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Abstract. For any symmetric probability measure v on the real line R with
finite moments of all orders such that v is not finitely supported, we construct
a large family of models of central limit theorem related to the ‘Gaussianiza-
tion’ of measure v in the sense of L. Accardi and M. Bozejko. The models
are parametrized with infinitely many parameters ¢ = {¢n}2,, gn € (-1,1),
and constructed so that, for each g, the central limit distribution of the model
realizes the same measure v, but that, for each pair of different values q # ¢/,
the two limit processes arising from the functional central limit (i.e. Brow-
nian motions) are not stochastically equivalent to each other. Although the
models do not explicitly contain the notion of ‘independence’ (for example,
‘independence’ as a universal calculation rule in the sense of R. Speicher), our
result suggests that, in non-commutative probability theory, the correspon-
dence from ‘independence’ to ‘central limit distribution’ is highly ‘many to
one’. Our result looks similar to the result of T. Cabanal-Duvillard and V.
Ionescu, but our approach is different from theirs.

1 Introduction

In non-commutative probability theory, the topic of ‘Gaussianization’ of probability measures
have been studied by several authors [6] [1] [2] [7]. Let Pgn(R) be the set of all probability
measures on the real line R with finite moments of all orders.

A Gaussianization result was first obtained by T. Cabanal-Duvillard and V. Ionescu [6]. They
showed that any symmetric probability measure v in Py, (R) can be obtained as the central limit
distribution of some weakly independent random variables on some non-commutative probability
space. Their construction was based on the amalgamated product of algebras with infinitely
many states.

In [1] L. Accardi and M. Bozejko have shown that any symmetric probability measure v in
Psm(R) can be realized as the distribution of the field operator Q; = C}*’ + C; on the A-
Fock space F(H) (= one-mode type interacting Fock space), and they call this phenomena

Gaussianization of (symmetric) probability measures (see §2 subs.3). Besides they proved that
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any possibly non-symmetric probability measure p in Py, (R) can be realized as the distribution
of the operator of the form

Xy = C} +C; +C3,
(see §2 subs.3). They call also this phenomena Gaussianization of probability measures.

In [2] L. Accardi, V. Crismale and Y. G. Lu have shown that any possibly non-symmetric
probability measure u in Py, (R) can be obtained as the limit distribution of the scaled sum of
some random variables on some interacting Fock space, but in this case random variables are
not weakly independent. Also A. D. Krystek and L. J. Wojakowski [7] have given another proof
of this fact.

In this note we study about the diversity of Gaussianization of symmetric probability mea-
sures. We restrict ourselves to the symmetric case because we are interested in the weakly
independent random variables.

Given a symmetric probability measure v € Py, (R) such that v is not finitely supported, and
given a sequence of possibly non-symmetric probability measures {m1}52, from Py, (R), then
we will construct a family {X (‘1)}qu, parametrized by ¢ = {qn}72, € Q = [[22,(~1,1), of
sequences X9 = {Xx l(q)}j‘ilof weakly independent random variables X I(Q) on the certain Fock
space féu)(ﬂ(N*)) (= a new example of interacting Fock space) associated to v so that the
following properties hold: (1) the distribution of X,(f) realizes p, for each n and all ¢; (2) the
distribution of the scaled sum ﬁ{X fq) + o+ X,(lq)} converges in moments to the measure v
(not depending on q) whenever the standard conditions on the joint moments for central limit
theorem are satisfied; (3) however, for different ¢ = {g,}2, # ¢ = {¢},}32,, the two limit
processes (= Brownian motions) {Bt(q)}tzo and {qu’)}tzo arising in the functional central limit
are not stochastically equivalent. So this result can be viewed as a construction of a family
of inequivalent models of central limit theorem for Gaussianization of a symmetric probability
measure v although our models do not explicitly contain the notion of ‘independence’ as the
universal calculation rule [9].

Our models satisfies the following features.

(a) In the construction any sequence of probability measures {m}52, can be used whenever
the uniform boundedness condition on the joint moments is satisfied. As a special case,
for any possibly non-symmetric probability measure y with mean 0 variance 1, we can
construct some weakly independent identically ditributed random varables with the same
distribution p; = p, | € N*, so that in the central limit the prescribed symmetric measure
v can be obtained.

(b) In the construction, for a given symmetric measure v, we can get a large family of inequiv-

alent models of central limit theorem with the same limit measure v.

Our result looks similar to the result of Cabanal-Duvillard and Ionescu. But our construction

is different from theirs.

The contents of this note is as follows.
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In §2 we remind of basic facts on the interacting Fock space (= A-Fock space) F. A\(H) and

Gaussianization of probability measures. In §3 we introduce (A, q)-Fock space Faqg(H), a new

x
n=21

example of interacting Fock space, which is parametrized with A = {An}22; and g = {g.}
and we construct on the Fock space F) 4(H) our model {Xl(q) }2;. In §4 we examine central

limit theorem and the functional central limit theorem for our model {X 1(q)}i“;1-

Throughout this note N denotes the set of all positive integers Z>0, and N* denotes the set of
all strict positive integers Z~o. The scalar product (-|-) is always supposed to be C-linear in the
right variable. Also we use the short notation (-) to mean the expectation w.r.t the vacuum state
(-) =(Q|-Q). A non-commutative probability space means a pair of (A, ¢) consisting of a unital
*-algebra A and a state ¢ of A. We use the term ‘random variable’ to mean a non-commutative
random variavle, i.e. an element a € A from a non-commutative probability space (A, ¢). The
distribution of self-adjoint random variable a = a* € A is a linear functional pg : C[X] - C
over the polynomial algebra C[X] with X* = X defined by

#a(P) = ¢(P(a))
for all P € C[X].

2 A-Fock space and Gaussinaiztion of probability measures

In this section, let us remind of the basic facts on the interacting Fock spaces and Gaussian-

ization of probability measures (see [1]).
2.1 M-Fock space

Let A = {A,}22, be a sequence of real numbers \, > 0 satisfying the condition that A\, = 0
implies Ap, = 0 for all m > n. Given a Hilbert space H (# {0}) and an integer n > 1, we define
a new scalar product (-|-)x, on the tensor product Hilbert space H®" by (u|v)y, = An(ulv)
whenever A, > 0. We denote by H;@: the Hilbert space H®" with the scalar product (-|-)»,,.
Then the A-Fock space (= one-mode type interacting Fock space) Fi(H) is defined as the
Hilbert space direct sum

FAH) = Ccoo P HE™,
neN*
where (2 is the vacuum vector with (Q|Q2), =1 and N* = {n € N* | A, > 0}. Here we denoted

by (:|-)x the scalar product of A\-Fock space Fy(H).

We also denote by H(™ the algebraic nth tensor product of H (without completion), i.e.
the linear span of vectors of the form f; ® --- ® f, with fi,---, fn € H, and by F\(H) the
corresponding algebraic Fock space over H, i.e. the algebraic direct sum of CQ and H(™ over
n € N*.

On the A-Fock space F)(H), we have three types of linear operators C}L, Ccr, C)‘?,t , f€H,
f # 0. For simplicity, the domain D of these operators is understood as D = Fj(H). The
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creation operator C}" is defined by

CH(fi®®f) =08 8 f

forn>1st. n+1leN* C;"(f1®---®fn) :==0forne N*st. n+1¢ N* and C}*Q = f.
The annihilation operator Cf_ is defined as Cj := (C}F)*'\. Here *) means the adjoint w.r.t.
the scalar product (-|-)». The action of CjT on the n-particle vectors is given by

An
A'rL—l

Cr(i® - ®fa) = FIf) f2® - ® fn

and C. ) = 0. Also, with a sequence of real numbers t = {t,}32,, we define the preservation

operator C’?,t by

/_/L f—-—’n\-——\
Ci(f® - ®f) =t f® - ®f

for the tensor power. For u € H™ s.t. (u|f®")) = 0, we put C’;,tu := 0. Besides we put
C?,t Q =1ty Q.

2.2 Jacobi coefficients

Let Psm(R) be the set of all probability measures on the real line R with finite moments of
all orders, i.e. / |z|Pu(dz) < oo for all p € N*.

Let p be any prgzbability measure in Psr,(R), and let {P,(z)}nen be the monic orthogonal
polynomials associated to u obtained from the Gram-Schmidt orthogonalization procedure. Here
the index set N is taken to be N := N when the support of u is an infinite set, and to be
N :={0,1,2,--- ,ng — 1} when the support of p is a finite set of cardinality ng.

Then, from the theory of orthogonal polynomials, there exists a unique pair of sequences of

real numbers {wn}nen\(o} and {@n}nen With wn > 0 such that the following relation holds:
(r — an) Po(z) = Ppyi1(z) + wp Pao1(2)

for all n € N, with the convention that wg =1, PFPy(z) =1, P-_;1(x) = 0. These sequences
{wn}nenmqo} and {an}nen are called the Jacobi coefficients associated to the measure p.

For the Jacobi coefficients, the following properties are well-known. We have
[ Po@)Pn(@) ulde) = Snminin -

for all m,n € N. If the measure y is symmetric then o, =0 for all n € N.

2.3 Gaussianization of probability measures

Let 1 be a probability measure in P, (R), and let a be a self-adjoint random varable in some
non-commutative probability space (A, ). We say that u is realized as the distribution u, of a
if we have

/Rtpd,u(t) = p(a?) (= pa(XP))
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for all p € N*. It can happen that two different measure p1 # p2 from Py, (R) are realized as
the distribution p, of the same random variable a in (A, ¢).

In [1] Accardi and Bozejko showed that, under the vacuum state (2| - Q), the distribution
of the field operator Qy = C’}" +C7, |[fll =1, on the interacting Fock space Fy(H) is given
by the symmetric probability measure 1 € Py, (R) such that its asscociated Jacobi coefficients
{wntnen\(o} and {an}nen satisfy the relations

An = wiwe--wp,  (n€ N\{0}),
anp =0 (nEN),

where N is given by N = {0} U {n € N* | A\, > 0}.

This result means that any symmetric probability measure p from Py, (R) can be realized as
the distribution of the field operator Qf on the A-Fock space F(H) with an appropriate choice
of A = {An}22, and hence that the moments of i can be described by the combinatorics of pair
partitions. They call this phenomena Gaussianization of (symmetric) probability measures.

Furthermore in [1] they also showed that the distribution of the operator C’}" + C’f_ + C%,,
|fll =1, is given by the (psossibly) non-symmetric probability measure p € P, (R) such that

its asscociated Jacobi coefficients {wn}nen\fo} and {om}nen satisfy

An = wiwz---wn, (ne N\{0}),
{ tn = an (ne N)

with N = {0} U {n € N* | A\, > 0}. So any possibly non-symmetric probability measure
i € Psm(R) can be realized as the distribution of C’}L +C; +C;,.

They call also this phenomena Gaussianization of probability measures although (1) the mea-
sure u is (possibly) non-symmetric, (2) a new operator C° is involved, and (3) the combinatorics

of moments is not given by the pair partitions but by the partitions consisting of pair or singleton
blocks.

2.4 Another realization of probability measures by operators on free Fock
space

Any probability measure on R with finite moments of all orders can be realized also as the
distribution of some operators on the free Fock space F(H) (i.e., the A\-Fock space Fy(H)
with A, =1 for all n € N*) as follows.

Let us define, with a sequence s = {s,}52; of positive real numbers s, > 0, the deformation

C}':s of creation operator C}*’ on the free Fock space F(H) by

C;:s(f1®®fn) = Sn+1f®f1®"'®fn
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and CISQ := s1 f. The deformation C;s of annihilation operator Cf_ is defined by
Crsi= (Czs)*o. Here %o means the adjoint w.r.t. the scalar product (-|-)o of the free Fock space
F(H) .

Then it is known that the distribution of the operator C}L‘s + C;s 4 C;,t is given by the

probability measure p with the Jacobi coefficients {wn}nenjo) and {an}nen satisfying

{wn = s, (neN\{0}),

anp = tp (n € N),

where N is given as the largest interval such that {0} ¢ N c {0} U {n € N* | s, > 0}.

This means that any probability measure u € Ps,,(R) can be realized also on the free Fock
space F(H) by deformation of operators (rather than deformation of scalar product) with an
appropriate choice of {s,}52; and {t,}32,.

In §3, we will jointly use both methods of realization of probability measures on Fock space
(deformation of scalar product and of operators) to construct a family of sequences of weakly

independent (non-commutative) random variables with prescribed probabilty distributions.

3 (), g)-Fock space and construction of the model

In this section, we explain about the (A, g)-Fock space F) 4(H) introduced in [8], a new
example of interacting Fock space, which is a deformation of A-Fock space Fy(H) by infinitely
many parameters g = {gn}52,. It is also a generalization of generalized g-deformed Fock space
of H. Yoshida [10]. Although we do not construct explicitly the notion of ‘independence’ in this
note, we can say intuitively that we obtain a variety of (some weak notions of) ‘independence’
which is controlled by parameters A = {A,}52; and ¢ = {g,}32,. Besides we will deform Fock
space operators on F) () so that we obtain a variety of ditributions for each random variables
(= operators) so that we get a family {X@},co of sequences X@ = {X l(q)};’il of weakly
independent random variables with prescribed distributions {#;}{2,. The family {X@},c0
will be used in §4 as inequivalent models of central limit theorem for Gaussianization of a

symmetric measure v.

3.1 g¢-Scalar product on the n-particle space

Given a Hilbert space H (# {0}), an integer n > 1 and a real number q € (—1,1), we define
a new scalar product (-I-),(;") on the algebraic tensor product H(™ of H by
(i® @ falg1®--®gn)Y 1= D ¢ filgoq)) ** (fal9o(n))
oceS(n)
where S(n) denotes the symmetric group of {1,2,--- ,n} and i(o) denotes the number of in-

versions in a permutation o. Then it is known in the theory of g-Fock space of Bozejko and
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Speicher [4] that the sesquilinear form (-[-)((In) is positive definite and can be represented by
the positive operator Tq(") on H(™ as (u|v),(1”) = (u |Tq(n)v )o where (:|-)o is the natural scalar
product of H(™. Of course we have Tq(")H(”) c H™ and (Tq(n))"lH(") c Hm,

3.2 (A, g)-Fock space

Let A = {)\,}5°; be a sequence of real numbers \, > 0 satisfying the conditions that A\, =0
implies A, = 0 for all m > n, and let ¢ = {g,}32, be a sequence of real numbers ¢, € (—1,1).

Denote by H?:,q the completion of the pre-Hilbert space H(™ with respect to the scalar
product ({)g\?q = Ap (])((1") whenever A\p, > 0. Then the (), q)-Fock space Fy q4(H) is defined
as the Hilbert space direct sum

Frq(H) = CQa P HE"

Anyqn’
neN*
where N* = {n € N* | A\, > 0}. The scalar product of F 4(*) is denoted by (-|-) 4. Denote by
F)4(H) the corresponding algebraic (), g)-Fock space defined in the same way as for Fy(H).

We have three types of linear operators A}F, A7, Afy s f €M, f#0,0on F, 4 (H) the domain
D of which is understood as F) 4(H). The creation operator A}' is defined by

A (i®- - ®fn) = f®RA®--® fn

and A}'Q := f. The annihilation operator A% isdefined as Af = (A:f")*m. Here x4, denotes

the adjoint w.r.t. the scalar product (-|-)»,. The action of A; on the n-particle vectors is

given by
= Anm(ne1)\—1(ne1) o= ie1 %
Ap(he e fn) = 3 (IG5, D GTNAMA® @ fi® - fu
T i=1
and A;() = 0. Here the notation “ .- ® fi ® ---” means “omit the i*" factor in the tensor

product.” Besides we define, with a sequence of real numbers t = {t,}%2,, the preservation

operator A;,t by

o [ ~ D - n_—\
(@ ®f) =t f®--®f
and A7 ,u=0 for v e H™ with (u|f®™), = 0.

3.3 Construction of the model

Le us first' consider the disribution of the field operator Q F= A} + AJT on the (A, g)-Fock
space Fy q(H). Then we have the following Gaussianization result.

Theorem 3.1. For any symmetric probability mesaure v in Pfrn(R) and any ¢ = {gn},, there
exists A = {An}52 such that v can be realized as the distribution of operator Qs on Fy 4(H) ,
| fll =1, under the vacuum state (Q] - Q)4 -
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Proof. Let {wy}nen\{oy and {ay}nen (with af, = 0) be the Jacobi coefficients associated to
v, then there exists A-Fock space Fy/(H) such that

{ A =wiwy--wp, (ne N\{0}),
AN =0 (m € N*\ N)
(see §2 subs.3). Besides let us define {\,}$2; by the relations
Mo Y D =X, (e,
oc€S(n)

then we have, for the one-dimensional Hilbert space Cf, the identification F) 4(Cf) = Fa (Cf)
as a Hilbert space because of (:|-)xq = (-[)x-

Let a}L (resp. c’f+ ) be the creation operator on Fy 4(Cf) (resp. Fx (Cf) ) defined in §3 subs.2
(resp. §2 subs.1). Then we have af = c’f+ under the identification Fy4(Cf) = Fa(Cf) , and
hence a} = (a}F g o= (c’f+)*A’ = c}. So the pP moment of Qy is shown to be

(@%) Frgt) T (A} + 45)7) Faq(H)

= E (Aj,‘ Afﬁ ... A;”) a0
(e162--ep)E{+,~}P

— €1 €2 .. %P
- ( 2{4‘ }p<af Ki Ki ) TxalD)
e162+€p -
13 € 7 E
= Z (clf 10}2"'Cf p)]-')‘,(Cf)

(e162--ep)E{+,—}?
+ —_
= ((¢f" +cf )p>r-,\,(cn

for all p € N*. This means that the distribution of Q) s realizes the symmetric measure v. ¢
f

Given a pair of v and g, let us put f,gu)('H) := Fi,q(H) which is the (A, g)-Fock space dermined
from Theorem 3.1.

Let us fix v and ¢, and let us deform operators A%, € € {+, —}, on the Fock spzice féu) (H) (
= Frq(H)). For any sequence s = {s,}52, of positive real numbers s, > 0, let A}"s be the

deformation of creation operator A}r defined by

A}, (1i® - ®fn) = sp1fO®f1®- - ® fa
and A}L’SQ := 81 f. Also let A_’ s be the deformation of annihilation operator A)? defined by
A;,s = (A}'.',s)*f\yq.
For the notational convenience we put
+ . A+ — . A- — — .— pt - o
B} = A},, By :=Aj,, B% = A%y, Xji=Xjep:= By + By + Bj.
Let us consider the distribution of the operator Xy under the vacuum state. Then we have
Theorem 3.2. Let v € Psrn(R) be a symmetric probability measure with infinite support.

Then any probability measure p in Prrn(R) can be realized as the distribution of operator Xy on

}'(g") (H), with an appropriate choice of {s,}52 and {t,}32,, under the vacuum state (| -Q)((,").
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Proof.  Let XN = {A}}22;, and X = {)\,}3, be two sequences given in the proof of
Theorem 3.1, let {wy}neanfoy and {oj}nerr be the Jacobi coefficients associated to u, and
let X' = {A/}32, be the sequence such that the A-Fock space Fy~(H) realizes the measure y
as the distribution of operator C’}" +C§, [|fll = 1. Here M is the index set determined from the
from the measure pu.

Let us use small letters to mean the operators on the Fock spaces over the one-dimensional

space Cf as follws:

bt =af,, b;=a;,, b3=a3, on  Fi4(Cf),

byt =cpy Ty BT =T, BT =7 o Fu(CH),
A A d°=ci°  on Fu(Cf)

Here we distinguished the operators on F)/(Cf) from the operators on Fy/(Cf) by the
notation ¢’ and ¢”.

For the operators b%, € € {+,0,—}, on Fj 4(Cf), we choose s = {s,}52; and t= {t,}32,
so that the relations

wy = wp (s2)® (neM\{0}),
{ a! = t, (ne M)

and s, =t, = 0 (n € N*\ M) hold. Note that N = N since v is not finitely supported, and
hence that w;, > O for all n € N*.

Then the p moment of X is shown to be

D + —_ o
XD oy = (BF +B7 +BY) o,
E.

= Z (BJE‘IB? - By7) Fxq(H)
(5152"'517)6{'*_:0’_}?

—_— £ £ 3

= Z (bfl bfz ces bfp) o€
(6162"'€P)€{+)°1_}p

_ ) E1p) €2 /€

- Z <bf 1bf - by p>}',\;(cf)
(5162"'5P)€{+1°9_}p

= Z (cf=ef™ - df ™) Fan (CF)

(e162-ep)E{+,0,—}P
" — /! O

+
= ((c'; +cf + e )P) Fyn(Cf)

for all p € N*. This means that the distribution of X s realizes the measure u. <

Let us given a sequence of probability measures {y;}72; from P, (R). Then we can construct
a sequence of operators {X;}{°, on the Fock space Féy) (H) with H := 12(N*), the I?-space over
the natural numbers N*, as follows. Let {e;}{2, be the natural orthonormal basis of I2(N*). For
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each | € N*| we put
Xpi=Xep = X, 500 405

where two sequences s) = {s1}2 | and t® = {t}2 , are choosed so that the distribution
of X; coincides with g;. This is possible from Theorem 3.2 whenever v is not finitely supported.
We write X I(Q) = X; when the explicit mention on the dependence on g is needed. The sequence
of random variables (= operators) {X;};2; on fé") (H) can be viewed as ‘independent’ random

variables because of the following.

Theorem 3.3 (Weak Independence). The factorization
OPXE - XPE) = (P - ()

holds for all p1,--- ,pr € N* whenever #{l1,l2,--- ,lx} = k.

4 Central limit theorem

In §3, we have constructed on the Fock space fé") (H) a family {XD},eq of models X (@ =
{X l(q)}?il of weakly independent random variables with prescribed distributions {y;}72;, which
is parametrized by q = {gn}2, € Q = [[72,(—1,1) . This construction is possible whenever
the symmetric probability measure v is not finitely supported. For these weakly independent
random variables {X l(q)}fil, let us examine central limit theorem and functional central limit
theorem.

4.1 Central limit theorem

For the weakly independent random variables {X l(q)}fil, we have the following central limit

theorem where the limit measure is shown to be the same measure v (not dependent on gq).

Theorem 4.1 (central limit theorem). Let v € Pgy,(R) be a symmetric probability measure with
infinite support, {p}52, be a sequence from Psn(R), and X O ={x ,(q)}fgl be weakly independent
random variables on féu)('H) corresponding to {w}i2, as constructed in §3 subs.8. Besides
suppose that each p; has mean 0 and variance 1, and that the joint moments are uniformly

bounded in the sense

sup (X x[D)] < oo
(i1i2--ip)E(N*)P

for all p € N*. Then we have, under the vacuum state,

: L fv@, @, @\ _ [.»
N‘L“lo«\/—{xl + x4 +XN} = | P dv(a)
for all p € N*.
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Proof. We use the standard method in quantum probability (= moment method). For simplicity

1
we write X; instead of Xl(q). At first the p*® moment of —{X1+ X2+ .-+ XN} is given by

VN

<<—\71——N{X1 +i(2 T +XN})p>
= (\/_I_N> Z (Xiy - X;)

(i1-ip)€{1,2, ,N}P

> (%)p > (Xiy -+ Xi)

VEP(p) (61---ip) €{1,2,--- ,N}?
(i1 -ip)nV
1 p
-> X (%) > meeEn,
VEP(p) (e1---ep) € {+,0,—}P (61---3p) € {1,2,--- ,N}P

(i1 - ip)mV

where P(p) is the set of all partitions on {1,2,--- ,p}. Here we have written (i1 ---i,)nV when
a sequence (i - - - ip) satisfies the condition that iz = i; if and only if k and ! belongs to a same
block in the partition V.

We can show that (B;}--- Bf:) = 0 for all (¢;---ip)nV and all (e1---€p), whenever V has
some singleton block. Using the uniform boundedness condition for moments, we can show
that, in the calculation of the limit of pt* moment with N — oo, only the pair partitions can
contribute to the limit. Denote by Pa2(p) the set of all pair partitions of {1,2,---,p}. Then we
have for large N

<(%{X1+X2+“'+XN})I)>
- Y () X e

VeP(p) (61---ip) € {1,2,--- ,N}?
(61 ip)nV
1 \»
~ 2 (%) Y KXy
VeP2(p) (i1---ip) € {1,2,-++ ,N}P

(i1 --'ip)nV

p
-> ¥ (%) > mmen
VEP2(p) (e1---€p) € {+,0,—}7 (i1 -ip) € {1,2,--+ ,N}?
(i1 -+ -ip)nV

1 p
= > (ﬁ) > (B ---By),
VePa(p) (i1---ip) € {1,2,--- ,N}P
(32 "‘ip)ﬂv
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where, in the last expression, (€1,--,€p) is the unique sequence in {—,+}? associated to the
pair partition V, which is defined by

€xr ==+ if k=r for some pair block {l,7} € V with! < r,

ex:=— if k=1 for some pair block {l,7} € V with l < .
By the way note that, since X; has mean 0 and variance 1, we have sgi) = 1, and hence we have,
for the above sequence (e1,--- ,&p) uniquely associated to V € Pa(p),

E £
(BS) -+ B?) = (AS ---AQ).

Besides, for the sequence (e1,--- ,&p) uniquely associated to V € P;(p), we have

(Ag -~ Ad)
= Z t(U) H (eilei,) Q(er,&r)

UeP2(p) (,r)eu

= Z tU) (51,(,1) H (eil'eir> Q(El,fr))

UeP2(p) (Lreu

= t(V) H (eilei,)

(I,r)ev
= t(V).
Here t(-) is the positive definite function ¢t : (J;2;P2(p) — C associated to the Fock space
féy) (H) as a generalized Brownian motion, in the sense of Bozejko and Speicher [4], and Q(-, )

is defined by Q(—,+) := 1 and Q(+,+) = Q(—,—) = Q(+,—) := 0. Also we used here the
Wick formula for a generalized Brownian motion.

Therefore we get for large N

<(\/LN_{X1+X2+---+XN})IJ>
~ ¥ (%) = (B - BY)

VEP2(p) (i1 ---ip) € {1,2,-- ,N}P
@1 ---ip)nV
~ > W)
VEP2(p)
This means that, under the vacuum state, the pth moment of —1N {X1+Xo+ -+ Xn}

converges to / zPdv(z) forallp e N*. o
R

4.2 Functional central limit theorem and inequivalent Brownian motions

For a family {X®},cq of models X@ = {Xl(q)}f’il parametrized by ¢ = {gn}52, €

Q =[172,(—1,1), let us show that, in the functional central limit, the resulting limit processes
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(= Brownian motions) {Bt(q)}tz0 are mutually inequivalent for different values of ¢ = {gn}3,
although the limit measure (= one dimensional distribution) always equals to the same measure
v. '

On the (v, ¢)-Fock space féy)(’H) (= Frq(H) ) with H := L%(R,), we define the operator
process {Bt(q)}tzo by

B = o, = A0, A,

where A}Q)i is the creation and annihilation operators on fé") (H), and x, denotes the indicator
function of an interval I C R,.

Theorem 4.2 (functional central limit theorem). Suppose that the same assumptions as in

Theorem 4.1 hold. Then, for each q, the sequence of processes

N 1 '

converges in the limit N — oo to the Brownian motion {Bt(q)}tzo in the sense that
N N N
(YoM y oWy fey . (B@BD .. B

for all t1,t2,--- ,t, > 0 and all p € N*. Besides, for different q # ¢, the corresponding two
Brownian motions {Bt(q)}tzo and {Bt(q/)}tzo are not stochastically equivalent in the sense of

Accardi-Frigerio-Lewis [3].

The proof of convergence is given by the same method as in the proof of Theorem 4.1. The
inequivalence between {B§q) }t>0 and {qul)}tzo can be easily shown by the calculation of joint

moments (see [8]).
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