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Abstract. In this paper, we first obtain an existence theorem of the solutions for a

variational relation problem. An existence theorem for a variational inclusion problem,

a KKM theorem will be established as particular cases. Some applications concerning a

saddle point problem with constraints, existence of a common fixed point for two mappings

and an optimization problem with constraints, will be given in the last section of the paper.

1 Introduction and preliminaries

If $X$ and $Y$ are topological spaces, a multivalued mapping (or simply, a mapping) $T$ :
$Xarrow Y$ is said to be: (i) upper semicontinuous (in short, usc) (respectively, lower semi-

continuous (in short, lsc) $)$ if for every closed subset $B$ of $Y$ the set $\{x\in X : T(x)\cap B\neq\emptyset\}$

(respectively, $\{x\in X$ : $T(x)\subseteq B\}$ ) is closed; (ii) continuous if it is usc and lsc; (iii) closed

if its graph (that is, the set $GrT=\{(x,$ $y)\in X\cross Y$ : $y\in T(x),$ $x\in X$ }) is a closed

subset of $X\cross Y$ ; (iv) compact if $T(X)$ is contained in a compact subset of $Y$ .

For a mapping $T:Xarrow Y$ and $y\in Y$ , the set $T^{-}(y)=\{x\in X : y\in T(x)\}$

(respectively, $T^{*}(y)=\{x\in X$ : $y\not\in T(x)\}$ ) is called the fiber (respectively, the cofiber)

of $T$ on $y$ .

Let $X$ be a nonempty convex subset of a real locally convex Hausdorff topological

vector space, $T$ : $X-\triangleleft X,$ $Q$ : $Xarrow X$ be multivalued mappings and $R(x, y)$ be a

relation linking $x\in X$ and $y\in X$ . In this paper, we study the following variational

relation problem:
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(VR) Find $\overline{x}\in X$ such that $\overline{x}\in T(\overline{x})$ and $R(\overline{x}, y)$ holds for all $y\in Q(\overline{x})$ .

Such problems are called variational relation problems and have been studied for the
first time by Luc [1] and Khanh and Luc [2] and Lin et al. [3, 4]. The relation $R$

is often determined by equalities and inequalities of real functions or by inclusion and

intersection of multivalued mappings. Typical examples of variational relation problems

are the following problems:

(i) Variational inclusion problem:

Let $Z$ be a vector space. Given a multivalued mapping $F$ : $X\cross Xarrow Z$ , the

variational relation $R$ is defined as follows

$R(x, y)$ holds iff $0\in F(x, y)$ .

Then (VR) becomes

Find $\overline{x}\in X$ such that $\overline{x}\in T(\overline{x})$ , and $0\in F(\overline{x}, y)$ for all $y\in Q(\overline{x})$ .

This is a variational inclusion problem studied in [5-7] which generalizes several

models of [8].

(ii) Equilibrium problems:

Let $Z$ be a topological vector space and $F$ : $X\cross Xarrow Z,$ $C$ : $Xarrow Z$ . The
variarional relation $R$ is defined as

$R(x, y)$ holds iff $F(x, y)\rho C(x)$ ,

where $F(x, y)\rho C(x)$ represents one of the following relations $F(x, y)\cap C(x)\neq\emptyset$ ,
$F(x, y)\subseteq C(x),$ $F(x, y)\cap$ int $(-C(x))\neq\emptyset,$ $F(x, y)\subseteq Z\backslash -$ (int $(C(x))$ ). Then (VR)

becomes

Find $\overline{x}\in X$ such that $\overline{x}\in T(\overline{x})$ , and $F(\overline{x}, y)\rho C(x)$ for all $y\in Q(\overline{x})$ .

This is a typical generalized vector set-valued equilibrium problem studied in [8-11].
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(iii) Differential inclusion problem:

Let $C[0,1]$ be the space of continuous functions on the interval $[0,1]$ , and $C^{1}[0,1]$

be the space of continuous differentiable functions on the interval $[0,1]$ . Let $X\subseteq$

$C^{1}[0,1]$ be a nonempty compact convex set and $F:X\cross Xarrow C[0,1]$ . We define a

relation $R$ as follows:

$R(x, y)$ holds iff $\frac{dx}{dt}\in F(x, y)$ .

Then (VR) is formulated as follows:

Find $\overline{x}\in X$ such that $\overline{x}\in T(\overline{x})$ , and $\frac{d\overline{x}}{dt}\in F(\overline{x}, y)$ for all $y\in Q(\overline{x})$ .

This is a differential inclusion problem studied in [9] and many other papers.

(iv) Ekeland’s variational principle:

Given a nonempty compact convex subset $X$ of a Banach space, and a function
$f$ : $Xarrow \mathbb{R}$ , we define a relation $R$ as follows:

$R(x, y)$ holds iff $f(y)+||x-y||\geq f(x)$ .

Then (VR) is formulated as follows:

Find $\overline{x}\in X$ such that $\overline{x}\in T(\overline{x})$ , and $f(y)+||\overline{x}-y||\geq f(\overline{x})$ for all $y\in Q(\overline{x})$ .

(v) optimization problem:

Given a nonempty convex subset of a real locally convex Hausdorff topological vector

space and a function $f$ : $Xarrow \mathbb{R}$ , we define a relation $R$ as follows:

$R(x, y)$ holds iff $f(y)\geq f(x)$ .

Then (VR) is formulated as follows:

Find $\overline{x}\in X$ such that $\overline{x}\in T(\overline{x})$ , and $f(y)\geq f(\overline{x})$ for all $y\in Q(\overline{x})$ .

This problem is known as constrained extreme problem.
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Motivated by the previous considerations, an existence theorem for problem (VR), ob-

tained in the next section, will be our main result. An existence theorem for a variational

inclusion problem, a KKM theorem and several equilibrium theorems will be established
as particular cases.

Some applications concerning a saddle point problem with constraints, existence of a
common fixed point for two mappings and an optimization problem with constraints, will

be given in the last section of the paper.

2 Main result

In order to establish the main result, we need the following two lemmas:

Lemma 2.1. [9-10] Let $X$ be a topological space, $Y$ be a topological vector space and
$S,$ $T$ : $Xarrow Y$ be two mappings. If $S$ is usc with nonempty compact values and $T$ is

closed, then $S+T$ is a closed mapping.

Lemma 2.2. Let $X$ be a topological space and $Y$ be a Hausdorff topological vector space.

If $f$ : $Xarrow \mathbb{R}$ is a continuous function and $T:Xarrow Y$ a compact closed mapping, then

the mapping $fT:Xarrow Y$ defined by $(fT)(x)=f(x)T(x)$ is closed.

Definition 2.1. [12] For a subset $K$ of a vector space $E$ and $x\in E$ , the outward set of
$K$ at $x$ is denoted and defined as follows:

$O(K;x)=\bigcup_{\lambda\geq 1}(\lambda x+(1-\lambda)K)$ .

Definition 2.2. Let $X$ be a convex subset of a topological vector space E. $F:Xarrow E$

is said to be a KKM mapping w.r. $t$ . itself if $F( co(A))\subseteq\bigcup_{x\in A}F(x)$ for each finite subset
$A$ of $X$ .

Theorem 2.1. Let $X$ be a nonempty compact convex subset of a locally convex Hausdorff

topological vector space $E,$ $T:Xarrow X,$ $Q:Xarrow X$ , be multivalued mappings and $R$ be

a variational relation linking points of $X$ , satisfying the following conditions:
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(i) $T$ is usc with nonempty compact convex values;

(ii) $Q$ is nonempty convex valued;

(iii) for each $x\in X$ , the set { $y\in X$ : $R(x,$ $y)$ does not hold} is convex;

(iv) for each $y\in X$ , the set $Q^{-}(y)\cap$ {$x\in X:R(x,$ $y)$ does not hold} is open in $X$ ;

(v) for each $x\in X$ and $y\in O(T(x);x)\cap Q(x),$ $R(x, y)$ holds.

Then there exists $\overline{x}\in X$ such that $\overline{x}\in T(\overline{x})$ and $R(\overline{x}, y)$ holds for all $y\in Q(\overline{x})$ .

Denote by $S_{R}$ the set of all $\overline{x}\in X$ satisfying the conclusion of Theorem 2.1.

Proposition 2.1. If condition (iv) in Theorem 2.1 is replaced by the following condition:

(iv’) $Q$ has open fibers and the set $\{(x,$ $y)\in X\cross X:R(x,$ $y)$ holds $\}$ is closed in $X\cross X$ .

Then $S_{R}$ is nonempty and compact.

Theorem 2.2. Let $X$ be a nonempty compact convex subset of a locally convex Hausdorff

topological vector space $E,$ $Z$ be a vector space and $T$ : $Xarrow X,$ $Q$ : $Xarrow X$ and
$F$ : $X\cross Xarrow Z$ be multivalued mappings satisfying conditions (i) and (ii) in Theorem 2.1

and:

(iii’) for each $x\in X$ , the set $\{y\in X : 0\not\in F(x, y)\}$ is convex;

(iv’) for each $y\in X$ , the set $Q^{-}(y)\cap\{x\in X : 0\not\in F(x, y)\}$ is open in $X$ ;

$(v’)$ for each $x\in X$ and $y\in O(T(x);x)\cap Q(x),$ $0\in F(x, y)$ .

Then there exists $\overline{x}\in X$ such that $\overline{x}\in T(\overline{x})$ and $0\in F(\overline{x}, y)$ for all $y\in Q(\overline{x})$ .

Remark 2.1. Theorem 2.1 is different from any result in [8-10]. It is not a generalization

of any result in [8-10]. The proof of Theorem 2.1 is also different from any results in

[8-10].
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As a simple consequence of Theorem 2.2, we have the following KKM theorem and

minimax element theorem.

Theorem 2.3. Let $X$ be a nonempty compact convex subset of a locally convex Hausdorff

topological vector space $E,$ $T:Xarrow X$ and $G:Xarrow X$ be multivalued mappings

satisfying the following conditions:

(i) $T$ is an u.s. $c$ . multivalued map with nonempty closed convex values;

(ii) $G$ is a KKM mapping w.r. $t$ . itself;

(iii) for each $y\in X,$ $G(y)$ is closed;

(iv) for each $x\in X$ and $y\in O(T(x);x),$ $x\in G(y)$ .

Then there exists $\overline{x}\in X$ such that $\overline{x}\in T(\overline{x})\cap[\bigcap_{y\in X}G(y)]$ .

Theorem 2.4. Let $X$ be a nonempty compact convex subset of a locally convex Hausdorff

topological vector space $E$ and $T,$ $Q,$ $H$ : $Xarrow X$ be multivalued mappings satisfying the

following conditions:

(i) $T$ is an usc multivalued map with nonempty closed convex values;

(ii) for each $y\in X,$ $Q^{-}(y)\cap H^{-}(y)$ is open in $X$ ;

(iii) for each $x\in X,$ $H(x)$ and $Q(x)$ are convex;

(iv) for each $x\in X$ and $y\in O(T(x);x)\cap Q(x),$ $y\not\in H(x)$ .

Then there exists $\overline{x}\in X$ such that $\overline{x}\in T(\overline{x})$ , and $H(\overline{x})\cap Q(\overline{x})=\emptyset$.

Theorem 2.5. The Kakutani-Fan-Glicksberg fixed point theorems and Theorems 2.1,

2.2, 2.3 and 2.4 are equivalent.
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3 Applications

The following lemma is a part of Berge’s maximum theorem [13].

Lemma 3.1. Let $X$ and $Y$ be topological spaces, $X$ be aompact, $S$ : $Yarrow X$ be a

continuous mapping with nonempty compact values, and $\varphi$ : $X\cross Yarrow \mathbb{R}$ be a continuous

function. Then the mapping $T:Yarrow X$ defined by

$T(y)= \{x\in S(y) : \varphi(x, y)=\max_{x’\in S(y)}\varphi(x’, y)\}$

is u.s. $c$ . with nonempty compact values.

Theorem 3.1. Let $X$ be a nonempty compact convex subset of a normed space $E,$ $S$ :

$Xarrow X$ be a continuous mapping with nonempty compact convex values and $Q$ : $Xarrow X$

be a mapping with nonempty convex values and open (in $X$ ) fibers. Let $\varphi$ : $X\cross Xarrow \mathbb{R}$

be a continuous function satisfying the following conditions:

(i) for each $x\in X$ , the function $\varphi(x, \cdot)$ is quasiconvex;

(ii) for each $y\in X$ , the function $\varphi(\cdot, y)$ is quasiconcave;

(iii) for each $x\in X$ and $y\in O(S(x);x)\cap Q(x),$ $\varphi(x, x)\leq\varphi(x, y)$ .

Then there exists $\overline{x}\in X$ such that $\overline{x}\in S(\overline{x})$ and $\varphi(x,\overline{x})\leq\varphi(\overline{x},\overline{x})\leq\varphi(\overline{x}, y)$ , for all

$(x, y)\in S(\overline{x})\cross Q(\overline{x})$ .

The next application is a common fixed point theorem for two mappings.

Theorem 3.2. Let $X$ be a nonempty compact convex subset of a real normed space,

$T:Xarrow X$ be a u.s. $c$ . mapping with nonempty compact convex values and $Q:Xarrow X$

be a mapping with nonempty convex values and open (in $X$ ) fibers. If $O(T(x);x)\cap Q(x)\backslash$

$\{x\}=\emptyset$ for all $x\in X$ , then there exists a $\overline{x}\in X$ such that $\overline{x}\in T(\overline{x}))\cap Q(\overline{x})\neq\emptyset$ .

14



Example 3.1. Let $X=[-2,2]$ and the mappings $T,$ $Q:[-2,2]arrow[-2,2]$ defined by

$T(x)=\{$
$[ \frac{x}{2},$ $- \frac{x^{2}}{4}]$ if $x\in[-2,0),$

$Q(x)=\{$
$[ \frac{x^{2}}{4},$ $\frac{x}{2}]$ if $x\in[0,2]$ .

$(x, 0]$ if $x\in[-2,0)$ ,

$\{0\}$ if $x=0$ ,

$[0, x)$ if $x\in(O, 2]$ .

Note that $T$ is usc with nonempty closed convex values. One can easily check that

$Q^{-}(y)=\{\begin{array}{ll}[-2, y) if y\in[-2,0),[-2,2] if y=0(y, 2] if y\in(0,2].\end{array}$

and

$O(T(x);x)\cap Q(x)=\{\begin{array}{ll}[-2, x] if x\in[-2,0),\{0\} if x=0,[x, 2] if x\in(O, 2).\end{array}$

Hence $Q$ has open fibers in $X$ and $O(T(x);x)\cap Q(x)\backslash \{x\}=\emptyset$ for all $x\in[-2,2]$ . The

mappings $T$ and $Q$ satisfy all the requirements of Theorem 3.2 and by this theorem $T$

and $Q$ have a common fixed point. Let us observe that the unique common fixed point is

$x_{0}=0$ .

The last application of Theorem 2.1 is an existence theorem for the solution of a qua-

sivector optimization problem, connected to Pareto optimization. Let $X$ be a nonempty

compact convex of a normed space $E,$ $Z$ be a norm space and $C$ be a proper, closed,

pointed and convex cone of $Z$ .

For a function $\varphi$ : $Xarrow Z$ we define the subdifferential of $\varphi$ in $x\in X$ , denoted by

$\partial\varphi(x)$ , as

$\partial\varphi(x)=\{u\in L(E, Z)^{*}:\varphi(y)-\varphi(x)-\langle u, y-x\}\in C,\forall y\in X\}$ ,

where $L(E, Z)^{*}$ and $\langle u,$ $x\rangle$ denote the space of linear continuous function from $E$ into $Z$

and the evaluation of $u\in(E, Z)^{*}$ at $x\in E$ , respectively.

Theorem 3.3. Let $X,$ $Z,$ $C$ and $\varphi$ be as above, $T:Xarrow X$ be a u.s. $c$ . mapping with

nonempty compact convex values and $Q$ be a mapping with nonempty convex values and

open (in $X$ ) fibers. Suppose that:
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(i) $\partial\varphi$ is a u.s. $c$ . mapping with nonempty compact convex values;

(ii) for each $x\in X$ and $y\in T(x)\cap O(Q(x);x),$ $\varphi(y)-\varphi(x)\not\in$ int $(C)$ .

Then there exists $\overline{x}\in X$ such that $\overline{x}\in T(\overline{x})$ and $\varphi(y)-\varphi(\overline{x})\not\in-$ int $(C)$ , for all $y\in Q(\overline{x})$ .
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