
An exact algorithm for the budget-constrained
multiple knapsack problem

Department of Computer Science, The National Defense Academy
Yokosuka, Kanagawa 239-8686, Japan

Byungjun You, Takeo Yamada
{g48095, yamada}@nda.ac.jp

1 Introduction
This paper is concemed with a variation of the multiple knapsack problem (MKP) [5, 6], where we are given

a set of n items $N=\{1,2, \ldots, n\}$ to be packed into m possible knapsacks $M=\{1,2, \ldots, m\}$. As in ordinary
MKP, by w_{j} and p_{j} we denote the weight and profit of item $j\in N$ respectively, and the capacity of knapsack
$i\in M$ is c_{j} . However, a fixed cost f_{i} is imposed if we use knapsack i , and knapsacks are freely available within
a fixed budget B . The problem is to determine the set of knapsacks to be employed as well as to fill the adopted
knapsacks with items such that the capacity constraints are all satisfied and the total profit is maximized. Let

y_{i} and x_{ij} be the decision variables such that $y_{i}=1$ if we use knapsack i , and $y_{i}=0$ otherwise. Also, $x_{ij}=1$

if item j is put into knapsack i , and $x_{ij}=0$ otherwise. Then, the problem is formulated as the following
budget-constrained multiple knapsack problem.
BCMKP:

maximize $\sum_{i=1}^{m}\sum_{j=1}^{n}p_{j^{X}ij}$ (1)

subject to $\sum_{j=1}^{n}w_{j}x_{ij}\leq c;y_{i}$, $i\in M$, (2)

$\sum_{i=1}^{m}x_{ij}\leq 1$, $j\in N$, (3)

$\sum_{i=1}^{m}f_{i}y_{i}\leq B$, (4)

$x_{ij},$ $y_{i}\in\{0,1\}$, $i\in M,j\in N$. (5)

Throughout the paper we assume the following.

A_{1} . Problem data $w_{j},$ $p_{j}(j\in N),$ $c_{i},$ $f_{i}(i\in M)$ and B are all positive integers.
A_{2} . Items are arranged in non-increasing order of profit per weight, i.e.,

$p_{1}/w_{1}\geq p_{2}/w_{2}\geq\ldots\geq p_{n}/w_{n}$. (6)

A3. Knapsacks are numbered in non-increasing order of capacity per cost, i.e.,

$c_{1}f_{1}\geq c_{2}f_{2}\geq\ldots\geq c_{m}’ f_{m}$. (7)

BCMKP is NP-hard [3], since the special case of free knapsacks $(f_{i}\equiv 0, \forall i\in M)$ is simply an MKP which
is already NP-hard. Since BCMKP is a linear 0-1 programming problem, small instances can be solved using
MIP (mixed integer programming) solvers. In this article, we present an algorithm that solves larger BCMKPs
to optimality within a few minutes in an ordinary computing environment.

数理解析研究所講究録
第 1682巻 2010年 168-175 168

2 Upper bound

This section derives an upper bound by applying the Lagrangian relaxation [2] to BCMKP. With nonnegative
multipliers $\lambda=(\lambda_{i})\in R^{m}$ and $\mu\in R$ associated with (2) and (4) respectively, the Lagrangian relaxation to
BCMKP is

LBCMKP(λ,μ) :
maximize $\sum_{i=1}^{m}\sum_{j=1}^{n}(p_{j}-\lambda_{i}w_{j})x_{ij}+\sum_{i=1}^{m}(\lambda_{i}c_{i}-\mu f_{i})y_{i}+\mu B$ (8)

subject to (3), (5).

For $\lambda\geq 0,$ $\mu\geq 0$, let $\overline{z}(\lambda,\mu)$ denote the optimal objective value to LBCMKP(λ,μ) . Then, it is easily proved
that $\overline{z}(\lambda,\mu)$ gives an upper bound to BCMKP, and $\overline{z}(\lambda,\mu)$ is a piecewise linear and convex function of λ and μ .
Moreover, if we consider the Lagrangian dual

minimize $\overline{z}(\lambda,\mu)$ subject to $\lambda\geq 0,\mu\geq 0$,

we have the following.

Theorem 1 There exists an optimal solution $\lambda^{\dagger}=(\lambda_{i}^{\dagger})$ to the Lagrangian dual such that $\lambda_{1}^{\dagger}=\lambda_{2}^{\dagger}=\ldots=\lambda_{m}^{\dagger}(\equiv$

$\lambda^{\dagger})$.

Proof. For a fixed $\lambda=(\lambda_{i})\geq 0$, let k $:= \arg\min_{i\in M}\{\lambda_{i}\}$. Then, since $p_{j}-\lambda_{i}w_{j}\leq p_{j}-\lambda_{k}w_{j}$ for all $i\in M$

and $j\in N$, the objective function (8) is maximized by setting $x_{ij}=1$ if and only if $i=k$ and $p_{j}-\lambda_{k}w_{j}>0$.
Similarly, $y_{i}=1$ if and only if $\lambda_{i}c_{i}-\mu f_{i}>0$, and we obtain

$\overline{z}(\lambda,\mu)=\sum_{j=1}^{n}(p_{j}-\lambda_{k}w_{j})^{+}+\sum_{i=1}^{m}(\lambda_{i}c_{i}-\mu f_{i})^{+}+\mu B$, (9)

where $(\cdot)^{+}$ $:= \max\{\cdot, 0\}$. Here, we note that $(\lambda_{i}c_{i}-\mu f_{i})^{+}$ is monotonically non-decreasing with respect to
$\lambda_{i}(i\neq k)$. Thus, under the condition $\lambda_{i}\geq\lambda_{k},$ (9) is minimized at $\lambda_{i}\equiv\lambda_{k}(i\in M)$. 1

From this theorem, it suffices to consider the case of $\lambda_{i}\equiv\lambda(\forall i\in M)$, and thus $\overline{z}(\lambda,\mu)$ is rewritten as

$\overline{z}(\lambda,\mu)=(C_{t}-W_{s})\lambda+(B-F_{t})\mu+P_{s}$. (10)

Here s and t are the critical values defined as s $:= \max\{j|p_{j}-\lambda w_{j}\geq 0\}$ and t $:= \max\{i|\lambda c_{i}-\mu f_{i}\geq 0\}$

respectively, and W_{s} is the accumulated weight given by W_{s} $:= \sum_{j=1}^{s}w_{j}$. $P_{s},$ C_{t} and F_{t} are analogously defined
for $(p_{j}),$ (c_{i}) and (f_{i}) , respectively. For a fixed $\mu\geq 0,$ (10) is a piecewise linear function of λ , and its gradient
changes from $C_{t}-W_{s}$ to $C_{t}-W_{s-1}$ as λ increases from $p_{t}w_{s}-0$ to $p_{s}w_{s}+0$. Similarly, the gradient increases
from $C_{t-1}-W_{s}$ to $C_{t}-W_{s}$ at $\lambda=(f_{t}c_{t})\mu$. Thus, we obtain the optimal λ as

$\lambda^{\dagger}(\mu)=\{\begin{array}{ll}p_{s}’ w_{s}, if W_{s-1}\leq C_{f}\leq W_{s},(f_{t}’ c_{t})\mu, if C_{t-1}\leq W_{s}\leq C_{t}.\end{array}$ (11)

Putting this into (10), $\overline{z}(\lambda^{\dagger}(\mu),\mu)$ is also piecewise linear with respect to μ , and by bisection method we
obtain an optimal μ^{\dagger} and λ^{\dagger}

$:=\lambda^{\dagger}(\mu\dagger)$, and correspondingly an upper bound $\overline{z}=\overline{z}(\lambda^{\dagger}(\mu^{\dagger}),\mu^{\dagger})$. Let us introduce
the thresholds as

$\theta_{j}:=p_{j}-\lambda^{\dagger}w_{j}$, $\eta;:=\lambda^{\dagger}c_{i}-\mu^{\dagger}f_{i}$. (12)

Then, from (9) the Lagrangian upper bound is given as

$\overline{z};=\overline{z}(\lambda^{\dagger},\mu^{\dagger})=\sum_{j\in N}\theta_{j}^{+}+\sum_{i\in M}\eta_{i}^{+}+\mu^{\dagger}$

B . (13)

169

3 Problem reduction
Assume that we have the optimal Lagrangian multipliers λ^{\dagger} and μ^{\dagger} with the corresponding upper bound \overline{z}

given by (13), as well as a lower bound \underline{z} obtained by some heuristic algorithmes. Let δ be either 0 or 1, and
we introduce $P(y_{k}=\delta)$ as the subproblem of BCMKP with y_{k} fixed at δ . $\overline{P}(y_{k}=\delta)$ denotes the Lagrangian
relaxation of $P(y_{k}=\delta)$ using the optimal λ^{\dagger} and μ^{\dagger} in (8). That is,

$\overline{P}(y_{k}=\delta)$;

maximize $\sum_{j=1}^{n}\theta_{j}x_{j}+\sum_{i=1}^{m}\eta_{i}y_{i}+\mu^{\dagger}B$ (14)

subject to $x_{j},y_{i}\in\{0,1\},$ $\forall j\in N,$ $\forall i\in M,y_{k}=\delta$, (15)

where we introduce a new 0-1 variable x_{j} defined by $x_{j}= \sum_{i=1}^{m}x_{ij}$.
Let (x^{*},y^{*}) be an optimal solution to BCMKP with $x^{*}=(x_{ij}^{*})$ and $y^{*}=(y_{i}^{*})$. Then, the following is

immediate.

Theorem 2 (Pegging of knapsacks) For every $k\in M$,

(i) If $\eta_{k}>0$ and $\overline{z}-\underline{z}\leq\eta_{k}\Rightarrow y_{k}^{*}=1$,

(ii) If $\eta_{k}<0$ and $\overline{z}-z\sim\leq-\eta_{k}\Rightarrow y_{k}^{*}=0$.
Proof. (i) Note that the optimal objective value to $\overline{P}(y_{k}=\delta)$ is $\overline{z}(Jk=\delta)$ $:= \sum_{j\in N}\theta_{j}^{+}+\sum_{i*k}’\epsilon M\eta_{i}^{+}+\mu^{\dagger}B+\eta_{k}\delta$.
Then, comparing this with (13) we have $\overline{z}(Jk=0)=\overline{z}-\eta_{k}\leq\underline{z}$, which implies $y_{k}^{*}=1$ in any optimal solution.
(ii) is similarly proved. 1

Applying Theorem 2, the knapsacks are classified into three disjoint subsets K_{0} $:=\{i\in M|y_{i}^{*}=0\},$ K_{1} $:=\{i\in$

$M|y_{i}^{*}=1\}$ and the remaining $M\backslash (K_{0}\cup K_{1})$. Knapsack $i\in K_{0}$ is never used, while $i\in K_{1}$ is always used in any
optimal solution to BCMKP.

Similarly, we can derive a pegging theorem for items, and applying this classify items into the disjoint sets
I_{0} $:=\{j\in N|x_{j}^{*}=0\},$ I_{1} $:=\{j\in N|x_{j}^{*}=1\}$ and $N\backslash (I_{0}\cup I_{1})$. Removing K_{0} and I_{0} , BCMKP is reduced (often
significantly) in size. In what follows, we assume that these are already done, and thus $K_{0}=I_{0}=\emptyset$.

4 A branch-and-bound algorithm
A characteristic feature of the branch-and-bound algorithm to be given below is that branchings are made

with respect to variables (y_{i}) irrespective to (x_{ij}) , and the latter is determined only at each terminal subproblems.
To constmct such a branch-and-bound algorithm, we introduce a subproblem of BCMKP as follows. Let F_{0}

and F_{1} be two subsets of M such that

$K_{0}\subseteq F_{0},$ $K_{1}\subseteq F_{1}$ and $F_{0}\cap F_{1}=\emptyset$.

These represent the sets of knapsacks which are fixed at 0 and 1, respectively. We consider the following.

$P(F_{0}, F_{1})$: maximize (1) subject to (2) $-(5)$, and

$y_{i}=0,$ $\vee i\in F_{0}$, $y_{i}=1,$ $\forall i\in F_{1}$. (16)

Using the optimal λ^{\dagger} and μ^{\dagger} obtained in Section 2, the Lagrangian relaxation to this problem is

$\overline{P}(F_{0}, F_{1})$; maximize (14) subject to $x_{j},y_{i}\in\{0,1\},$ $\forall j\in N,$ $\forall i\in M$ and (16).

Let $z^{*}(F_{0}, F_{1})$ and $\overline{z}(F_{0}, F_{1})$ be the optimal objective values to these problems, respectively. Clearly,
$\overline{z}(F_{0}, F_{1})$ gives an upper bound to $z^{*}(F_{0}, F_{1})$, i.e., $z^{*}(F_{0}, F_{1})\leq\overline{z}(F_{0}, F_{1})$; and we have

$\overline{z}(F_{0}, F_{1})=\sum_{j=1}^{n}\theta_{j}^{+}+\sum_{i\in F_{1}}\eta_{i}+\sum_{i\in U}\eta_{i}^{+}+\mu^{\dagger}B$, (17)

170

where U $:=M\backslash (F_{0}\cup F_{1})$ is the set of unfixed knapsacks. Then, if we have an incumbent lower bound \underline{z}

satisfying $\overline{z}(F_{0}, F_{1})\leq\underline{z}$, we can terminate subproblem $P(F_{0}, F_{1})$.
Other conditions for pruning subproblems are feasibility and dominance. First of all, if the total cost of

accepted knapsacks is larger than the budget, i.e., if $\sum_{i\in F_{1}}f_{i}>B,$ $P(F_{0}, F_{1})$ is infeasible, and thus terminated.
Next, if we have knapsacks $(i_{0}, i_{1})\in F_{0}\cross F_{1}$ such that $c_{i_{0}}\geq c_{i_{1}}$ and $f_{i_{0}}\leq f_{i_{}},$ $P(F_{0}, F_{1})$ is again terminated.
Indeed, if such a pair (i_{0}, i_{1}) exists, we can define a subproblem $P(F_{0}’, F_{1}’)$ by exchanging the role of these
knapsacks as $F_{0}’$ $:=F_{0}\cup\{i_{1}\}\backslash \{i_{0}\}$ and $F_{1}’$ $:=F_{1}\cup\{i_{0}\}\backslash \{i_{1}\}$. Then, $P(F_{0}, F_{1})$ is dominated by $P(F’F’)$, since
all the feasible solutions of $P(F_{0}, F_{1})$ are feasible to $P(F_{0}’, F_{1}’)$.

0 ’ 1

If $P(F_{0}, F_{1})$ is not terminated by any of these criteria, and in addition if U is non-empty, we pick up a
knapsack $i\in U$ and generate two subproblems of $P(F_{0}, F_{1})$ as $P(F_{0}\cup\{i\}, F_{1})$ and $P(F_{0}, F_{1}\cup\{i\})$. On the
other hand, if $U=\emptyset,$ $P(F_{0}, F_{1})$ is a terminal subproblem. Here, $P(F_{0}, F_{1})$ is an MKP with respect to the set
of knapsacks F_{1} . An upper bound to this subproblem can be obtained by solving the following 0-1 knapsack
problem, which is obtained by replacing the set of knapsacks with a single knapsack of capacity $\sum_{i\in F_{1}}c_{i}$. Let
the break item b be given by $b= \min\{j;\sum_{i=1}^{j}w_{i}\leq\sum_{i\in F_{1}}c_{i}\}$. Linear relaxation gives an upper bound, called the
Dantzig bound, to this problem as

$\overline{z}_{term}(F_{0}, F_{1})=\lfloor P_{b-1}+\frac{c_{b}}{w_{b}}(\sum_{i\in F_{1}}c;-W_{b-1})\rfloor$, (18)

and if $\overline{z}_{te}(F_{0}, F_{1})\leq\underline{z},$ $P(F_{0}, F_{1})$ is also terminated. Otherwise, we solve this MKP by calling MULKNAP
[8], and obtain the optimal $z^{*}(F_{0}, F_{1})$. If this is better than the incumbent lower bound \underline{z}, we update this as

$\underline{z}arrow z^{*}(F_{0}, F_{1})$.
Then, we can construct a branch-and-bound algorithm to solve $P(F_{0}, F_{1})$ as a recursive procedure. The

algorithm starts with the initial lower bound \underline{z} and (F_{0}, F_{1}) $:=(K_{0}, K_{1})$, and in termination produces an opti-
mal solution to BCMKP. However, in implementing the branch-and-bound algorithm, we have to specify the
strategy for the choice of the branching knapsack i , as well as the method to traverse the branch-and-bound
tree. As for the branching knapsack, under assumption A3, we pick up the unfixed knapsack of the smallest
index, i.e., $i:= \min\{k|k\in U\}$, and call $P(F_{0}, F_{1}\cup\{i\})$ recursively before calling $P(F_{0}\cup\{i\}, F_{1})$. This means that
we examine subproblems with more knapsacks fixed at 1 earlier than others. The algorithm is as follows.

171

5 Numerical experiments

We evaluate the performance of the branch-and-bound algorithm of the previous section through a series of
numerical experiments. We implement the algorithm in ANSI C language and conduct computation on an Dell
Precision T7400 workstation (CPU: Xeon X5482 $Quad- Core\cross 2,3.20GHz$).

5.1 Design of experiments
Instances are prepared within the range of $200\leq n\leq 160000$ and $5\leq m\leq 150$ according to the following

scheme. The weight w_{j} is distributed uniformly random over the integer interval [10, 1000], and profit p_{j} is
related to w_{j} in the following way.. Uncorrelated case (UNCOR): uniformly random over [10, 1000], independent of w_{j} .. Weakly correlated case (WEAK): unifonnly random over $[w_{j}, w_{j}+200]$.. Strongly correlated case (STRONG): p_{j} $:=w_{j}+20$

Knapsack capacity c_{i} is determined by $c_{i}=\lfloor 5\alpha)n\cdot\alpha\cdot\xi_{i}\rfloor$, where (ξ_{i}) is uniformly distributed over the
simplex $\{(\xi_{1}, \ldots,\xi_{m})|\sum_{i=1}^{m}\xi_{i}=1,\xi_{i}\geq 0\}$, and α is a parameter to control the ratio of items that can be accepted
into the knapsacks. Since average weight of items is approximately 500, $\alpha=0.50$ means that about a half of all
the items can be accommodated in the knapsacks. Knapsack cost is given by f_{i} $:=\rho;c_{i}$, where ρ_{i} is uniformly
random over [0.5, 1.5], and the budget B is chosen as $B= \beta\sum_{i=1}^{m}f_{i}$. Here β is another parameter that controls
the ratio of the budget B over the total cost of knapsacks.

5.2 Comparison against MIP solvers

Table 1: Comparison against MIP solvers.

$\overline{\frac{Corre1ationnm\frac{branch- and- bou.ndCPLEX11.1}{\#so1v_{10000100.01}edCPU_{\sec}}}{UNCOR103}}$#solved CPU_{\sec}

20 6 10 $0.(K)$ 10 0.08
30 9 10 1.66 10 8.81
40 12 10 14.31 6845.00

$\overline{WEAK103100.00100.01}$
20 6 10 0.00 10 0.48
30 9 10 0.34 10 107.03

$\frac{40121016..84}{STRONG10310000100.01}$
0 1800.00

20 6 10 0.00 10 2.54
30 9 10 0.04 9 374.06
40 12 10 0.66 2 1637.38

Table 1 summarizes the computation of small instances with parameters $\alpha=0.5$ and $\beta=0.6,$ $n=10\sim 40$

and $m=3\sim 12$ using MIP solver CPLEX 11.1 [4] and the branch-and-bound method of section 4. For each
correlation type and values of n and $m,$ 10 random instances are generated and solved. Here shown are the
number of instances solved to optimality (#solved) within a fixed CPU time, and the average CPU time in
seconds. We set the time-limit of computation at 1800 CPU seconds, and if computation is truncated due to
this time-limit, the CPU time for this instance is interpreted as 1800 seconds in computing averages.

From Table 1 we see that commercial solvers are able to solve only very small instances within the time-
limit, while branch-and-bound solved all these problems within 30 seconds.

172

5.3 Large instances
Table 2 gives the results of computation of upper and lower bounds as well as the pegging test for larger

instances with $n=20000\sim 160000$ and $m=50\sim 150$. The table shows the upper and lower bounds $(\overline{z}$ and
\underline{z}, respectively), and the column of \grave Error$($% $)$

’ gives their relative errors defined by 100 $\cdot(\overline{z}-\underline{z})’\underline{z}$. Applying
the pegging test, some knapsacks are fixed either at 0 or 1, and $m’$ shows the number of unfixed knapsacks,
i.e., $m’$ $:=|M\backslash (K_{0}\cup K_{1})|$. CPU_{1}

’ is the CPU time in seconds to compute upper and lower bounds, as well as
to carry out the pegging test. From this table, we observe that the pegging works effectively in reducing the
number of knapsacks. However, we found that it is less effective for reducing the size of n .

Table 3 is the results of the branch-and-bound algorithm for various instances. This table shows the optimal
value (z^{*}) , the number of the generated nodes in the branch-and-bound algorithm (#nodes), the number of
pruned subproblems due to infeasibility (#infeas), or due to upper bounds (#ub), the number of terminal MKPs
solved by calling MULKNAP (#Pis), and the CPU time in seconds (CPU_{2}) . Each row is again the average over
10 random instances.

Except for some cases, the branch-and-bound method solved BCMKPs exactly by invoking MULKNAP
only a few times and within a few minutes. We conclude that the branch-and-bound algorithm is very successful
for these large instances.

6 Conclusion
We have formulated the budget-constrained multiple knapsack problem, and presented an algorithm to solve

this problem to optimality. By combining the Lagrangian relaxation and pegging test with the branch-and-
bound method that solves MKP at each terminal nodes by calling MULKNAP, we were able to solve almost all
BCMKPs with up to $n=160000$ items and $m=150$ knapsacks within a few minutes in an $ordinai\gamma$ computing
environment. However instances with smaller n and larger m remain hard to be solved exactly.

References
[1] R.S. Dembo, P.L. Hammer, A reduction algorithm for knapsack problems, Methods of Operations Re-

search 36 (1980) 49-60.

[2] M. Fisher, The Lagrangian relaxation method for solving integer programming problems, Management
Science 27 (1981) 1-18.

[3] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,
Freeman and Company, San Francisco, 1979.

[4] ILOG, CPLEX 11. 1, http://www.ilog.com/products/cplex, 2009.

[5] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems, Springer, Berlin, 2004.

[6] S. Martello, P. Toth, Knapsack Problems: Algorithms and Computer Implementations, John Wiley&
Sons, Chichester, 1990.

[7] D. Pisinger, An expanding-core algorithm for the exact 0-1 knapsack problem, European Joumal of Op-
erational Research 87 (1995) 175-187.

[8] D. Pisinger, An exact algorithm for large multiple knapsack problems, European Joumal of Operational
Research 114 (1999) 528-541.

[9] L. Wolsey, Integer Programming, John Wiley&Sons, New York, 1998.

[10] T. Yamada, T. Takeoka, An exact algorithm for the fixed-charge multiple knapsack problem, European
Joumal of Operational Research 192 (2009) 700-705.

173

Table 2: Bounding and pegging results for large instances.

$\overline{\frac{Corre1ationmn(\cross 10^{4})\overline{z}(\cross 10’)\underline{z}(\cross 10’)Error(\varphi_{0})m’CPU_{1}}{UNCOR5020.678390.677760.0913.60.01}}$

4 1.36165 1.36010 0.11 16.2 0.02
8 2.71760 2.71492 0.10 14.9 0.05

$\frac{165.430955.424410..1216.00..10}{10020.682410.6822300319.3001}$

4 1.36177 1.36125 0.04 23.6 0.02
8 2.71905 2.71781 0.05 26.7 0.05

$\frac{0.05}{15020.683060.682990.0117.80.01}$16 5.42959 5.42713 23.4 0.10

4 1.36191 1.36173 0.01 21.1 0.02
8 2.71811 2.71749 0.02 31.9 0.05

$\frac{165.441945.440550.0231.20.10}{WEAK5020.482520.481760.1613.60.01}$

4 0.97220 0.97032 0.20 16.2 0.02
8 1.93985 1.93660 0.17 14.9 0.05

16 3.87370 3.86576 0.21 16.0 0.11
100 2 0.48740 0.48718 0.04 19.3 0.01

4 0.97232 0.97168 0.07 23.6 0.02
8 1.94149 1.93998 0.08 26.7 0.05

16 3.87202 3.86903 0.08 23.4 0.11
150 20.48819 0.48810 0.02 17.8 0.01

4 0.97251 0.97229 0.02 21.1 0.03
8 1.94033 1.93959 0.04 31.9 0.06

$\frac{163.886953.885250.0431.30.11}{STRONG5020.374260.373260.2717.10.48}$

4 0.74238 0.74094 0.19 14.2 1.08
8 1.49757 1.49432 0.22 16.2 2.09

$\frac{162.987052.981420.19}{1(X)20.372870.372640.0620.70.61}$14.9 6.76

4 0.75081 0.75034 0.06 23.0 1.57
8 1.49777 1.49652 0.09 26.1 2.89

16 2.98985 2.98719 0.09 27.2 8.63
150 2 0.375277 037520 002 162 059

4 0.75219 0.75203 0.02 18.5 0.84
8 1.49811 1.49746 0.04 31.2 2.49

16 2.98785 2.98645 0.05 34.8 3.45

174

Table 3: Branch-and-bound results for large instances.

Correlation m $n(\cross 10^{4})$ $z^{*}(\cross 10^{7})$ $\#$ odes #infeas 仇市 #Pis $CPU_{2}$$\overline{UNCOR502}$0.677931525.8178.1583.72.10.42
4 1.36067 2986.0 476.9 1014.6 2.5 1.57
8 2.71614 769.0 140.5 243.1 1.9 0.82

$\frac{165.426751086.0160.2380.92.92.36}{10020.682267414.8763.92942.8172.01}$

4 1.36153 7081.0 970.5 2567.8 3.2 3.75
8 2.71849 8054.8 1059.9 2965.1 3.4 8.58

$\frac{165.428264840.4939.51479.12.69.48}{15020.683003254.4490.51136.11.60.74}$

4 1.36178 4353.0 431.4 1744.1 2.0 2.46
8 2.71782 9085.8 858.2 3683.4 2.3 10.12

$\frac{165.4415111524.81443.74315.93.824.38}{WEAK5020.481971525.2177.9583.62.10.40}$

4 0.97101 2988.8 477.9 1015.0 2.5 1.56
8 1.93808 769.0 140.5 243.1 1.9 0.82

$\frac{163.868601088.8160.5382.02.92.37}{10020.487227416.2763.82943.6171.94}$

4 0.97202 7085.8 972.3 2568.4 3.2 3.71
8 1.94080 8049.0 1061.3 2960.8 3.4 8.49

16 3.87040
$\frac{4841.4939.21479.92.\cdot 69.45}{15020.488123260.249151138.0160.81}$

4 0.97235 4370.4 431.7 1752.5 2.0 2.44
8 1.94000 9121.8 863.4 3696.2 2.3 10.05

16 3.88642 11559.4 1444.2 4332.7 3.8 24.37
STRONG 50 20.37365 1894.6 356.1 589.8 2.4 1.53

4 0.74142 1586.0 193.9 597.7 2.4 2.75
8 1.49551 2946.8 475.4 996.5 2.5 8.91

$\frac{162.98398767.4140.5242.31..913.17}{10020.372713317.6436.312210251.83}$

4 0.75050 10080.6 1173.8 3863.7 3.8 8.81
8 1.49727 7365.6 1027.8 2652.3 3.7 17.10

16 2.98867 8526.4 1093.5 3167.2 3.5 42.15
150 20.37520 36858 3257 15171 11 153

4 0.75206 4666.6 613.7 1718.6 2.0 4.30
8 1.49783 7787.2 965.1 2925.4 4.1 21.62

16 2.98725 9468.6 901.8 3830.8 2.7 31.81

175

