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Abstract. In this article we introduce Kloeden-Li’s paper (2006) which is
concerning results on the appearance of chaos of difference equations in
finite dimensional spaces, Banach spaces and complete metric spaces of
fuzzy sets. We discuss the ideas due to Kloeden-Li and iUustrate examples
of the chaos to difference equations in finite dimensional spacesand complete
metric spaces of fuzzy sets.

1. Introduction.
Consider the following difference equation

$x_{n+1}=f(x_{n}),$ $11=0,1,2,\ldots$ (1)

where $x_{n}\in J$ (an interval) and $f:Jarrow J$ be continuous. For $x$ in $J$, we denote
$P(x)=x$ and $f^{n+l}(x)=1(P(x))$ for $n=0,1,2,\ldots$ A point $x^{*}$ is called a k-periodic
point if $x^{*}$ in $J$ and $x^{*}=F(x^{*})$ with $x^{*}\neq P(x^{*})$ for $1\leq p<k$. If $k=1$ , then $x^{*}$

$=Xx\mathfrak{h}$ is called a fixed point. In Section 2 the Li Yorke’s theorem and Chaos,
for which a sufficient condition of a 3-periodic point in the one-dimensional
space is mentioned. In Section 3 a generalized Marotto’s result in the higher
dimensional space is dealt with and our main example of an $R^{m}$-mapping,
where a positive integer $m$ , with a 3-periodic point but no expanding is given.
Section 4 introduces a chaos criterion to fuzzy mappings which are due to
Kloeden $\cdot$Li are given.

2.Li $-$ Yorke $s$ Chaos
Li-Yorke’s theorem[2] on chaos in the one $-$ dimensional space is as

follows:
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Theorem 1. Let $J$ be an interval and $f:Jarrow J$be continuous. Assume
that there is one point $a\in J$, for which the points $b=f(a),$ $c=JV(a))=f^{2}(a)$ and $d$

$=f^{3}(a)$ satisfy $d\leq a<b<c$ $(or, d\geq a>b>c)$ . Then the following statements (i) and

(ii) hold tmly.

(i) For every $k=1,2,\ldots$ , there is a k-periodic points on $J_{2}$

(ii) There is an uncountable set $S\subset J$, containing no periodic points, which

satisfies the following conditions (a) and (b):

(a) For every no periodic $p,$ $q$ in $S$ with $p\neq q$, it follows that

$\lim_{narrow\infty}\sup 1f^{n}(p)- f^{n}(q)|>0$ and $\lim_{narrow\infty}$ int’ $|f^{n}(p)- f^{n}(q)|=0$ ;

(b) For every no periodic $p$ in $S$ and periodic $q$ in $J$, it follows that

$\lim_{narrow\infty}\sup^{1}f^{n}(p)-.f^{n}(q)|>0$ .

Example 1. The tent map $T(x)=1-|1-2x|$ for $0\leq x\leq 1$ is well known as a
chaotic function in the sense of Li $-$ Yorke. It has six 3-periodic points {2/9,

4/9, 8/9} and {27, 47, 67}.

3.Generalized Marotto’s Theorem for the Li-Yorke’s Chaos
In this section we consider an m-dimensional difference equation

$x_{n+1}=f(x_{J\ddagger}),$ $n=0,1,2,\ldots$ (2)

where $f:R^{m}arrow R^{m}$ is continuous and differentiable in the neighborhood of
the fixed point $x^{*}=f(x^{*})$ . Let $||x||$ be the Euclidean norm of $x$ in $R^{m}$ and
denote by $B_{\Gamma}(x)$ the closed $baU$ in $R^{m}$ of radius $z$

. and centered at $x$. Marotto
introduced the following definitions (1) and (2). See [1].

Definition 1
(1) Let $f$ be differentiable on $B(x^{*})$ , where $x^{\star}$ is a fixed point of $f$ The

point $x^{*}$ is called an expanding fixed point of $f$ on $R(x^{*})$ if $||Df(xt|>1$ for
all $x$ in $B(x^{*})$ . Here $Df(x)$ is the Jacobian matrix at $x$.

(2) Assume that $x^{*}$ is an expanding fixed point in $B(x^{*})$ for some $r>0$ .
Then $x^{*}$ is called a snap back repeller of $f$ if there exists an eventuaUy fixed
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point $J^{\gamma}$ in $R(x^{\star})$ with $J^{7}\neq x$, i. e., $f^{M}(.V)=x^{*}$ and the determinant $\det(Df^{M}(V))$

$\neq 0$ for some positive integer $M$.

It can be seen that in the one-dimensional space the existence of the
snap-back repeller is equivalent to the existence of a 3-periodic point for the
map $f^{p}$ with a positive integer $p$ .

Marotto claimed that Definitionl(l) means the following expanding property

of $f$

Expanding Property. There exist $s>1$ and $r$ $>0$ such that
$|I^{f}(x)_{-f}\psi)||>s||x-yl1$

for all $x,$ $.\gamma$ in $B(x^{*})$ .

The following example shows that the mapping $f$ has a $3\cdot perodic$ point

but it is not expanding.

Example 2. Consider the following $R^{2}$ -valued function.

$J^{\cdot}(x_{1},x_{2})=\{\begin{array}{l}7cos\frac{2\pi r_{1}}{7}sin\frac{2_{J}a_{2}}{7}\end{array}\}$ with $||(x_{1},x_{2})||=\sqrt{|x_{1}|^{2}+|x_{2}|^{2}}$

It has three fixed points $(\Phi 1,0),$ $\oplus_{2},0)$ and (7,0), where $fp_{1},$ $\Phi 2$ are
about 1.75, 6.65, respectively, and has six 3-peridoc points. See Fig. 1.

Fig.1. Function $f(x1)=(2\Pi 7)\cos(2\Pi X1’ 7)$ has three fixed points and six
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3-periodic points.

Function $f$ has the Jacobian matrix such as

$Df(x)=$ $\frac{f}{f\mathfrak{r}}(x_{1},x_{2})=(-(2\pi)\sin\frac{2\pi r_{1}}{7}0\frac{2\pi}{7}\cos\frac{2_{J}\alpha_{2}}{7}0)(x=(x_{1},x_{2}))$ .

Fig.2. The Euclidean norms of the Jacobian matrix are larger than 1 at $x=$

$\Phi 2$ and 7.

It follows that the values of the Euclidean norm to the Jacobian matrix are
larger than 1 at $x=\Phi 2$ and 7. See Fig.2. Then Definitionl(l) are satisfies
with $f$

If suppose that $||f(x)_{-}f(V)||>s||x^{-}y||$ with $s>1$ , then at $x=t(7,0)$

and $y^{r}=t(7, \epsilon)$ it follows that, $f(7,0)=t(7,0)$ with $s\epsilon>2\pi 7$ ,

$||f(7, \epsilon)_{-}f(7,0)||>$ $s||^{t}(7, \epsilon)- t(7_{2}0)||$ ,

so that
1 $|^{t}(0,(2\pi 7)\cos(2\pi c7))||>s||^{t}(0, \epsilon)||$

for $0<c<\epsilon$ in the mean value theorem, which means
2 $\pi’ 7>$ $s\epsilon$ $>$ 2 $\pi’ 7$

with a contradiction.
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The existence of snap $-$back repellers show that function $f$ of (2) has
homoclinic orbits under that $f$ satisfies Definitionl(2) and that (R) there
exists an eventually fixed point $xo=f^{n}(z)$ for a fixed point $z$ and positive
integer $n$ , provided that
$\det(Df^{j}(xo))\neq 0$ for $j=1,2,..,n$ . See Fig.3.

$\blacksquare x_{0}$

$=\backslash ^{t}\sim$

Fig.3. Function $f$ has a homoclinic orbit.

Theorem 3. ([1]) Let $z$ be a fixed point of $f$ Assume that Function $f$ is
continuously differentiable and absolute values of all eigenvalues to $Df(x)$ at
$x$ in a neighborhood of $z$ are larger than 1 under the above condition(R).

Then there exists a positive integer $N$ such that for each positive integer $p\geq$

$N,$ $f$ has a $p$-periodic point. Moreover there exists an uncountable set $S$ such
that $S$ .) $f(S)$ and that statements (ii)(a-b) of Theorem 1 hold truly.

4. Chaos Criterion to Fuzzy Mappings
Let ffi be the set of all functions, $ca\mathbb{I}ed$ fuzzy sets, $u$ : $R^{m}arrow[0,1]$ for

which $u$ is normal, fuzzy convex, upper semi-continuous and has the compact

support. Let $d$ be the Hausdorff metric and $D(u,v)= \sup_{0<\alpha\leq 1}d([u]^{\alpha},[v]^{\alpha})$ . Here

$[u]^{\alpha}=\{x\in R^{m}:u(x)\geq\alpha\}$ .

Then the metric space (ffi, D) is complete.
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Kloeden $-$ Li[11 gives criteria on the Li-Yorke’s chaos.

Theorem 4. Let $f:E^{m}arrow ffi$ be continuous and suppose that there exist

non $-$ empty compact subsets $A$ and $B$ of $E^{m}$ and integers $p,$ $q\geq 1$ such that
(i) $A$ is homeomorphic to a convex subset of $E^{m}$ ;

(ii) $A\subset f(A)$ ;
(iii) there exists $s>1$ such that $\alpha f(u),$ $f(v))>sNu,v)$ for all $u,$ $v$ in $A$;

(iv) $B\subset A$ ;

(v) $f^{p}(B)\cap A=\emptyset$ ;

(vi) $A\subset f^{p+q}(B)$ ;

(v\"u) $f^{p+q}$ is one to $-$ one on $B$.

Then the mapping $f$ satisfies the conclusions of Theorem 1.

Denote

$a( \alpha)=\inf[u]^{\alpha},$ $b( \alpha)=\sup[u]^{\alpha},$ $E_{0}^{1}=\{u\in E^{1}:a(0)=0\}$ ,

$I_{0}^{1}=\{u\in E_{0}^{1}$ : $a( \alpha)=\frac{\alpha}{2}(b(O)-L)$ and $b( \alpha)=b(O)-\frac{\alpha}{2}(b(O)-L)\}$ for $0\leq L\leq b(0),$ $\Delta_{0}^{1}=\{u\in I_{0}^{1} : L=0\}$ .

Fig.4. membership functions of $1^{1_{0}}(1eft)$ and $\Delta^{1_{0}}$ ($\dot{n}$ght).

Consider a fuzzy mapping $f:E^{1}arrow E$ by $f(u)=B(B(fi(u)))$ , which is

continuous with $D$ and maps $\Delta^{1_{0}}$ into itself. Here

$f_{1}$ : $E^{1}arrow E_{0}^{1}$ by $[f_{1}(u)]^{a}=[a(\alpha)-a(O),b(\alpha)-a(O)]$ ;

$f_{2}$ : $E_{0}^{1}arrow I_{0}^{1}$ by $[.f_{2}(u)]^{\alpha}=[\alpha l4,b(0)-\alpha M]$ , where $M= \frac{1}{2}b(O)-\frac{1}{8}(b(1)-a(1))>0$;

$f_{3}$ : $I_{0}^{1}arrow I_{0}^{1}$ by $[.f_{3}(u)]^{a}=g(b(O))[u]^{\alpha}$ , where $g(x)=T(x)/x$.

$T(x)$ is the tent map with $T(x)=0$ for $x\leq 0,$ $x\geq 1$ . See Fig. 5-6.
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Fig. 5. Fuzzy mappings fi md $f_{2}$ .

$\mathfrak{a}=1$

Fig.6. Fuzzy mappings fi and $f$

Denote $b=b(O)$, then we have $f(ub)=u\tau(b)$ .

Example 3. In order to apply Theorem 4 we consider the following

compact sets $A$ , $B$ and $p=q=1$ with

$A= \{u_{b}\in\Delta_{0}^{1}:\frac{9}{16}\leq b\leq\frac{7}{8}\},$ $B= \{u_{b}\in\Delta_{0}^{1}:\frac{3}{4}\leq b\leq\frac{7}{8}\}$ .

Then

$f(A)= \{u_{b}\in\Delta_{0}^{1}:\frac{1}{4}\leq b\leq\frac{7}{8}\},$ $f(B)= \{u_{b}\in\Delta_{0}^{1}:\frac{1}{4}\leq b\leq\frac{1}{2}\},.f^{2}(B)=\{u_{b}\in\Delta_{0}^{1}:\frac{1}{2}\leq b\leq 1\}$ .

Conditions (ii),(v) and (vi) hold truly and it follows that for $u_{x},$ $u_{J^{r}}$ in $A$

$\alpha f(u_{X}),f(u_{V}))=2\alpha_{u_{X}},$ $u_{V})$ .

and $f^{2}$ is one $-$ to one on $B$. By Theorem 4 $f$ is chaotic in the sense of
Li $-$ Yorke.
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5. Concluding Remarks
In this article we introduced Kloeden Li’s paper (2006) which is

concerning results on the appearance of chaos of difference equations in
complete metric spaces of fuzzy sets. We discussed the ideas due to
Kloeden-Li and illustrate examples of the chaos to difference equations in
complete metric spaces of fuzzy sets.
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