilon}, s, t)- \sum_{l,w}\varphi_{k}^{\in,\ell,w_{S}\ell_{f}w}$

is divisible by $s^{l-1}$ and the coefficient of $s^{\ell}$ in $Z[r]$ is divisible by $t^{w+1}$ . In particular,
we have that $\Phi^{\epsilon,\ell,*}$

$k$ is equivalent to say that

PS
$(H_{k}^{\epsilon}, s, t)- \sum_{\ell,w}\varphi_{k}^{\epsilon,\ell,w_{S}\ell_{f}w}$

is divisible by $s^{\ell}$ .

Since the coefficient of $s^{\ell}t^{w}$ in

PS
$(H_{k}^{\epsilon}, s, t)- \sum_{\ell,w}\varphi_{k}^{\epsilon,\ell,w}s^{p}t^{w}$

is non-negative, the conditions $\Phi_{k}^{\epsilon,\ell-1,*}$ ( $\Phi_{k}^{\epsilon,\ell,w}$ holds for all w) is equivalent to

PS
$(H_{k}^{\epsilon}, s, 1)- \sum_{\ell_{)}w}\varphi_{k}^{\epsilon_{1}\ell,w_{S^{\ell}}}$

is divisible by $s^{\ell}$ . Therefore, we have the following proposition.

Proposition 3.2 If $\Phi_{p}^{even,\ell,w}$ holds, then $\Phi_{p}^{odd\ell-1,*}$) hold.

Proof The condition $\Phi_{p}^{even,\ell_{t}w}$ , by definition, implies the condition $\Phi_{p}^{even_{2}\ell-1,*}$ By
Proposition ??, we have the condition $\Phi_{p}^{odd_{2}\ell-1,*}$ $\square$

In terms of above conditions, our main theorem is given as follows:

Theorem 3.3 The condition $\Phi_{p}^{even,\ell,w}$ holds for all $\ell\geq 0,$ $w\geq 0$ .

4 Proof of Theorem 3.3

First, we prove two lemmas.

Lemma 4.1 For $\beta\not\equiv 0,1mod p$ , the leading monomial of $\partial^{\rho-1}(x_{p-2}^{\beta})$ is $x_{0}x_{p-3}$ .
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Proof We have

$\theta^{\gamma-1}(x_{p-2}^{\beta})=\sum_{(\alpha_{1},\ldots,\alpha_{\beta})}\frac{(\rho-.1)!}{\alpha_{1}!..\alpha_{\beta}!}\partial^{\alpha_{1}}(x_{\rho-2})\cdots\partial^{\alpha}\beta(x_{\rho-2})$

$=\beta(\beta-1)(p-1)x_{0}x_{\rho-3}x_{p-2}^{\beta-2}+1ower$ terms. $\square$

Lemma 4.2 For $0\leq\gamma\leq p-2,$ $\partial^{p-1}(x_{p-2}x_{p-1}^{\gamma})=0$ . For $\gamma=p-1$ , we have

$\theta^{-1}(x_{p-2}x_{\rho-1}^{\gamma})=-ff_{p-2}$ .

Proof Let us consider a derivation $\hat{\partial}$ on $Z[x_{0}, \ldots , x_{p-1}]$ defined by

$\hat{\partial}x_{j}$

$=$ $x_{i-1}$ for $i=1,$ $\ldots$ , $p-1$ ,
$\hat{\partial}x_{0}$

$=$ $0$ and
$\hat{\partial}(x\cdot y)$ $=$ $\partial(x)\cdot y+x\cdot\partial(y)$ .

The derivation $\partial$ is the $mod p$ reduction of $\hat{\partial}$ . Then, we have

$\hat{\wp}-1(x_{p-2}x_{p-1}^{\gamma})$ $=$ $\frac{1}{\gamma+1}\hat{\partial}^{\rho}(x_{p-1}^{\gamma+1})$

$=$
$\frac{1}{\gamma+1}\sum_{(\alpha_{1},\cdots,\alpha_{\gamma+l)}}\frac{p!}{\alpha_{1}!\cdots\alpha_{\gamma+1}!}\hat{\partial}^{\alpha_{1}}(x_{\rho-1})\cdots\hat{\partial}^{\alpha_{\gamma+1}}(x_{\rho-1})$

where $(\alpha_{1}, \cdots, \alpha_{\gamma+[})$ ranges over the $(\gamma+1)$ -partitions of $p$ , so that $\alpha_{1}+\cdots+\alpha_{\gamma+1}=$

$p,$ $\alpha_{i}\geq 0$ for $j=1,$ $\ldots,$
$\gamma+1$ . If $\gamma+1<p$ , then we have $\partial^{p-1}(x_{\rho-2}x_{p-1}^{\gamma})=0$ .

Suppose that $\gamma+1=p$ . The symmetric group of p-letters acts on the set of $(\gamma+1)-$

partitions of $p$ and the number of elements in each orbit is divisible by $p$ except for the
case $(\alpha_{1}, --, \alpha_{\gamma+1})=(1, \cdots, 1)$ . Hence, we have

$\partial^{\rho-1}(x_{p-2}x_{p-1}^{\gamma})$ $=$ $(\rho-1)!\partial x_{p-1}\cdots\partial x_{p-1}$

$=$ $-l_{p-2}$ .

Thus, we have the required equality. $\square$

We prove Theorem 3.3 by induction on $\ell$ and $w$ . It is clear that for $\ell=0$ , the theorem
holds. It is also clear that for each $\ell$ , if $\Phi_{p}^{even\ell-1,*}$) holds2 $\Phi_{p}^{e\nu en}$

)
$p,0$ holds.

Proposition 4.3 The condition $\Phi_{p}^{evenl,w}$) implies the condition $\Phi_{\rho-1}^{even,\ell,w}$
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Proof Let us consider an element $[x]$ in $H_{p-1}^{even,\ell,w}$ represented by $x\in A_{p-1}^{l,w}$ . So, we
assume $\partial(x)=0$ in $A_{p-1}^{\ell,w-1}$

First, we show that there exists $y\in A_{p}^{\ell w+p-1}$) such that $x=\partial^{\rho-1}(y)$ . If $P=mp$ and
$w=mp(p-2)$ for some $m\geq 0$ , then $A_{p-1}^{\ell_{2}w}=\{0\}$ . Therefore, we may put $y=0$ .
Since $\Phi_{p}^{even_{1}\ell,w}$ holds, if $\ell$ is not divisible by $p$ , or if $\ell=mp$ and $w\neq mp(-p-2)$

for some $m\geq 0$ , then $H_{p}^{even_{1}\ell,w}=\{0\}$ . Hence, there exists $y\in A_{p}^{\ell,w+p-1}$ such that
$\partial^{\rho-1}(y)=x$ . Suppose that $y=y_{n}x_{p-1}^{n}+y_{n-J}l_{p-1}^{-1}+\cdots+y_{1}x_{p-1}+y_{0}$ , where $y_{n},$ $\ldots,y_{0}$

are in $A_{p-1}$ .

Now, we prove by induction on $n$ that $[x]$ is represented by $x_{0}^{\epsilon}x_{p-2}^{\beta}$ for some $\epsilon\in\{0,1\}$ ,

$\beta\geq 0$ divisible by $p$ . In the case $n=0$ , it is trivial. Suppose that $n\geq 1$ . Then

$\partial^{\rho-1}(y)=\partial^{\rho-1}(y_{n})x_{p-1}^{n}+$ terms lower than $x_{p-1}^{n}$ .

Therefore, we have $\partial^{p-1}(y_{n})=0$ since $x$ is in $A_{p-1}$ .

Since, by Proposition 3.2, the condition $\Phi_{p-}^{odd}j^{\ell-1,*}$ holds2 there exist $z$ in $A_{p-1}^{\ell-n,*}$ and
$\alpha$ in $Z/p$ such that $y_{n}=\alpha x_{p-2}^{\ell-n}+\partial(z)$ . Replacing $y$ by $y+\partial(z\kappa_{p-1}^{n})$ , we have

$x=\partial^{\rho-1}$ ( $\alpha x_{p-2}^{\ell-n}x_{p-1}^{n}+$ terms lower than $x_{p-1}^{n}$ ).

If $\alpha=0$ , by inductive hypothesis, $[x]$ is represented by a linear combination of $x_{0}^{\epsilon}x_{p-2}^{\beta}$ .
Suppose that $\alpha\neq 0$ . Then, we have

$w(y)=( \ell-n)(p-2)+n(p-1)>(\ell-n+k)(p-2)+(n-k)(\backslash p-1)=\max w(y_{n-k}x_{p-1}^{n-k})$ .

Thus, $y=\alpha x_{p-2}^{f-n}x_{p-1}^{n}$ .

If $\ell-n\not\equiv O,$ $1mod p$ , then, by Lemma 4. 1, the leading monomial of $x$ is $x_{0}x_{p-3}x_{p-2}^{\ell-n-2}x_{p-1}^{n}$ .
So, if $x$ is in $A_{p-1}$ , then $n=0$ and so $y$ is also in $A_{p-1}$ .

If $\ell-n\equiv$ Omod $p$ and if $n$ is divisible by $p$ , then $x=0$ . If $\ell-n\equiv$ Omod $p$ and
if $n$ is not divisible by $p$ , then the leading monomial of $x$ is $x_{0}x_{p-2}^{\ell-n}x_{p-1}^{n-1}$ Since $x$ is
in $A_{p-1},$ $n=1$ . So, $[x]$ is represented by a scalar multiple of $x0x_{p-2}^{\ell-1}$ and $l-1$ is
divisible by $p$ .

If $\ell-n\equiv 1mod p$ , then, by Lemma 4.2, we have $x=0$ or $x$ is a scalar multiple
of $\nearrow_{p-2}$ , where $n=p-1$ . So, $\ell$ is divisible by $p$ and $[x]$ is represented by a scalar
multiple of $\nearrow_{p-2}$ . $\square$

Proposition 4.4 For $\ell\geq 1$ , the condition $\Phi_{p}^{even_{1}\ell,w}$ implies the condition $\Phi_{p}^{even}\prime f,w+\iota$
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Proof By Proposition4.3, we have the condition $\Phi_{p-1}^{eve\prime\iota,\ell,w+1-\ell}$ . In particular, we have

$\dim H_{p-1}^{e\nu en,\ell,w+1-\ell}=\varphi_{p-1}^{e\nu en,\ell,w+1-\ell}$ .

By Proposition ??, we have the condition $\Phi_{p}^{odd,\ell-1,*}$ . In particular, we have

$\dim H^{odd,\ell-1,w})p-1^{=\varphi_{p-l}^{odd\ell-1,w}}$ .

Hence, we have
$\dim H_{p}^{even\ell,w+1})$ $=$ $\dim H_{p-1}^{even,\ell,w+1-\ell}-\dim H_{p}^{odd,\ell-1,w}$

$even,,\ell,w+1-\ell$ $odd,\ell-1,w$
$=$

$\varphi_{p-1}$ $-\varphi_{\rho}$

even, $\ell,w+1$
$=$ $\varphi_{p}$

$\square$

As we already mentioned, it is clear that for $\ell=0$ , the theorem holds. It is also
clear that for each $p$ , if $\Phi_{p}^{even\ell-1,*}$) holds2 $\Phi_{p}^{even,\ell,0}$ holds. So, the above propositions
complete the proof of Theorem 3.3.

Remark 4.5 Let us consider the tensor product of m-copies of $A_{p-1}$ and n-copies of
$A_{p}$ , say $A_{p-1}^{m}\otimes A_{p}^{n}$ . One may compute $H^{\epsilon}(Z/p,A_{p-1}^{m}\otimes A_{p}^{n})$ using the theorem

$H^{\epsilon}(Z/p,M\otimes A_{p})=H^{\epsilon}(Z/p, M)\otimes Z/p[\nearrow_{p-1}]$

and cohomology long exact sequence associated with

$0arrow A_{p}arrow A_{p}\cross x_{0}arrow A_{p-1}arrow 0$ .

5 Exceptional Lie groups

Let $p$ be an odd prime and let $G$ be a compact connected Lie group. If the integral
homology of $G$ has no p-torsion, then the cohomology of $BG$ is a polynomial algebra
generated by even degree elements. If $G$ is a simply-connected simple Lie group, then
by classification theory, $G$ is one of classical groups $SU(n),$ $Sp(n)$ , Spin$(n)$ or one
of exceptional Lie groups $G_{2},$ $F_{4},$ $E_{6},$ $E_{7},$ $E_{8}$ . Among these simple Lie groups, it
is known that $H_{*}(G;Z)$ has p-torsion if and only if $(G,p)$ is one of $(F_{4},3),$ $(E_{6},3)$ ,
$(E_{7},3),$ $(E_{8},3),$ $(E_{8},5)$ . So, the computation of the $mod p$ cohomology of classifying
spaces of simply-connected simple Lie groups is a finite number of computational
problems (5 problems, to be exact), so that we can compute them one by one by ad hoc
computation. It seems to me that it is the strategy of Mimura and Sambe in their work
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[5], [4], [9], [10], [8], on the computation of the cotorsion products $Cotor_{A}(Z/p_{)}Z/p)$

of $A=H^{*}(G;Z/p)$ for these $(G,p)’ s$ . There exists the Rothenberg-Steenrod spectral
sequence

$Cotor_{A}(Z/p, Z/p)\Rightarrow grH^{*}(BG;Z/p)$ .

The spectral sequence collapses at the $E_{2}$ -level for $(G,p)=(F_{4},3),$ $(E_{6},3),$ $(E_{7},3)$ ,

$(E_{8},5)$ . So, the computation of the cotorsion product is nothing but the computation
of $H^{*}(BG;Z/p)$ at least as a graded $Z/p$ -module. However, the computation of
Mimura and Sambe seems to be too complicated and I think a comprehensive approach
for the cotorsion products is desired. We believe our approach is somewhat more
comprehensive than th$e$ computation of Mimura and Sambe.

In the case $(G,p)=(F_{4},3),$ $A=Z/3[x_{8}]/(x_{8}^{3})\otimes\Lambda(x_{3},x_{11}, x_{7}, x_{15})$ , the reduced
coproduct is given by

$\overline{\phi}(x_{11})$ $=$ $x_{8}\otimes x_{3}$ ,
$\overline{\phi}(x_{15})$ $=$ $x_{8}\otimes X_{7}$ ,

and $\overline{\phi}(x_{k})=0$ for $k=3,7,8$ . Associated with the extension of Hopf algebras

$Z/3[x_{8}]/(x_{8}^{3})arrow Aarrow\Lambda(x_{3},x_{11},x_{7},x_{15})$ ,

we have the change-of-rings spectral sequence
$Cotor_{\Gamma}(Z/3, Cotor_{4}(\Gamma, Z/3))\Rightarrow grCotor_{A}(Z/3, Z/3)$ ,

where $\Gamma=Z/3[x_{8}]/(x_{8}^{3})$ . The $E_{2}$ -term of this spectral sequence could be given by
the cohomology of cyclic group $H^{l}(Z/3,A_{2}\otimes A_{2})$ and in the case $(G,p)=(F_{4},3)$ ,

all spectral sequence tum out to collapse at the $E_{2}$ -level. So, we have the following
theorem for $(G,p)=(F_{4},3),$ $(E_{6},3),$ $(E_{7},3),$ $(E_{8},5)$ .

Theorem 5.1 After giving suitable degrees for generators of each copy of $A_{p-1},$ $A_{p}’ s$ ,

respectively, we have following isomorphisms of graded $Z/p$ -modules. For $p=3$ ,

we have

$H^{*}(BF_{4};Z/3)$ $=$ $\oplus H^{2i+\epsilon}(Z/3,A_{2}\otimes A_{2})\{a_{9}^{\epsilon}x_{26}^{i}\}$ ,
$i,\epsilon$

$H^{*}(BE_{6};Z/3)$ $=$ $\oplus H^{2i+\epsilon}(Z/3,A_{2}\otimes A_{2}\otimes A_{2})\{a_{9}^{\epsilon}x_{26}^{i}\}$ ,
$j_{)}\in$

$H^{*}(BE_{7};Z/3)$ $=$
$\bigoplus_{i,\epsilon}H^{2i+\epsilon}(Z/3,A_{2}\otimes A_{2}\otimes A_{3})\{a_{9}^{\epsilon}x_{26}^{i}\}$

.

For $p=5$ , we have

$H^{*}(BE_{8};Z/5)$ $=$
$\bigoplus_{i_{1}\epsilon}H^{2l+\epsilon}(Z/5,A_{4}\otimes A_{4})\{a_{13}^{\epsilon}x_{62}^{i}\}$

.
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In the case $p=3,$ $G=F_{4}$ , we put $A_{2}=Z/3[y_{4}, \gamma_{12}],$ $A_{2}=Z/3[y_{8}, y_{16}]$ where the
index indicates the degree. Then, we have the Poincar\’e series

$PS$
$(H^{*}(BF_{4}; Z/3), t)=\sum_{i\geq 0}\dim H^{i}(BF_{4};Z/3)t^{i}$

is equal to

$\frac{1}{(1-t^{4})(1-t^{12})(1-t^{16})(1-t^{24})}+\frac{t^{8}+t^{9}+t^{20}+t^{21}+t^{25}+t^{26}+t^{29}+t^{30}}{(1-t^{36})(1-t^{48})(1-t^{26})}$ .

The Poincar\’e series of $H^{*}(BG;Z/p)$ for $(G,p)=(E_{6},3),$ $(E_{7},3),$ $(E_{8},5)$ can be
computed from the above theorem easily.

Remark 5.2 Computation of the case $(G,p)=(E_{8},3)re$mains to be an open problem.
It is known that the Rothenberg-Steenrod spectral sequence does not collapse at the
$E_{2}$ -level, so that $Cotor_{A}(Z/3, Z/3)\neq H^{*}(BE_{8};Z/3)$ as graded $Z/3$ -modules. See [2]
in detail.

6 Projective unitary groups

The special unitary group $SU(n)$ has the center $C_{n}$ which is a cyclic group of order $n$ .
The projective unitary group PU$()$ is the central quotient $SU(n)/C_{n}$ . In this section,
we denote by $C_{r}$ the cyclic subgroup of order $r$ of the center products of special unitary
groups. Little is known for the $mod p$ cohomology of classifying spaces of projective
unitary groups PU$(m)$ when $p$ divides $m$ . The case $p=2$ and $m$ is not divisible
by 4 was computed by Kono and Mimura in [6]. As for odd primes, only the $mod 3$

cohomology of $BPU(3)$ was known in [5]. The $mod p$ cohomology of $BPU(p)$ was
computed by Vistoli in [13] and by Kameko and Yagita in [3], recently.

Theorem 6.1 Suppose that $p$ does not divide $m$ . After given suitable degrees for
generators of each copy of $A_{p-1},$ $A_{p}$ , we have an isomorphism

$H^{*}(BPU(pm); Z/p)=\bigoplus_{\epsilon,i}H^{2i+\epsilon}(Z/p,A_{\rho-1}\otimes A_{p}^{m-1})\{a_{3}^{\epsilon}x_{2p+2}^{i}\}$

as a graded $Z/p$ -module where $A_{p}^{m-1}$ is the tensor product of $(m-1)$ -copies of $A_{p}$ .

The result of Kono and Mimura could be stated in the same manner. Moreover, we
have the following proposition.
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Proposition 6.2 After giving suitable degrees for generators of each copy of $A_{p-1}$ ,
$A_{p}’ s$ , respectively, we have following isomorphisms of graded $Z/p$ -modules.

$H^{*}(B(SU(\rho)\cross SU(p)/C_{p});Z/p)$ $=$ $\oplus H^{2i+\epsilon}(Z/3,A_{2}\otimes A_{2})\{a_{3}^{\epsilon}x_{2p+2}^{i}\}$ ,

$H^{*}(B(SU(\rho)\cross SU(p)\cross SU(p)/C_{p});Z/p)$ $=$
$\oplus^{i,\epsilon}H^{2i+\epsilon}(Z/3,A_{2}\otimes A_{2}\otimes A_{2})\{a_{3}^{\epsilon}x_{2p+2}^{i}\}$ ,

$H^{*}(B(SU(\rho)\cross SU(2p)/C_{p});Z/p)$ $=$ $\bigoplus_{i,\epsilon}^{i,\epsilon}H^{2i+\in}(Z/3,A_{2}\otimes A_{2}\otimes A_{3})\{a_{3}^{\epsilon}x_{2p+2}^{i}\}$ .

This result corresponds to the computation of the cohomology of classifying spaces of
exceptional Lie groups in Theorem 5.1.

Thus, it seem to be interesting to investigate the cohomology of classifying spaces of
central quotients of products of unitary groups.

The special unitary group $SU(p^{n})$ has a maximal torus $T^{p^{\prime l}-1}$ whose Weyl group is the
symmetric group $\Sigma_{\rho^{r\iota}}$ . It contains a p-Sylow subgroup $Z/p\int\cdots\int Z/p$ . The diagonal
map induces a monomorphism

$Z/p\cross\cdots\cross Z/parrow Z/p\int\cdots\int Z/p$ .

Consider the subgroup of the normalizer of the maximal torus $T^{p^{\prime 1}-1}/C_{p^{n}}$ in PU$(p^{n})$

generated by this elementary abelian p-subgroup and the maximal toms $T^{p^{\prime l}-1}/C_{\rho}^{n}$ .
Let us denote it by

$N_{0}=(Z/p\cross\cdots\cross Z/p)\ltimes(T^{p^{\prime 1}-1}/C_{p^{il}})$ .

I think this subgroup plays an important role in the study of the cohomology of
classifying spaces.

Conjecture 6.3 The induced homomorphism $H^{*}(BPU(p^{n});Z/p)arrow H^{*}(BN_{0};Z/p)$

is a monomorphism.

Conjecture 6.4 There exists filtrations on the cohomology of $BPU(p^{n})$ and $BN_{0}$ such
that associated graded algebra of $H^{*}(BPU(p^{n});Z/p)$ and the associated graded algebra
of $H^{*}(BN_{0};Z/p)$ are isomorphic to each other as ungraded algebras.

The second conjecture calls for some explanation. We say $H^{*}(\mathbb{C}P^{\infty};Z/2)$ and
$H^{*}(\mathbb{R}P^{\infty};Z/2)$ are isomorphic as ungraded algebras since both are isomorphic to
a polynomial algebra $Z/2[x]$ . Indeed, there is no map which induces an isomorphism
between $H^{*}(\mathbb{C}P^{\infty};Z/2)$ and $H^{*}(\mathbb{R}P^{\infty};Z/2)$ . Also there exists a map

$\mathbb{R}P^{\infty}arrow \mathbb{C}P^{\infty}$
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such that the induced homomorphism $H^{*}(\mathbb{C}P^{\infty};Z/2)arrow H^{*}(\mathbb{R}P^{\infty};Z/2)$ is a monomor-
phism. With this conjecture, we expect the computation of the cohomology of $BN_{0}$

is, to some extent, algebraically similar to the computation of the cohomology of
$BPU\zeta p^{n})$ .

For $(G,p)=(F_{4},3)(E_{8},5)$ , we have the following inclusions:

$Z/3\ltimes((T^{2}\cross T^{2})/C_{3})arrow SU(3)\cross SU(3)/C_{3}$ $F_{4}$ ,

$Z/5\ltimes((T^{4}\cross T^{4})/C_{5})arrow SU(5)\cross SU(5)/C_{5}$ $E_{8}$ .

For $(G,p)=(E_{6},3),$ $(E_{7},3),$ $(E_{8},3)$ , we have the following inclusions:

$Z/3\ltimes((T^{2}\cross T^{2}\cross T^{2})/C_{3})arrow SU(3)\cross SU(3)\cross SU(3)/C_{3}$ $E_{6}$

$\downarrow$

$Z/3\ltimes((T^{2}\cross T^{5})/C_{3})$

$\downarrow$

$(Z/3\cross Z/3)\ltimes(T^{8}/C_{3})$

$\downarrow$

$SU(3)\cross SU(6)/C_{3}$ $E_{7}$

$\downarrow$

$SU(9)/C_{3}$ $E_{8}$ .

We consider the left-hand-side groups as $N_{0}$ which is a subgroup of the normalizers of
maximal tori. Theorem 5.1 and Proposition 6.2 implies that for

$(G,p)=(F_{4},3),$ $(E_{6},3),$ $(E_{7},3),$ $(E_{8},5)$ ,

the associated graded algebra of the cohomology of the classifying space of the right-
hand-side group is isomorphic to the associated graded algebra of the cohomology
of the classifying space of the middle group as an ungraded algebra but the obvious
induced homomorphism is not an isomorphism. We hope such an isomorphism exists
for $(G,p)=(E_{8},3)$ . We expect the cohomology of $BG$ is controlled by $N_{0}$ rather
than the normalizer of the maximal torus and the cohomology of $BN_{0}$ is easier than
the cohomology of the classifying space of the normalizer of the maximal torus itself.

By replacing a maximal torus by elementary abelian p-subgroups, Quillen proved that
the induced homomorphism

$H^{*}(BG; Z/p)arrow\lim_{arrow}H^{*}(BA;Z/p)$
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is an F-isomorphism. It may have a nilpotent kernel. As a matter of fact, for $(G,p)=$
(Spin(ll), 2), $(E_{7},2)$ , this Quillen homomorphism has non-trivial(but nilpotent) kernel.
See Kono and Yagita [7]. Still, for odd prime $p$ , Adams and Kono conjectured that the
above Quillen homomorphism is a monomorphism. In conjunction with this conjecture,
we have the following conjecture. For $G$ such that $H_{*}(G;Z)$ has no p-torsion, $N_{0}$ is
nothing but a maximal torus itself.

Conjecture 6.5 Let $p$ be an odd prime. For all simply-connected simple Lie group
$G$ , the induced homomorphism $H^{*}(BG;Z/p)arrow H^{*}(BN_{0};Z/p)$ is a monomorphism.

Only the case $(G,p)=(E_{8},3)$ remains unsettled.

We end this paper with the following conjecture.

Conjecture 6.6 For any prime $p$ and for any connected compact Lie group $G$ there
exists a subgroup $N_{0}$ of the normalizer of its maximal torus $T$ such that

(1) $N_{0}/T$ is an elementary abelian p-group and
(2) the induced homomorphism $H^{*}(BG;Z/p)arrow H^{*}(BN_{0};Z/p)$ is a monomor-

phism.
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