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Abstract

We consider a nondifferentiable fractional programming problem as the form:

$(P)$ $\min_{X\in x}\max\frac{f(x,y)}{g(x,y)}y\in Y$

subject to $X=\{x\in \mathbb{R}^{n}|h_{j}(x)\leq 0, j=1,2, \ldots,p\}\subset \mathbb{R}^{n}$

$Y\subset \mathbb{R}^{m}$ , a compact subset,

where $f\geq 0$ and $g>0$ are continuous nondifferentiable but subdifferentiable on $X\cross Y\subset$

$\mathbb{R}^{n}\cross \mathbb{R}^{m}$ . The necessary and sufficient optimality conditions for problem $(P)$ are established.

Subsequently, we apply the optimality conditions to formulate a one-parameter dual program-
ming and prove the weak duality, strong duality, and strict converse duality theorems.

1 Introduction

Minimax ffactional programming is an interesting subject, which features in several types of opti-
mization problems. For example, it can be used in engineering and economics to measure a ratio
of hnctions between a given period of time and utilised resource to measure sufficiency or pro-
ductivity of a system as well as in game theory. In many situations the considered hnctions are
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continuous but nonsmooth andlor nonconvex. In order to smooth their theories, hnctions are often

assumed to be subdifferentiable $and/or$ generalized convexity as well as generalized invexity. For

example, see Chen and Lai [2] for $(F,p, \theta)$ -invexity and Lai et al. [6] for generalized convexity.

The problem $(P)$ is motivated by the previous paper: Lai et al. [5] in which the authors considered

a nondifferentiable minimax fractional programming problem as the following form:

$(P_{0})$ $\min_{x\in X}\sup_{y\in Y}\frac{\psi(x,y)+(x^{T}Ax)^{1/2}}{\psi(x,y)-(x^{T}Bx)^{1/2}}$

subject to $h_{j}(x)\leq 0$ , $j=1,2,$ $\ldots,p$ , $x\in \mathbb{R}^{n}$

Here $Y\subset \mathbb{R}^{m}$ is a compact subset, two hnctions $\phi$ and $\psi$ are $C^{1}$ ffinctions defined on $\mathbb{R}^{n}\cross \mathbb{R}^{m}$ ,

and $h_{j}(\cdot)$ : $\mathbb{R}^{n}arrow \mathbb{R}$ for $j=1,2,$ $\ldots,p$ are $C^{1}$ . The matrices $A$ and $B$ are positive semidefinite $n\cross n$

matrices. $\psi(x,y)+(x^{T}Ax)^{1/2}\geq 0$ and $\psi(x,y)-(x^{T}Bx)^{1/2}>0$ for each $(x,y)\in X\cross Y$ , where $X$ is

the set of all feasible solutions ofproblem $(P_{0})$ ; in the other words,

$X=\{x\in \mathbb{R}^{n}|h_{j}(x)\leq 0, j=1,2, \ldots,p\}$ .

In the case $A=B=0$, the problem $(P_{0})$ becomes a differentiable minimax ffactional programming

problem $(P)$ . Several authors have investigated the problem $(P_{0})$ by setting $A=B=0$. See also

Yadav and $Mukhe\dot{r}$ee[12], Chandra and Kumar [1], and Lai et al. [6-10]. Nonffactional minimax

problem was first considered by Schmitendorf [11] with $\psi\equiv 1,$ $A=0=B$ for $(P_{0})$

2 Necessary and Sufficient Conditions

Since $Y\subset \mathbb{R}^{m}$ is a compact subset and for any $x\in X,$ $f(x, \cdot)$ and $g(x, \cdot)$ are continuous on $Y$, there

exists finite $y_{i},$ $i=1,2,$ $\ldots,k$, such that the $\sup_{y\in Y}$ is attained its maximum. Now for each $x\in X$,

we denote

$K_{\lambda}(x)=\{(k, \mu,y)\in \mathbb{N}\cross \mathbb{R}_{+}^{k}\cross \mathbb{R}^{mk}|1\leq k\leq n+1;\mu=(\mu_{1}, \ldots,\mu_{k})\in \mathbb{R}_{+}^{k}$ ,

$\sum_{i=1}^{k}\mu_{i}=1$ and $\mu_{i}>0$ ;

$y=(y_{1}, \ldots,y_{k})$ with $\mathcal{Y}t\in Y_{\lambda}(x)$ for all $i=1,$ $\ldots,k$ },
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where the set

$Y_{\lambda}(x)= \{y\in Y|f(x,y)-\lambda g(x,y)=\max_{z\in Y}(f(x,z)-\lambda g(x,z))\}$

is a closed subset of $Y$ . We define

$F_{\lambda}(x)= \max(f(x,y)-\lambda g(x,y))y\in Y$

with the parameter $\lambda$ , which is defined by

$\max_{y\in Y}\frac{f(x,y)}{g(x,y)}=\lambda$ , $\frac{f(x,y)}{g(x,y)}\leq\lambda$ for all $y\in Y$.

So that $\lambda$ is dependent on $x$ , and $f(x,y)-\lambda g(x,y)\leq 0$ .

We can show that the following nonfractional parametric problem

$(P_{\lambda})$

$v( \lambda)=\min_{x\in\chi}\max(f(x,y)-\lambda g(x,y))y\in Y$
$(\leq 0)$

where $\lambda\in \mathbb{R}_{+}=[0,\infty)$ is a parameter,

is equivalent to problem $(P)$ with optimal value $\lambda^{*}$ and $v(\lambda^{*})=0$ . That is, $(P_{\lambda^{*}})$ and $(P)$ have the

same optimal solution. It is known that if the hnctions in $(P)$ are nonsmooth, nonconvex on $\mathbb{R}^{n}$

but subdifferentiable, then a point $x_{0}\in \mathbb{R}^{n}$ is an optimal solution of the programming

$(\tilde{P})$ minimize $\Phi(x)$

subject to $h_{j}(x)\leq 0$ , $j=1,2,$ $\ldots,p$
$x\in \mathbb{R}^{n}$

if and only if there is $\mu^{*}\in \mathbb{R}_{+}^{p}$ such that

$0 \in\partial\Phi(x)+\sum_{j=1}^{p}\mu_{j}^{*}\partial h_{j}(x_{0})+N(x_{0}X)$ and $\sum_{j=1}^{p}\mu_{j}^{*}h_{j}(x_{0})=0$

where $X$ is a compact set. It follows that if $x_{0}$ is $(P)$ -optimal and $\lambda^{*}$ is $(P)$ -optimal value, then

ffom $(P_{\lambda^{*}})$ , we have

$v( \lambda^{*})=\max(f(x_{0},y)-\lambda^{*}g(x_{0},y))y\in Y$

$=f(x_{0},y_{i}^{*})-\lambda^{*}g(x_{0},y_{i}^{*})$

for $\max_{y\in Y}\psi(x_{0},y)$ is attained at some $y_{i}$ when $\psi(x_{0},y)$ is continuous on the compact set Y. Hence

the $necessai\gamma$ and sufficient optimality conditions for problem $(P)$ can be stated as the following

theorem. Precisely, we state the following theorem of optimality condition.
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Theorem 2.1 (Necessary and Sufficient Conditions). Suppose that problem $(P)$ satisfies a regu-

larity condition. That is, there exists $x’\in X$ such that $h_{j}(x’)<0$ for all $j=1,2,$ $\ldots,p$ . Then $x_{0}$ is

an optimal solution of $(P)$ ifand only if there exist $\lambda^{*}\in \mathbb{R}_{+},$ $(k^{*}, \mu^{*},y^{*})\in K_{\lambda^{*}}(x_{0})$ and $\beta^{*}\in \mathbb{R}_{+}^{p}$

such that

$0 \in\sum_{i=1}^{k^{*}}\mu_{i}^{*}(\partial f(x_{0},y_{i}^{*})+\lambda^{*}\partial(-g(x_{0},y_{i}^{*})))+\sum_{j=1}^{p}\beta_{j}^{*}\partial h_{j}(xo)+N(x0/X)$ ; (2. 1)

$f(x_{0},y_{i}^{*})-\lambda^{*}g(x_{0},y_{i}^{*})=0$ for all $i=1,2,$ $\ldots,k^{*}$ , (2.2)

$\sum_{j=1}^{p}\beta_{\dot{}}^{*}h_{j}(x_{0})=0$ , (2.3)

and $\lambda^{*}=\max_{y\in Y}f(x_{0},y)/g(x_{0},y)$, the optimal value of $(P)$ .

Remark

1. A convex function is subdifferentiable, but a subdifferentiable hnction may not be convex.

2. Usually, ifwe establish the necessary optimality conditions, then we can establish the suffi-

cient optimality condition from the converse of necessary condition with extra assumptions.

3. Since the extra assumptions are various, the sufficient optimality conditions are also various.

4. Duality models are usually formulated from the sufficient optimality conditions, so duality

models are various.

5. A fractional programming $(P)$ can be reduced to an equivalence of nonfractional parametric

programming $(P_{\lambda})$ so we will formulate here a parametric dual model in the next section.

3 Parametric Dual Model

From the optimality conditions for problem $(P)$ in the preceeding section, we can formulate the

following parametric maximization problem which is a dual problem to the minimax problem $(P)$

as follows:

$(D_{P})$
$(k, \mu,y)\in K_{\lambda}(u)\max(u,\beta,\lambda^{\max_{)\in H(k,\mu,y)}\lambda}$
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where $H(k, \mu,y)$ denotes the set of all triples $(u, \beta, \lambda)\in \mathbb{R}^{n}\cross \mathbb{R}_{+}^{p}\cross \mathbb{R}+$ which satisfies

$0 \in\sum_{i=1}^{k}\mu_{i}(\partial f(u,y_{i})+\lambda\partial(-g(u,y_{i})))+\sum_{j=1}^{p}\beta_{j}\partial h_{j}(u)+N(u/X)$ , (3.1)

$\sum_{j=1}^{k}\mu_{i}(f(u,y_{i})+\lambda(-g(u,y_{i})))+\sum_{j=1}^{p}\beta_{j}h_{j}(u)\geq 0$ . (3.2)

If for a triple $(k, \mu,y)\in K_{\lambda}(u)$ , the set $H(k, \mu,y)$ is empty, then we define the supremum over it

to be $-\infty$ .
In a dual problem, we always need to establish three theroems: weak duality, strong duality,

and strict converse duality theorem, which we state as follows.

Theorem 3.1 (Weak Duality). Let $x$ and $(u, \beta, \lambda, \mu,y)$ be $(P)$ -feasible and $(D_{P})$ -feasible, respectively.

Then

$\max f(x,y)g(x,y)\geq\lambda y\in Y’$ .

Proof. This theorem can be proved by contrary. If the result is not tme, we then deduce that

$f(x,y)-\lambda g(x,y)<0$ for all $y\in Y$

and if there are $k$ points, $y_{i}(1\leq i\leq k)$ , such that they are attained the maximum point in the

compact set $Y_{\lambda}(u)$ , then there corresponds $\mu_{i}>0$ with $\Sigma_{i=1}^{k}\mu_{i}=1$ , and

$\sum_{i=1}^{k}\mu_{i}(f(x,y_{i})+\lambda(-g(x,y_{i}))<0)$ . (3.3)

By the optimality conditions (3.1) and (3.2), it will reduce the inequality

$\sum_{i=1}^{k}\mu_{i}(f(x,y_{i})+\lambda(-g(x,y_{i}))\geq 0)$ . (3.4)

This condtradicts the inequality (3.3), and the proof is complete. $\square$

Theorem 3.2 (Strong Duality). Suppose that problem $(P)$ satisfies a regularity constraint. Let $x_{0}$

be an optimal solution of$(P)$ . Then there exist $\lambda^{*}\in \mathbb{R}+,$ $(k^{*}, \mu^{*},y^{*})\in K_{\lambda^{*}}(x_{0})$ and $\beta_{j}^{*}\in \mathbb{R}_{+}^{p}such$

that $(x_{0}, \beta^{*}, \lambda^{*}, k^{*}, \mu^{*},y^{*})$ is an optimal solution of $(D_{P})$ , and the optimal values of$(P)$ and $(D_{P})$

are equal, that is, $\min(P)=\max(D_{P})$ .
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Proof. It follows from the Theorem 3.1 (Weak Duality) that if $x_{0}$ is a $(P)$ -optimal solution with op-

timal value $\lambda^{*}$ , then there exist $(k^{*}, \mu^{*},y^{*})\in K_{\lambda^{*}(x_{0})}$ and $\beta_{j}^{*}\in \mathbb{R}_{+}^{P}$ such that $(x_{0},\beta^{*}, \lambda^{*},k^{*}, \mu^{*},y^{*})$ is

a feasible solution of $(D_{P})$ . As $\lambda^{*}=\max_{y\in Y}f(x_{0},y)’ g(x_{0},y)$ , we see that $(x_{0},\beta^{*},\lambda^{*},k^{*},\mu^{*},y^{*})\in$

$(D_{P})$ -optimal and $\lambda^{*}$ is also the $(D_{P})$ optimal value. $\square$

Theorem 3.3 (Strict Converse Duality). Suppose thatproblem $(P)$ satisfies a regularity constraint.

Let $x$
’ and $(x_{0}, \beta^{*}, \lambda^{*}, k^{*}, \mu^{*},y^{*})$ be optimal solutions of $(P)$ and $(D_{P})$ , respectively. Ifone ofthe

functions $f(\cdot,y),$ $-g(\cdot,y)$ , and $h_{j}(\cdot)$ for $j=1,2,$ $\ldots,p$ is strictly convex at $x_{0}$ , then $x’=x_{0}$ , that is,

$x_{0}$ is an opotimal solution of $(P)$ and $\max_{y\in Y}f(x’,y)’ g(x’,y)=\lambda^{*}$.

Proof. Assume that the $(P)$ -optimal $x’\neq x_{0}$ , then by Theorem 3.2, there is $(k’,\mu’,y’)\in K_{\lambda’}(x’)$

such that $\lambda’=\max_{y\in Y}f(x’,y)/g(x’,y)=\lambda^{*}$ , and hence $(x’,\beta’,\lambda’,k’,\mu’,y’)$ is $(D_{P})$ -optimal. Thus

$(x_{0},\beta’, \lambda‘, k’,\mu’,y’)$ is $(D_{P})$ -optimal with value $\lambda’=\lambda^{*}$ , and it must reduce $x’=x_{0}$

$\square$

4 Remarks for Further Development

We can see two possible ways to extend this work. One can try to relax convexity to some kind

of generalized convexity; for example, pseudoconvexity, quasiconvexity, or $(F,\rho)$ -convexity. In

addition, one can study problem $(P)$ in complex variables (see Lai et al. [8] and [9]) or set variables

(cf Lai et al.[6] and [10]). For minimax ffactional programming problem

$\min\max\frac{Ref(\zeta,\eta)}{Reg(\zeta,\eta)}\zeta\in\chi\eta\in Y$

subjet to $\zeta\in S^{0}=\{\zeta\in C^{2n}|-h(\zeta)\in S\}$ ,

the general study for nondifferentiable hnctions is still open.
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