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Abstract. In this paper, we first obtain an existence theorem of the solutions for a
variational relation problem. An existence theorem for a variational inclusion problem,
a KKM theorem will be established as particular cases. Some applications concerning a
saddle point problem with constraints, existence of a common fixed point for two mappings

and an optimization problem with constraints, will be given in the last section of the paper.

1 Introduction and preliminaries

If X and Y are topological spaces, a multivalued mapping (or simply, a mapping) T :
X — Y is said to be: (i) upper semicontinuous (in short, usc) (respectively, lower semi-
continuous (in short, Isc)) if for every closed subset B of Y the set {x € X : T(z)NB # 0}
(respectively, {x € X : T(z) C B}) is closed; (ii) continuous if it is usc and lsc; (iii) closed
if its graph (that is, the set GrT = {(z,y) € X xY : y € T(z), ¢ € X }) is a closed
subset of X x Y’; (iv) compact if T(X) is contained in a compact subset of Y.

For a mapping T : X — Y and y € Y, theset T (y) = {r € X : y € T(z)}
(respectively, T*(y) = {z € X : y ¢ T(x)}) is called the fiber (respectively, the cofiber)
of T on y.

Let X be a nonempty convex subset of a real locally convex Hausdorff topological
vector space, T' : X — X, @ : X — X be multivalued mappings and R(z,y) be a
relation linking x € X and y € X. In this paper, we study the following variational

relation problem:



(VR) Find z € X such that z € T'(Z) and R(z,y) holds for all y € Q(z).

Such problems are called variational relation problems and have been studied for the

first time by Luc [1] and Khanh and Luc [2] and Lin et al. [3, 4]. The relation R

is often determined by equalities and inequalities of real functions or by inclusion and

intersection of multivalued mappings. Typical examples of variational relation problems

are the following problems:

(i) Variational inclusion problem:

(ii)

Let Z be a vector space. Given a multivalued mapping F' : X x X — Z, the

variational relation R is defined as follows
R(z,y) holds iff 0 € F(x,y).
Then (VR) becomes

Find Z € X such that z € T'(Z), and 0 € F(z,y) for all y € Q(Z).

This is a variational inclusion problem studied in [5-7] which generalizes several

models of [8].
Equilibrium problems:

Let Z be a topological vector space and F' : X x X — Z, C : X — Z. The

variarional relation R is defined as
R(z,y) holds iff F(z,y)pC(z),

where F(z,y)pC(x) represents one of the following relations F(z,y) N C(z) # 0,
F(z,y) C C(z), F(z,y) Nint(—C(z)) # 0, F(z,y) C Z \ —(int(C(x))). Then (VR)

becomes
Find T € X such that T € T(Z), and F(Z,y)pC(z) for all y € Q(Z).

This is a typical generalized vector set-valued equilibrium problem studied in [8-11].
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Differential inclusion problem:

Let C[0, 1] be the space of continuous functions on the interval [0, 1], and C'[0, 1]
be the space of continuous differentiable functions on the interval [0,1]. Let X C
C'[0,1] be a nonempty compact convex set and F': X x X —o C[0,1]. We define a

relation R as follows:
512

Ids iff
R(z,y) holds i p

€ F(z,y).
Then (VR) is formulated as follows:
Find z € X such that Z € T'(Z), and % € F(z,y) for all y € Q(Z).
This is a differential inclusion problem studied in [9] and many other papers.

Ekeland’s variational principle:

Given a nonempty compact convex subset X of a Banach space, and a function

f: X — R, we define a relation R as follows:
R(z,y) holds iff f(y) + ||z — yl| > f(z).
Then (VR) is formulated as follows:
Find £ € X such that # € T(Z), and f(y) + ||Z — y|| > f(Z) for all y € Q(Z).
Optimization problem:

Given a nonempty convex subset of a real locally convex Hausdorff topological vector

space and a function f : X — R, we define a relation R as follows:
R(z,y) holds iff f(y) > f(x).
Then (VR) is formulated as follows:
Find z € X such that T € T(Z), and f(y) > f(Z) for all y € Q(Z).

This problem is known as constrained extreme problem.
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Motivated by the previous considerations, an existence theorem for problem (VR), ob-
tained in the next section, will be our main result. An existence theorem for a variational
inclusion problem, a KKM theorem and several equilibrium theorems will be established
as particular cases.

Some applications concerning a saddle point problem with constraints, existence of a
common fixed point for two mappings and an optimization problem with constraints, will

be given in the last section of the paper.

2 Main result

In order to establish the main result, we need the following two lemmas:

Lemma 2.1. [9-10] Let X be a topological space, Y be a topological vector space and
S, T : X — Y be two mappings. If S is usc with nonempty compact values and T is

closed, then S + T is a closed mapping.

Lemma 2.2. Let X be a topological space and Y be a Hausdorff topological vector space.
If f: X — Ris a continuous function and T : X — Y a compact closed mapping, then

the mapping f71': X —o Y defined by (f7T)(z) = f(z)T'(z) is closed.

Definition 2.1. [12] For a subset K of a vector space E and z € E, the outward set of

K at x is denoted and defined as follows:

O(K;z) = Ussi(Az + (1 — N K).

Definition 2.2. Let X be a convex subset of a topological vector space E. F : X — E
is said to be a KKM mapping w.r.t. itself if F(co(A)) C UzeaF(z) for each finite subset
A of X.

Theorem 2.1. Let X be a nonempty compact convex subset of a locally convex Hausdorff
topological vector space E, T : X — X, @ : X — X, be multivalued mappings and R be

a variational relation linking points of X, satisfying the following conditions:
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(i) T is usc with nonempty compact convex values;
(ii) @ is nonempty convex valued;
(iii) for each z € X, the set {y € X : R(z,y) does not hold } is convex;
(iv) for each y € X, the set @ (y) N {z € X : R(z,y) does not hold } is open in X;
(v) for each z € X and y € O(T'(z); z) N Q(x), R(z,y) holds.
Then there exists T € X such that T € T(Z) and R(Z,y) holds for all y € Q(Z).

Denote by Sgr the set of all Z € X satisfying the conclusion of Theorem 2.1.
Proposition 2.1. If condition (iv) in Theorem 2.1 is replaced by the following condition:
(iv’) @ has open fibers and the set {(z,y) € X x X : R(x,y) holds} is closed in X x X.
Then Sy is nonempty and compact.

Theorem 2.2. Let X be a nonempty compact convex subset of a locally convex Hausdorff
topological vector space FE, Z be a vector space and 7" : X — X, Q : X — X and

F : X x X —o Z be multivalued mappings satisfying conditions (i) and (ii) in Theorem 2.1

and:

(iii’) for each z € X, theset {y € X : 0 & F(z,y)} is convex;

(iv’) for each y € X, theset @ (y)N{z € X : 0 ¢ F(z,y)} is open in X;
(v)) for each z € X and y € O(T'(z);z) N Q(z), 0 € F(z,y).

Then there exists Z € X such that Z € T(Z) and 0 € F(Z,y) for all y € Q(Z).

Remark 2.1. Theorem 2.1 is different from any result in [8-10]. It is not a generalization

of any result in [8-10]. The proof of Theorem 2.1 is also different from any results in

[8-10].
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As a simple consequence of Theorem 2.2, we have the following KKM theorem and

minimax element theorem.

Theorem 2.3. Let X be a nonempty compact convex subset of a locally convex Hausdorff
topological vector space E, T : X — X and G : X — X be multivalued mappings

satisfying the following conditions:
(i) T is an u.s.c. multivalued map with nonempty closed convex values;
(ii) G is a KKM mapping w.r.t. itself;
(iii) for each y € X, G(y) is closed;
(iv) for each z € X and y € O(T(z); z), = € G(y).
Then there exists Z € X such that Z € T'(Z) N [NyexG(y)].
Theorem 2.4. Let X be a nonempty compact convex subset of a locally convex Hausdorff

topological vector space E and T, Q, H : X —o X be multivalued mappings satisfying the

following conditions:
(i) T is an usc multivalued map with nonempty closed convex values;
(ii) for each y € X, Q= (y) N H~(y) is open in X;
(iii) for each z € X, H(x) and Q(z) are convex;
(iv) for each z € X and y € O(T'(z);z) N Q(z), y & H(z).
Then there exists Z € X such that Z € T'(z), and H(Z) N Q(z) = 0.

Theorem 2.5. The Kakutani-Fan-Glicksberg fixed point theorems and Theorems 2.1,
2.2, 2.3 and 2.4 are equivalent.
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3 Applications
The following lemma is a part of Berge’s maximum theorem [13].

Lemma 3.1. Let X and Y be topological spaces, X be aompact, S : Y — X be a
continuous mapping with nonempty compact values, and ¢ : X xY — R be a continuous

function. Then the mapping T : Y — X defined by

T(y) = {z € SO) : ¢(z,y) = mazzesy(z,y)}

is u.s.c. with nonempty compact values.

Theorem 3.1. Let X be a nonempty compact convex subset of a normed space E, S :
X —o X be a continuous mapping with nonempty compact convex values and @ : X — X
be a mapping with nonempty convex values and open (in X) fibers. Let ¢ : X x X - R

be a continuous function satisfying the following conditions:
(i) for each z € X, the function p(z, -) is quasiconvex;
(ii) for each y € X, the function ¢(-,y) is quasiconcave;
(iii) for each z € X and y € O(S(z); z) N Q(z), ¢(z,z) < (z,y).

Then there exists £ € X such that £ € S(Z) and ¢(z,%) < ¢(Z,Z) < ¢(Z,y), for all
(z,y) € 5(z) x Q(Z).

The next application is a common fixed point theorem for two mappings.

Theorem 3.2. Let X be a nonempty compact convex subset of a real normed space,
T : X — X be a u.s.c. mapping with nonempty compact convex values and @ : X — X
be a mapping with nonempty convex values and open (in X) fibers. If O(T'(z); z) NQ(z) \
{z} = 0 for all z € X, then there exists a £ € X such that Z € T(Z)) N Q(Z) # 0.
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Example 3.1. Let X = [—2,2] and the mappings T, Q : [—2, 2] —o [—2, 2] defined by

(,0] if z€[-20),
Q(z) =4 {0} if z=0,
0,2) if =€ (0,2].

Note that 7' is usc with nonempty closed convex values. One can easily check that

[—Qa y) if Yy e [—2’ 0) 3
R Ty =19 [-2,2] f y=0
(y,2] if y€(0,2.

and
[-2,2] if z€[-2,0),

O(T(z);z) NQx) =4 {0}  if 2=0,
[z, 2] if z€(0,2).
Hence @ has open fibers in X and O(T'(z);z) N Q(z) \ {z} = 0 for all z € [-2,2]. The
mappings T and @ satisfy all the requirements of Theorem 3.2 and by this theorem T’
and @) have a common fixed point. Let us observe that the unique common fixed point is

SU()=0.

The last application of Theorem 2.1 is an existence theorem for the solution of a qua-
sivector optimization problem, connected to Pareto optimization. Let X be a nonempty
compact convex of a normed space F,Z be a norm space and C be a proper, closed,
pointed and convex cone of Z.

For a function ¢ : X — Z we define the subdifferential of ¢ in £ € X, denoted by
Op(z), as

Op(z) = {u € L(E, Z)" : p(y) — p(z) — (u,y —z) € C,Vy € X},

where L(E, Z)* and (u,z) denote the space of linear continuous function from E into Z

and the evaluation of u € (E, Z)* at x € E, respectively.

Theorem 3.3. Let X, Z, C and ¢ be as above, T : X — X be a u.s.c. mapping with
nonempty compact convex values and ) be a mapping with nonempty convex values and

open (in X) fibers. Suppose that:
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(i) Oy is a u.s.c. mapping with nonempty compact convex values;

(ii) for each z € X and y € T(z) N O(Q(z); z), ¢(y) — p(z) ¢ int(C).

Then there exists Z € X such that Z € T(Z) and p(y) — ¢(Z) ¢ —int(C), for all y € Q(Z).
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