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Abstract

We extends so-called Sum-the-Odds Theorem in optimal stopping to the multiple stopping
case. The optimal multiple stopping rule is shown to be the form of Multiple Sums-the-Odds.
We give the recursive equation of the maximum probability of win (that is, obtaining the
last success) with multiple stopping chances. Further, the asymptotic maximum probability
of win with double stopping chances is studied.

1 Introduction

For a positive integer N, let X3, X5, --- , Xn be independent Bernoulli random variables on
the probability space (Q,F,P). Let p; = P(X; =1)=1—¢q; =1 — P(X; = 0). The X]s are
observed sequentially. We call ¢ success” if X; = 1. The problem is to find a stopping rule 7
to maximize the probability of stopping at the last success with exactly one stopping chance.
Bruss [4] shows with the elegant simpleness that the optimal stopping rule 1',51) stops when the

sumn of the odds of future successes is less than one;

N
7Y = min te[l,N]: X;=1& Z r<1p, (151)
j=it+1

and obtains the maximum probability of “win” (that is, obtaining the last success), PO (win),

as follows.

N N
PO(win) = [ a D & ' (1.2)

k=il k=i

where 7; = p;/(1 — p;) is the odds, if p; = 1, 7; is taken to be 400 and i = min{i € [1,N] :
Zf\; k+1Ti < 1}. This problem and the result are referred to as the odds problem and the Sum-
the-Odds Theorem. Hill and Krengel [10] and Bruss [5] remarkably find that the lower bounds
of the maximum probability of obtaining the last success is e~1 whatever be the values of the
pi. This value is known as the asymptotic probability of win for the Classical Secretary Problem
(CSP) having the specific p; = 1/i for i = 1,---, N. Ferguson [8] extends it in several ways.

1This paper is an abbreviated version of Ano, Kakinuma and Miyoshi [1].
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An infinite number of Bernoulli trial is allowed or the Bernoulli variables are allowed to be
dependent. Here, we extend the single stopping chance of the odds problem to the multiple
stopping chances. First main result is that when we have m (m > 1) stopping chances, the
optimal stopping time for each k = 1,2,--- ,m is also shown to be the multiple sums-the-odds
form.

As the second main result, we shows that the asymptotic maximum probability of win for
the odds problem with the double stopping chances are shown to be e~! + e73/2 under some
appropriate conditions. It is nice to see that this asymptotic probability of win coincides with
the asymptotic probability of win for the the CSP with double stopping chances.

This paper is organized as follows. In Section 2, we derive the optimal multiple stopping
rule. To find it, our approach is essentially based on the method of Ano and Ando [2], in
which they study the condition for the one-step look-ahead stopping rule to be optimal in the
monotone multiple stopping problem. For the monotone stopping problem, see Chow, Robbins
and Siegmund [6] or Ferguson {7]. In Section 3, we give the recursive formula of P(™ (win).
Using this formula and the method in Bruss [4], the asymptotic probability of win with double

stopping chances are discussed.

2 Multiple Sums-the-Odds Theorem

Let Vi(m) be the maximum probability of win when we have at most m stopping chances hereafter
and we stop at X; = 1. Let Wi(m) be the maximum probability of win when we have at most
m stopping chances hereafter and we continue at X; = 1. Then Vi(m) and W'i(m) are given as

follows.
Vi(m) = PXiz1=0,Xi42=0,--- , Xn=0|X;=1) + Wi(m_l)
N
= I px;=0)+w?
=i+l
_ I WY, (2.1)
Jj=i+l1

where, Vi(o) = 0. The second equality follows from the independence of X;s.

Wi(m) = Z PXiy1=Xiq2=-=X;1=0,X; = 1)M,(m)
j=i+1
j-1

= Z [ H P(Xy = 0)]P(Xj =1)M™
j=i+1 Ic-—i+1

-3 [ I apM™. (22)
Jj=i+1 k=i+1

where, ch=i +1-=1and Wi( ) = 0 for each i. Hence, the optimality equation is as follows. For

eachm=1,2,--- N,
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When we face X = 1 and we have m more stopping chances, we then win with probability 1.

So that My (m) _ V(m) 1. When we continue at Xy = 1, we lose with probability 1. Hence,
wim —
Wy =

2.1 Double stopping odds problem

As a preparation to the double stopping odds problem, we give another proof of the Sum-the-
Odds Theorem by the one-step look-ahead stopping rule. The one-step look-ahead stopping
region for the single stopping odds problem is given by B(1) = {i: Ggl) > 0}, where

GV .=y _ Z [ H qk] (2.4)
J=i+l  k=i+l

BW is the region that the probability of win by the immediately stopping at X; = 1 is not
less than the probability of win when we continue at X; = 1 and then stop at the first success
arriving after X;. Substituting V( ) = H —it+195 into (2.4),

G = ﬁ qj — Z [ H qk]p,[ ﬁ o]

F=i+1 J=i+1 =1i+1 k=j+1
N N
F=i+1 Jj=i+1

Hence B() is written as B(1) = {z : E;.V:H_l rj < 1} . Since i +— Z;.Y__H_l r; is decreasing, B() is
“closed” in the sense of monotone problem of Chow et al [6]. Therefore, i = = min{s € [1, N] :
i € B} = min{i > M x; = 1}, where i = min{i € [1, N] : Zz—k+1 r; < 1}, is optimal.

This coincides the optimal stopping rule in (1.1).

Theorem 2.1 When we have at most double stopping chances, the optimal first and second
stopping times are given by 72 = min{i > P X = 1} and M= inf{i > i : X; = 1},

respectively, where

i1 N N

i = mindie[L,N: S+ S m S rp,siy, (2.6)
j=i+1 jrmib1vid  f2=di+l
N

i = mindie[L,N]: 3 <1}, (2.7)
j=i+1

Proof. When we have at most double stopping chances, the one-step look-ahead stopping region
B® jg given by B {z : G£2) > 0}, where

N j-1
o v 3 [ 11 afevs™ @)
F=it+l k=il

We show that B is closed by two steps as follows.
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(Step 1) First, we shall show that the following equation holds.
N j-1
ng) = G’El) + Z [ H Qk]Pij)I{jzig)}- (2.9)
J=itl  k=i+1
From (2.1) and (2.2), it follows that

N j-1
¢® = vO+w® - 3 [ IT a]p(vV +w)
j=i+l  k=i+1

- (- 2 (] o) vort - 8 (1 el
J

j=i+1 k=i+1 j=i+1 k=i+1

N j-1
6+ 3 [ T1 alnr? - wi® @19

=il k=i+1
On the other hand, observe that if 7 > ’L,(. ), then M( ) = ](1) and if j < zS, ), then M(l) W(l)
From these it follows that

MJ(I) _ WJ(l) — (‘/](1) _ WJ(I))I iy (2.11)

where 14 is the indicator function on A. Further, we have

Wj(l) Z [ H Qk]peMél) Z { H Qk]PeV()

=j+1 k=j+1 €=j+1 k=j+1

Substituting the equation above into (2.11), we have

-1
(1) 1) _ (1) (1) (1)
M) —wiP = (ViU - Y [ I1 qk]p‘n sy = G5 L5y
t=j+1 k=j+1

Hence, substituting this equation into (2.12), we have (2.9).

(Step 2) Let H(l) =1- 2 —i417j- From (2.5), it follows that G(l) H =it q]H( . Hence,
substituting this Gl(- ) into (2.9), we have

N N
2 1 1
¢® = [l u{EX+ > rnHEP]. (2.12)
j=i+l j=it1vil

Let Hi(z) H(l) + 3N H (1) Substituting H( )=1- Z;'V:i-u r; into Hi(z), we have

T4
j=1+1Vi, (D1

i1 N N
2
Hl() = 1- Z Tj— Z Tj Z T¢. (2.13)
j=i+1 j=it1vilh  e=r+l

Therefore, we have

Ay

N
B@A=(i-H (2)>0}— Zm-i— Z erregl

j=i+1 jmirlvi) =31
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Since H](-I) >0 for j > igl), ;v=i+1w<” erJO) is nonnegative and Hi(z) > Hi(l). Hi(z) > 0 for

1> z',(kl). For i < z',(,l), 7 Hi(l) is increasing. Therefore, for i < 2'5,1), 1 Hi(z) is also increasing.
Hence, B is “closed” and the optimal stopping region. Hence, the optimal first stopping time

is 75. From Bruss’ Theorem, the optimal second stopping time is 7. J

From (2.6) and (2.7), we immediately have the next Corollary.
Corollary 2.1 1 < z’&z) < igl) < N.

2.2 0Odds theorem for multiple stopping problem

When more m (1 < m < N) stopping chances are allowed, the one-step look-ahead stopping
region, B(™, is B(™ = {i : G™ > 0}. where

N j-1
o v~ 3° [ 1 alai v
j=itl  k=itl
If we set for each m =1,2,--- , N,
N
HO = HO - S, 215
j=i+1veim—D

where H; ' =1 — . yr;and i, =min{: >1: H, > 0}, then ={1:H "7 <1}
here HV =1 - YN r; and 4™ H™ >0}, then B™ = {i: HT™ < 1

Theorem 2.2 When we have at most m stopping chances, the optimal stopping times T,.(,m) for

eachm=1,2,--- ,N are T*(m) = min{¢ > i,(*m) : X; = 1}, where, i£m) = min{: € {1, N} : hgm) <
1},
Sy S | S m—1 N
h§{,") = > i+ [[RGe-1.m) > ri+ [ RGectm) DS rim (216)
J1=jo+1 k=1 ¢=1 Je=Jk—1+1 £=1 Jm=jm-1+1
and R(je—1,m) :=' N (m—e) Tj,. Further, for eachm =1,2,---,N,

Je=je-1+1Vi.

1<i™ <MD < <M< (2.17)

Proof. For m > 3, we prove by induction on m. As induction hypotheses, we assume for fixed
m > 3 that

i) B™ = {ie{1,---,N}: H™ > 0}.(2.15) holds and i — H.™ changes the sign at most
1 (2

once from negative to nonnegative. (i.e. B(™) is “closed”) .

) #H™ >H™Y, i=12,-.. ,N-1.
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Note that (ii) implies i{™ < {1 Then, we have B(m+1) = {te{1,---,N}: Gz(-mH) > 0},

where
N -1
U A B | KA (2.18)
j=i+l  k=i+l
From the similar approach to the one in the proof of Theorem 2.1, it follows that

N j-1

(m+1) __ 1) (m)

G = G+ > [ I1 q"]pJGJ' Tisitmy
j=itl  k=it+1

= ﬁ g HD + Z [ H ap;| H aH{™]

j=i+1 jemit1vil™) k=il I=j+1
A 1 - (m)
m
= [l |E8"+ >, nH™]. (2.19)
J=i+1 j=i+1vil™
Hence, setting
N
B = O 4 S E™, (2.20)
j=i+1vil™

and taking the difference between (2.15) and (2.20), we have

N N
Hi(m+1) _ Hi(m) - Z erJ(m) _ Z _Hj(m—l)
j=ir1vil™ j=itrvilm—D
Al (m) (m-1)
m m-—
> >, n{E-H"T} 20
Jj= 1.+1V1,("1 b

(m=1) " The second inequality

e >
()}0

The first inequality follows from H]( m) (G521} > 0 and z£ ) < i

follows form the induction hypothesis (ii). Therefore, (ii) holds for m+1. From Hf mr {z>
and the induction hypothesis (ii), it follows that H; (m+1) > 0. Since the second term of RHS in
(2.20) for i < i{™ is a constant value, i — H, (m+1) 4 is increasing. Hence, i — H, (m+1) changes
the sign at most once from negative to nonnegative. We then have B+ — {i e {1,.-- ,N}:

Hi(mﬂ) > 0} and see that it is“closed”. Therefore, (i) holds for m + 1. The proof completes. [

For m = 2,3, (2.16) in Theorem 2.2 are as follows.

i1 N N

2 _ E ' E : §

hi = Tj + T3, Tjas
j=i+l g=itivil)  J2=aitl

N i N N

i N
Z T + Z Th Z Tj, t+ Z L Z Tj2 Z Tjs-

J=i+l qi=it1vi®  J2=stl gi=it1vi®  jp=giavill) J=s2Hl

h{)



3 Maximum probability of win

Theorem 3.1 When we have at most m(m > 1) stopping chances,

N N N J
P™)(win) = H Qk Z ri + Z [ H qk]erj(mﬁl). (3.1)

k=il™ =il g=il™ k=™
Proof. 1t follows from
(m) — 7 ™ _ s T = (m—1)
. m m—
POwin) =W = 3 I e = 350 I aei | [T e+ W]
j=i£m) k=i£m) j=i£m) /C=i(,,m) =341
O
For example,
N N
P®(win) = Z Tk H qe
k=i®  g=i®
i1 k N N N N N
e e [ X ML e+ 3 > n| II 62
k=i =i j=it =iV k=il J=k+1 =i

Bruss [5] finds that for any p;, the lower bounds of the probability of win for the single stopping
odds problem is e~!. For the double stopping odds problem, we have the following asymptotic
probability of win.

Theorem 3.2 Let R; = Zﬁ—-i(l) rj, Ry = E;\;i(z) T RgQ) = Z;\_’:i(z) T2, then

PO (win) > Rie ™ + (1 + Ry — RieRs )e Fe, (3.3)
Further, if Ry — 1, Ry — 3/2, Rgz) = ZL{U 7‘;4 — 0, Rgz) — 0, as N — oo, then
P@)(win) > e~! +73/2, (3.4)
Proof. From the result of Bruss [4], it follows that
First term of the RHS of (3.2) > Rpe™ 2.

Since the first blanket of the second term is equivalent to the probability that no success arrive

between {2 and i{!) — 1, it follows from the result of Bruss [4] that

Second term of the RHS of (3.2)

i1 N N

N N N
= 1- H qe Z Tj H Q| = Z T; H qe — H a@ | > Ri(e™® — e—F2+R{Y

=i® =i =M =M =itV =P

47

).
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From the definition of i{* and the result of Bruss [4], it follows that

il -1 N
Third term of the RHS of (3.2) > [1- > ;| J] ae> (1= (R2 = Ri))e 2.
=i ) =P
Hence,
2
p® (win) > Rie B+ 1+ R; — RleRg ))e—RQ.
Then, under the conditions of Theorem 3.2, P?(win) > e~! + e3/2 as N — co. d

The asymptotic probability of win, e™! + e~3/2 equals to the asymptotic one for the CSP
with double stopping chances (for example, see Ano and Ando [2]). For the multiple stopping
odds problem, our conjecture of the lower bounds of probability of win for any p; is equivalent
to the asymptotic probability of win for the CSP with multiple stopping chances as follows;

() e =i
P™ (win) > lim > ¥ (3.5)

—00
=1
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