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How to stop near the top in a random walk?
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Abstract

This note discusses the problem of maximizing the probability of stopping
with one of the two highest values in a Bernoulli random walk with arbitrary
parameter p and finite time horizon n. The optimal strategy is determined by a
non-monotone sequence of constants (critical probabilities) {p},}. Several prop-
erties of this sequence are proved, and additional properties are conjectured.

1 Introduction

Let {Sn}n=01,,. be a Bernoulli random walk with parameter p € (0,1). That is,
So=0,and forn > 1, S, = X1 +--- + X,, where X;, Xs,... are independent,
identically distributed random variables with P(X; = 1) = p, and P(X; = —1) =
g :==1—p. Let M, := max{Sy,S1,...,Sn}, for n € IN. Suppose that, for some
finite time horizon N, we wish to find a stopping time 7 (adapted to the process
{Sn}) that will maximize P(S, = My); that is, suppose we wish to maximize the
probability of “stopping at the top” of the random walk. What is the optimal 77
Surprisingly, this simple question was answered in the literature only recently,
by Yam et al. [4], though for the case p = 1/2 it is already implicit in the work
of Hlynka and Sheahan [3]. If p > 1/2, the rule 7 = N is the unique optimal rule;
if p < 1/2, 7'= 0 is the unique optimal rule; and if p = 1/2, any rule 7 such that
P(S; = M, or 7 = N) = 1 is optimal. The proof given by Yam et al. is far from
the simplest one; an easier argument can be given by conditioning on the first time
the reflected process Z,, := M, — S, returns to 0 and using backward induction.
Suppose now that, more generally, we wish to maximize the expectation of some
nonincreasing function f of the distance from the stopped value of the walk to its
eventual maximum. That is, we wish to find a stopping time 7 that will maximize
E[f(My —S;)]. Note that if we take f(0) = 1 and f(k) = O for k > 1, this reduces to
the problem discussed earlier. For the choice f(k) = d* where 0 < d < 1, Yam et al.
[4] showed that the optimal rule is exactly as above. This leads one to wonder if there
might be some general principle at work. Indeed, the author has shown in (1] that
the rule that is optimal for the problem of maximizing the probability of stopping
at the top remains optimal for the general problem, as long as f is nonincreasing
and convez. A similar result holds in continuous time for Brownian motion with
drift. In fact, this statement can be generalized well beyond simple random walk
and Brownian motion: it applies to any random walk whose steps stochastically
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dominate their opposites or vice versa. It even applies to many Lévy processes,
provided that the “small jumps” of these processes are sufficiently well-behaved.
(See [2].)

But what if f is not convex? Then the optimal rule is in general much more
complex, even for the seemingly simple case when f(0) = f(1) =1 and f(k) = 0 for
k > 2. In that case, the expectation to be maximized is

E[f(MN - ST)] = P(MN -8 < 1)3 (11)

so we want to maximize the probability of stopping within one unit of the highest
point of the walk. The main purpose of the present note is to record what the author
knows about the optimal stopping rule for this particular problem, and what the
author believes to be true but has been unable to prove. Some of the proofs below
are based on lengthy calculations. When that is the case, the conceptual ideas will
be emphasized, and many of the algebraic details will be omitted.

2 Stopping within one step from the top

From now on we focus on the problem of maximizing (1.1), for a given time horizon
N. A useful observation is that, for 0 < n < N, we can write

where Z, := M, — Sp, and M},_,, is a random variable independent of the walk up
to time n, having the same distribution as My_,. Thus, if we stop at time n and
Z, = j, we win with probability P(j V My < 1), where k = N — n. This probability
is zero if j > 2, and simplifies to P(M;, < 1) if 7 =0or 1.

The process (N —n,Z,), n = 0,1,..., N is a bivariate Markov chain. We can
now conclude that in state (k, 7) of this process, it is optimal to continue if 7 > 2
and k > 1. (Note that in state (0, 7) we must stop regardless of j.) In fact, in state
(k,0) with &£ > 1 it is optimal to continue as well. For if we take one more step
and then stop, we win with probability P(My_; < 1), which is at least as large as
P(Mj < 1), the win probability if we stop immediately. Thus, the only non-trivial
states are those of the form (k, 1), where k > 1.

Proposition 2.1. For each n > 1, there exists a number p}, in [0,1] such that, in
state (n, 1), it is optimal to stop if and only if p < p;,.

Let

V., : = optimal win probability from state (n,1),
W,, : = optimal win probability from state (n,1)

if we take at least one step,
U, : = win probability from state (n, 1) if we stop,

so that U, = P(M,, < 1), and V,, = max{W,,U,}. Also define the hitting times

7 =inf{n > 0: S, = j}, j €N



Proof of Proposition 2.1. In state (1,1) is is optimal to stop regardless of p, so
the statement is true for n = 1, and p} = 1. Let n > 2, and define the stopping time

o:=inf{j >1:1VvM; -S; =1}

We show that V,, — U, is nondecreasing in p on 0 < p < 1/2. Since the proof of
part (ii) of the next lemma will show that W,, > U, for all n > 2 when p > 1/2, the
proposition will follow.

First, observe that we can write

n
Vp = max Uy, ZP(U =J)Va-j +0" ¢
i=2

because if in state (n, 1) we continue, we can win only if the walk either comes back
to one unit below its running maximum at some future time, or records a string of
n straight up-steps. Furthermore, for n > 2,

n
Un=pqUn2+q» P(ri=j—1)Upj+qP(r1>n—1)
3=2

n n
=Y Plo=j)Un_j— > P 'qUnj+qP(n >n—1)
g

5=3

n n
=> Plo=5)Un—j— >_p ' P(Mp_jy1 =0) +¢P(r1 >n—1).

Thus

Vp — U, = max < 0, ZP(U = j) (Va—j — Un—;) + "
=2
(2.1)
n .
+ > P P(Mp—j1 =0) — qP(m1 >n—1)
P

Now each j-step path in the event {c = j} must have at least as many up-steps as
down-steps, and so P(o = j) is increasing in p on p < 1/2, for all j. Thus, by the
induction hypothesis, the first summation in (2.1) is nondecreasing on p < 1 /2. We
now proceed to prove the same for the remaining terms.

Since P(M; = 0) =1 — P(m < j), we obtain after some arithmetic,

n

n—1
P+ ij_l P(My—j41 =0)—qP(rnn1>n—-1) = Za"“i P(r =1) — anp,
7=3 i=1

where . .
aj:=1*15(1-—p7), 7 € IN.
Now it is easy to see that p < 1/2 implies a; > 0 for all j. Furthermore,

d(bj 1 . ; . 1
—_— = — .I. ] — 1 > - .
el (Gg+1)p’ —1] = pe
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Also, dP(mp =1)/dp > 0 for p < 1/2, since P(1y = 27) = 0, and
.)p’“qj

. 1
Pn=2+1) = — ("

J+1

which has a higher power of p than of g =1 — p. It therefore follows that

1 . dan
”—z) P(r =1) — =

- ql2 [{((n g+ 1 =1} p = {(ng + D5 = 1} = 3P = )
i=2

1 1 .
= 2P =2n) -l 2 (@ L-p"g) >0
for p < 1/2, as required. O

Lemma 2.1. We have

(i) p =1 and pj = p3 = 1/2;

(ii) py, < 1/2 for alln > 4; and

(#i) limsup,,_, o, Py, = 1/2.
Proof. Statement (i) follows in a straightforward manner by using backward induc-
tion. For (ii), consider the stopping time

n—1, f1VM,_1—-S,-1<1
T =
n, otherwise.

Then in state (n, 1),

W, > P(win using 7)
—PAVMp_1 -8y 1<1) 14+P(AV M,y —Sn1=2)p,

while for p > 1/2,
Un < P(Alg < 1) = P(Mn - S, < 1)
=pP(My_1 —Sn—1 <1)+qP(AV M,y —Sp1 <1).
Here M; denotes the maximum after n steps of a Bernoulli random walk with

parameter ¢, and we have used the well-known fact that M, ¢4 M,, — S,. It follows
that for p > 1/2,

VVn. - l/n Z D [P(l V A'-[n—l - Sn.-l < 2) - P(-A/-[n—l - Sn.-—l < 1)] .

Now {M,_1 — Sp—1 <1} C {1V My — Sp-1 < 2}, the inclusion being proper if
n > 4. So W,, > U, for n > 2, with strict inequality for n > 4 and all p > 1/2. Since
W,, — U, is the maximumn of several polynomials in p, it is continuous in p. Hence
ph <1/2forn > 4.



(iii) Suppose, by way of contradiction, that limsup p¥, < 1/2. By part (ii), there
exists p with sup,,~, p < p < 1/2. For this p, the optimal rule in state (n,1) (where
n > 4) is to wait until the walk reaches one of the states (3,1), (2,1), (1,1) or (0,5)
and then stop. But then

W, < P(l VMy_3—S,-3< 4) < P(Sn—S > "3) — 0

as n — 00, since the walk has a negative drift. On the other hand,

2
lim P(M,, <1)=P(M, <1Vn)=P(n=00)=1- (1—)) > 0.
n—oo
Thus, for large enough n, W,, < U,, and so p < p},, a contradiction. O
Conjecture 2.1. lim,_,o, p} = 1/2.
Theorem 2.1. For every m > 4, we have p5,, .1 = Dop_1 = Pop,-

Conjecture 2.2. In addition, p3,, < p3,, 4o for allm > 2.

The theorem and conjecture are illustrated by Table 1 at the end of this paper.
To prove the theorem, we use the formula

P(My, =k, Sp = 1) = an g p"/2g0D720 0 <1<k, (2.2)

where

n n
Akl *= (%(n—{—Zk——l)) B (%(n+2k+2—l)>'

1/2m—2
tm:=—< m ), m € IN.
m\m—1

Let

It is not difficult to derive, for each m € IN, that

m
U2m = U2m+1 =1 th_*.lpj_’_lq]—l. (23)
=1

Proof of Theorem 2.1. For convenience, we re-index and write the statement as

P§n+5 2> p3n+3 2> p5n+4, for all n > 2.

That the statement holds for n = 2 follows easily by a direct calculation of pj, . .., pg.
Let m > 3, and assume the statement holds for all values of n up to m — 1. Note
that this implies p3,, .3 > p} for all 4 < j < 2m + 2. Let 1/2> p > p5,,15- Then, if
in state (2m + 3, 1) or (2m + 4, 1) we continue, the optimal strategy is to wait until
there are 3 steps left, and play optimally from then on. Thus, we condition on the
state of the process at the time when there are 3 steps remaining. We first show
that

W2m+4 - U2m+4 2 W2m+3 - U2m+3- (24)

This inequality implies that, if in state (2m + 3, 1) it is optimal to continue, then it
is optimal to continue in state (2m + 4,1) as well; thus, p5,,, 4 < DP3pys-
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First, by (2.3),
U2m+4 - U2m+3 - _t1n+3pm+3qm+] . (25)

Let m, x denote the optimal win probability from state (n, k); that is,

Tnk =supP(kV M, — S, <1).

T7<n
Let Ams g := 73, — 73 k4+1. Then

4
Wamise; = D P(LV Mams; = Samry < k)Amsy  for j = 0,1,
k=0

and so
4

Wom4+a — Womys = E APy kA3 i,
k=0

where
AP,y :=P(1V Mpyy — Spy1 < k) —PAV M, — S, <k).

It is easy to see that
P(1V Mpyy — Sny1 < k)=pP(M, — S, <k)+qP(2V M, — S, <k),
and since

P(M, — S, <k) —P(1V M, — S, < k) = P(My, = 0,5, = —k),
P(1V My ~ Sy <k)-P(2VM, -8, <k)=P(M,<1,5,=1-k),

it follows that
AP,y =pP(M,=0,5,=—-k)—qP(M, <1,5,=1-k).

Now put n = 2m and apply the last identity for kK = 0,1,...,4. Also use (2.2) and

the notation
d . 2m 2m
T A\m+ m+j+1)

Then:
AP2m,0 = pP(A/IZm =0, Som = O) = dm,Opmqmu
A-P2m,1 = —q P(A’IZm <1, SZm = 0) = (dm,O + dm,l)pmqm,
APZm,? = pP(M2m = Oa S‘Zm = _2) = dm,lpm_]qm+1a
AP2m,3 = —qP(A/IZm <1, Som, = “2) = (dm,l + dm,2)pm_1qm+1,
A-PQmA = pP(AIZm =0, 5m = "4) = d1n,2pm_2qm+2'
A direct calculation yields Amzo = p3, Amzy = —p?q + 2pg® + ¢4, Amg o =

—p3 + 2p%q + pg?, Ams 3 = p?q, and Amz 4 = p3. Thus, we obtain

W2m+4 - W2m+3 = ;qum [dm,0p4 - dm,lp3q =+ (dm,O + 3dm,1 + dm,2)p2q2
- (2dm,0 -+ zdm,l + d?n,Z)qu - (dm.O + dm,l)q4] .



It follows using (2.5) that Wao,, 44 — Usynpg > Wornas — Uspuys if and only if
+ 1 2m+ +

AinoP* + (bt — Ao, )P2q + (Ao + 3din 1 + din 2) 1
— (2dy 0 + 2dp, 1 + alm,vz)pq3 — (dmpo + cl,ml)c]4 > 0.
Dividing by (2::), multiplying by (m + 1)(m + 2)(m + 3) and substituting ¢ = 1 — p,
we can (eventually) write this last inequality as
(12m? + 18m 4 6)p* — (40m? + 44m + 12)p® + (30m? + 12m + 6)p>
+ (3m? +33m + 12)p — (4m? + 14m +6) > 0. (2.6)
Now since p > pj, we have Wy > Uy. A straightforward calculation gives
Wy—Us=pt—2p>+p*+2p-1>0. (2.7)
With some further algebra, it can be seen that (2.7) implies (2.6) when p < 1/2.

Thus, we have (2.4).
Next, we show that

Wom+s — Uam+s < Wamas — Uzma. (2.8)

At p = p3,. .3, the right hand side of this inequality is zero, so Wamys < Uzmas.
Thus, (2.8) implies that p3,, < > p3,. 4.
Define

A2P, 4 :=P(1V Mpyg — Snya < k) — P(1V M, — S, < k).
In a manner similar to that applied to AP, ; in the first part of the proof, we can
show that ‘

AP, =p’P(M, =0,S, = —k) —¢°P(M,, <1,5, =1—k)
- ¢*P(M, <2,8,=2—k).

Applying this again with n = 2m and k=0, 1,...,4, we obtain

A?Pong = dm,op™T2q™ — dm,1p™ g™,

A2Pym1 = —(dm,o + dm,1)Pp"q™ "2,

APy g = dm1p™ g = (dino + dm,1 + dm2)P™ g™,

A2Pop s = —(dm,1 + dm,2)p™ g™ 3,

A2 Pym g = dm2p™ "2 — (dm1 + dim2 + dm,3)p™ g™

Now
m+3 _m+1
U2m+5 - U2m+3 = —tm+3P q

because Ugpm45 = Uzimta. So we get, putting everything together,

W2m+5 - W2m+3 - (U2m+5 - U2nL+3)

4
— Z A2P2m,kA7r3,k + tm+3pm+3qm+1
k=0
= p"'q" [(dinop” = 2dm 10 q + (dmpo + 3dm,1 + 2dm 2)p"¢° (2.9)

- (d1n,0 -+ dm,l + 3d7n,2 + dm,3)pzq13
- (3dm,0 + 4dm,l + 2dm,2)pq4
"(dm,ﬂ + d'm.,l)q5 + tm+3PSQ] .
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n D n 2

1 1 11| .484704 - --
2 1/2 12| .479846 - - -
3 1/2 13 | .485666 - - -
4 1.468989 - -- 14 4818

5 | .482881--- 15 4863

6 |.471448--- 16 4834

7 | .482686 - - 17 4870

8 | .474706 - - - 18 4846

9 | .483681:-- 19 A877
10 | .477526 - - - 20 .4856

Table 1: Values of p} for n < 20. Values to 6 decimal places are exact; others are
numerical estimates obtained by backward induction.

Now we can rewrite

tm+3p°q — 2dm1p’q
_ <2m) (10m? + 14m + 12)p*q + 4(2m + 1)(2m + 3)p3¢?
(m 4+ 1)(m +2)(m + 3)

k)

m
which is increasing in p on p < 1/2. Since p® also increases in p, and p*q%, pg* and ¢°
all decrease in p on p > 2/5, we see from (2.9) that Wop, 45— Wom+3—(Uam+s—Uzm3)

is increasing in p on pj < p < 1/2. (Note that pj ~ .4690 > 2/5; see Table 1) So it
suffices to consider the value of this difference at p = 1/2. Then we can calculate

W2m+5 - W2m+3 - (U2m+5 - U2m+3)

= 41/2)° (1) 6)(2.
= T Dm ) mt Nm 6)(2m® + 3m + 1)

<0

Y

for m > 6. For m = 3,4,5 the expression in square brackets in (2.9), call it fn(p),
must be investigated more carefully. Calculating pf, ..., p}; using backward induc-
tion (see Table 1) and determining the zeroes of fm(p) for m = 3,4,5, it can be
seen that for these values of m, fim(p) < 0 if p is sufficiently close to p3,, 3. This
completes the proof. O
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