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Abstract

In this paper, we first propose a modification of Mann’s iteration method
for a family of strict pseudo-contractions in Hilbert spaces. Next we study the
weak and strong convergence of Mann type algorithms for such a family, which
extend and improve the corresponding ones due to Acedo and Xu [Nonlinear
Anal. 67 (2007), 22568-2271] for a finite family of strict pseudo-contractions.
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1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C — C
be a mapping. We use F(T') to denote the set of fixed points of T'; that is, F/(T) =
{x € C : Tx = z}. (Throughout this paper, we always assume that F(T) # 0.)
Iterative methods are often used to solve the fixed point equation Tx = z. The
most well-known method is perhaps the Picard successive iteration method when 7"
is a contraction. Picard’s method generates a sequence {z,} successively as z, =
- Txp_q1 for n > 2 with z; := z arbitrary, and this sequence converges in norm to
the unique fixed point of T. However, if T is not a contraction (for instance, if
T is nonexpansive), then Picard’s successive iteration fails, in general, to converge.
Instead, Mann’s iteration method [6] prevails.
The Mann’s algorithm, an averaged process in nature, generates a sequence {z,}
recursively by
Tn+1 = AnZn + (1 —an)Txn, n>1, (1.1)
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where the initial guess 21 := = € C is arbitrarily chosen and the sequence {an} lies
in the interval [0, 1].

Recall that a mapping T': €' — C' is said to be a strict pseudo-contraction [1] if
there exists a constant 0 < k < 1 such that

|72~ Tyl < llz — ylf? + &I = T)a — (I — T)y|)? (1.2)

for all z,y € C. For such a case, T is said to be a s-strict pseudo-contraction. A
0O-strict pseudo-contraction 7" is nonexpansive; that is, 1" is nonexpansive if

Tz — Ty|| < ||z -y

for all z,y € C.

The Mann’s algorithm for nonexpansive mappings has been extensively investi-
gated; see [1, 3, 4, 11, 12, 13, 14, 15] and the references therein. One of the well
known results is proven by Reich [11] for a nonexpansive mapping 7" : C — C, which
asserts the weak convergence of the sequence {z,} generated by (1.1) in a uniformly
convex Banach space with a Frechet differentiable norm under the control condition

me1an(1 — a,) = co. However iterative methods for strict pseudo-contractions
are far less developed though Browder and Petryshyn [1] initiated their work in
1967. Recently, Marino and Xu [7] developed and extended Reich’s result to strict
pseudo-contractions in the Hilbert space setting. More precisely, they proved the
weak convergence of Mann’s iteration process (1.1) for a s-strict pseudo-contraction
T of C.

It is known that Mann’s iteration method (1.1) is in general not strongly conver-
gent [2] for either nonexpansive mappings or strict pseudo-contractions. In 2003, a
method (called hybrid method) to modify the Mann’s iteration method (1.1) so that
strong convergence is guaranteed has been proposed by Nakajo and Takahashi [10]
for a single nonexpansive mapping 7" with F(T') # 0 in a Hilbert space H:

x1 := x € C chosen arbitrarily,

Yn = anTpn + (1 — ap)Tx,,

Cn={2€C :|lyn — 2|l < |lzn — 2|I}, (1.3)
Qn={2€C:(zp— 2,0 —x,) > 0},

Tnt+1 = Po,n@.z, n>1,

where Pk denotes the metric projection from H onto a nonempty closed convex
subset K of H. They proved that if the sequence {c,} is bounded above from one,
then the sequence {z,} generated by (1.3) converges strongly to Ppryz. This result
has been extended to the class of x-strict pseudo-contractions by Marino and Xu 8]
as follows.

Theorem MX (see Theorem 4.1 of [8]) Let C be a closed convex subset of a Hilbert
space H. Let T : C — C be a k-strict pseudo-contraction for some 0 < xk < 1 and
assume that the fized point set F(T) of T is nonempty. Let {x,} be the sequence
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generated by the following hybrid algorithm:

zy := x € C chosen arbitrarily,

Yn = Qpy + (1 - an)r[l‘n,

Chn={2€C:|lyn - z||2 < lzn — Z“2 + (1 = an)(k — an)|lzn — Twn”Q}a (1.4)
Qn={2€C:{(xp— 2z, —zyn) >0},

Tn+1 = Pc,ng,x, n=>1

Assume that the control sequence {an} is chosen so that ap, < 1 for all n. Then
{zn} converges strongly to Pp)z.

In this paper, motivated by definition of (1.2), we say that a family & = {S, :
C — C} of self-mappings of C is k-strict pseudo-contraction (in brief, k-SPC) on C
if there exist a constant x € [0,1) such that

1S — Snyll? < llz = ylI* + &I — Sa)z — (I = Sp)yll” (1.5)

for all z,y € C and all integers n > 1. In particular, note that taking S, := T for
a strict pseudo-contraction T : C — C in (1.5) reduces to (1.2). We propose the
following modification of the algorithm (1.1) for this family S = {S,, : C — C}:

Tn+l1 = Onn + (1 - an)Snxn, n 2 17 (16)

where the initial guess z; := « € C is arbitrarily chosen and the sequence {a,} lies
in the interval [0, 1].

This paper is constructed as follows. In section 2, we present some prerequisites
which are useful in our discussion. In section 3, motivated and inspired by the
research works in [7], [5] and [8], we study the weak and strong convergence of
the above algorithm (1.6) for the family & = {S, : C — C} stated as in (1.5).
Finally, in section 4, some applications for the parallel algorithm (4.1) and the cyclic
algorithm (4.11) relating to our main results are added, which extend and improve
the corresponding ones due to Acedo and Xu [5] for a finite family {7;}V, of x;-strict
pseudo-contractions.

2 Preliminaries

Let H be a real Hilbert space with the duality product (-,-). When {z,} is a sequence
in H, we denote the strong convergence of {z,} to x € H by x, — x and the weak
convergence by x, — x. We also denote the weak w-limit set of {z,} by

wy(Tn) = {z: Jzn, — x}.

We now need some facts and tools in a real Hilbert space H which are listed as
lemmas below (see [9] for necessary proofs of Lemmas 2.2 and 2.5).

Lemma 2.1. Let H be a real Hilbert space. There hold the following identities
(which will be used in the various places in the proofs of the results of this paper).



() llo—oll* = llzll® — lyll*> - 2(z — y,9), =yeH.
(i) For all \; € [0,1] with "7, \; =1, and z,y € H, the following equality holds:
n n T
1D Xl =D Millall® = D Ndjlla — a1, (2.1)
i=1 i=1 itj
In particular, for n = 2 we have

Itz + (1 = )yll* = tllel® + 1 = )lyl> — ¢t = )llz —yl?®, tel0,1]. (2:2)

Lemma 2.2. ([9]) Let H be a real Hilbert space. Given a closed convex subset C C H
and points x,y,z € H. Given also a real number a € R. The set

{fveC:ly—v|?<|z~v|?+(z,v) +a}
s convex (and closed).

Recall that given a closed convex subset K of a real Hilbert space H, the nearest
point projection Pk from H onto K assigns to each x € H its nearest point denoted
Prz in K from z to K; that is, Pk is the unique point in K with the property

lz — Przl| <|lz —yll, yeK.

Lemma 2.3. Let K be a closed convex subset of real Hilbert space H. Given x € H
and z € K. Then z = Pxx if and only if there holds the relation:

(x—2zy—2)<0, yeK.

Lemma 2.4. ([5]) Let K be a closed convex subset of H. Let {x,} be a bounded
sequence in H. Assume

(i) The weak w-limit set wy(xy,) C K.
(ii) For each z € K, limp o0 ||2n — 2|| emists.
Then {x,} is weakly convergent to a point in K.

Lemma 2.5. ([9]) Let K be a closed convex subset of H. Let {x,} be a sequence
in H and x € H. Let ¢ = Pxz. If {zn} is such that wy(z,) C K and satisfies the
condition

lzn —2zll <llg—=zll, n=1 (2.3)

Then x, — q.
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3 Convergence theorems

We begin with the following lemmas which are useful in our further discussion.

Lemma 3.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let a

family S = {S, : C — C} be k-SPC on C. Then,

(a) For eachn > 1, S, satisfies the Lipschitz condition, namely,

1Snz — Snyll < Lz -yl

where L, = }*_L—Z

(b) F =N F(Sn) is closed.

Proof. Similarly, we can derive (a) by replacing T in the proof of Proposition 2.1 (i)
in [8] with S,. Also, the continuity of S,, for each n > 1 by (a) immediately yields
the closedness of F'. 0

Lemma 3.2. Let C be a nonempty closed convex subset of a Hilbert space H. Let
a family = {S, : C — C} be k-SPC on C. Assume that F := NS F(Sp) # 0
and the control sequence {an} is chosen so that k + € < ap, <1 — ¢, where € € (0,1)
ts a small enough constant. Starting from an arbitrarily given x1 := x € C, let
{zn} be the sequence generated by the algorithm (1.6). Then there hold the following
properties.

(a) For each p € F, lim,,_,c ||zn — p|| exists.
(b) |lzn — Snzn|| — O and, furthermore, ||Tp, — ZTn+1]| — 0 as n — oo.

Proof. First to prove (a) let p € F'. By virtue of (1.5), we see
|Snzn — P“2 = ||Snzn — Snp”2 < lzn — pll + &llzn — n$n||2~

Then this together with the hypothesis (ii) yields

|41 _P”2 = llan(zn —p) + (1 — an)(Snzn — P)“2
= anllzn —-p||2 + (1 - an)”Sn:En - p||2 - an(l — an)||Tn — nfL"n”2
lzn — p“2 — (1 — an)(an — K)||lTn — nfl;n"2

<
< lzn — p“2 - 62”-7371 - nxn”2a (3.1)

in particular,
#n+1 = plI* < ll2n — plI?

and so limy, .. ||zn — p|| exists and (i) is obtained. Since {z,} is bounded, so is
{Snzn}. Now rewrite (3.1) in the form

1
lzn = Snznll* < 5 (llzn = PI* = llZns1 — pII?).
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Then, as n — oo, we get

“l'n - Sn.g/'nH -— 0. (32)

(From definition of z,,,, it follows that
[Zn1 = zall = (1 — an)llzn — Span| — 0. (3-3)
Hence (b) is obtained. O

Lemma 3.3. Let C be a nonempty closed convex subset of a Hilbert space H. Let
a family S = {Sp : C — C} be k-SPC on C. Assume that F := N F(S,) # 0,
and also that the control sequence {an} is chosen so that 0 < a,, < 1 forn > 1. Let
{zn} be the sequence generated by the following modified algorithm:

z1 := x € C chosen arbitrarily,

Yn = anTp + (1 — 0ty ) Spn,

Crn={2€C:lyn— 2|” < llan — 2|> + (1 — an) (K — an)l|Zn — Snznl?},
n={2€C:{(xn— 2,z — z,) > 0},

Tnt1 = Fo,n@.z, n > 1

There hold the following properties.
(@) ||lzn — || < |lg — z|| for all n > 1, where q := Prz.
(b) l|zn — Tni1ll — O and, furthermore, ||z, — Spzn| — 0 as n — oco.

Proof. First observe that C, is convex by Lemma 2.2. Next we show that F c C,
for n > 1. Indeed, we have, for all p € F, replacing z,11 in (3.1) with y,, we have

llyn —-P”2 = |loan(zn —p) + (1 — an)(Snxn — p)”2
< lzn - p”2 = (1 —an)(an — K)lzn — nxn”2
< llzn =l + (1 — an) (6 — an)l|zn — Snznl|?

and thus p € C,, for all n. This shows F' ¢ C,, for each n > 1.
Next we show that
FcQ, n>1. (3.4)

We prove this by induction. For n = 1, we have F € C = Q. Assume that F C Q.
Since x4 is the projection of z onto Cy N Qi, by Lemma 2.3 we have

(Tkt1 — 2,8 — Tpg1) 20, 2 € CrN Q.

As F C CyNQy by the induction assumption, the last inequality holds, in particular,
for all z € F. This together with the definition of Qk+1 implies that F C Qgyq.
Hence (3.4) holds for all n > 1, and z,, is well defined for all n.

Notice that the definition of Q,, actually implies z,, = FPg,z. This together with
the fact F' C Q,, further implies

lzn =2l <llp-2ll, peF.
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In particular, {2,,} is bounded and
lzn — 2| < |lg — ||, where ¢ := Ppa. (3.5)

Hence (a) is obtained.
The fact z,+1 € Q, asserts that (€41 — Zn, T, — ) > 0. This together with
Lemma 2.1 (i) implies

|Zni1 —znll® = (@01 — ) = (x0 — 2)|?
= ”:L'n-f-l - 9““2 - Hmn - $“2 - 2<:1;n+1 — Tn, Tp — -'13>
< lzpgr — 2l = flzn — 2. (3.6)

This implies that the sequence {||z, — z||} is increasing. Since it is also bounded,
we see that lim,_, ||z, — || exists. Note that since {z,} is bounded, so is {S,zn}.
Then it turns out from (3.6) that

|zn+1 — xn|| — O. (3.7)

To prove the second part of (b), i.e., ||xn — Spzn| — 0, use the fact z,41 € Cp, to
get

lyn — $n+1”2
< len = 21?4 (1= an)(k = an)l|zn — Snzall®. (3.8)
On the other hand, by virtue of y, = anz, + (1 — @p)Spxy and (2.2) in Lemma 2.1,
we have

lyn — $n+1”2 = |lan(Zn — Tns1) + (1 — an)(Snzn — $n+1)”2

an”a:n - $n+1”2 + (1 - an)”Srzmn - $n+1”2
—an(l — ap)llen — nxn||2.

After substituting this equality into (3.8), by simplifying and dividing both sides by
(1 — o) (note that a, < 1 for all n > 1), we arrive at

|Tni1 — Snxn”2 < lzntr — -'En”2 + Kl|zn —~ Snmn”2~ (3.9)
Also, since

[Zn+1 = Snznll® = (@nt+1 — Zn) + (20 — Spza)|l?

= ”-’13n+1 - "B‘n”'2 + ||J,‘n - Snwn”z - 2<$n — Tpn+1,Tn — Snxn>

by the parallelogram law, substituting this equality into (3.9) and simplifying, we
have
(1 - "C)HJ;n - Snwnllz 2<xn — Tn41,Tn — Sna»'n)

<
< 2llzn — znsall lzn — Snnll
or

(1= K)llzn — Snznll < 2l|zn — Tt — 0

by (3.7), and so limp o0 [|Tn — Snznl| = 0. =
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Now we present the weak and strong convergence of the algorithm (1.6) for a «-
SPC family § = {S5,,: C — C}.

Theorem 3.4. Under the same hypotheses with Lemma 3.2, assume, in addition,
that wy(zn) C F and F is convexr. Then {x,} converges weakly to a common fized
point of 3.

Proof. By (a) of Lemma 3.2, lim, 0 ||z, — p|| exists for p € F. Also, by the
assumption, wy(z,) C F. Note also that F' is a nonempty closed convex subset of
C. Hence an application of Lemma 2.4 with K := F ensures that {z,} converges
weakly to a point in F'. (]

Theorem 3.5. Under the same hypotheses with Lemma 3.3, assume, in addition,
that wy(xzn) C F and F is conver. Then x, — Ppx.

Proof. By virtue of the assumption wy,(z,) C F and (3.5), an application of Lemma
2.5 ensures that z,, — q, where q = Ppz. O

4 Applications

Let C be a nonempty closed convex subset of a Hilbert space H. Unless other
specified throughout this section, we always assume that

(c1) for each 1 < ¢ < N, T; : C — C be a k;-strict pseudo-contraction for some
0< K; <1,

c2) for each n > 1, A™1Y is a finite sequence of positive numbers such that
'L —
Zﬁil /\Z(") =1 for all n, and \; := inf{/\gn) :n>1}>0for1 <i<N.

Recently, Lopez Acedo and Xu [5] considered the problem of finding a point z
such that
RS mil\ilF’ (ﬂ)a

where {T}}¥ | are r;-strict pseudo-contractions defined on C under the condition (c2).
As F :=nY F(T;) # 0, they investigated the weak and strong convergence problems
of the sequence {x,} generated explicitly by the following parallel algorithm:

N
Tn+l = OpTn + (1 - an) Z )\gn)Tixna n>1, (4-1)

t=1

where the initial guess x; := « € C is arbitrarily chosen and {a,} C [0, 1].
For each n > 1, let a mapping S,, : C — C defined by

N
Snz =3 ATz (4.2)
i=1
for all x € C, Then the parallel algorithm (4.1) can be written simply as

Tntl = anZTp + (1 —an)Spzn, n>1 (4.3)
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and it is not hard to see that

Fy C F =N, F(Sy), (4.4)

n=1

where Fyy := NN F(T;).
Put x := max{k; : 1 < i < N}. Obviously, 0 < k < 1 and we therefore obtain
the following properties of the mapping S,.

Lemma 4.1. Let o,y € C and 1 < ¢ < N. Then the following properties are
satisfied.

(i) |1Tix — Tiyl® < llz — yl* + &ll(I — Tz — (I - T)yll*.

(ii) [|Snz — Sayll2 < llz — ylI2 + &ll(I = Sn)x — (I — Sp)yl|%. In other words, the
family S = {S, : C — C} is k-SPC on C.

(iii) If Fy := NN F(T;) # 0, then Fy = F := N, F(Sy). (In this case, note that
F in Theorem 3.4 and 3.5 is closed convex so that the projection Pg is well
defined.)

Proof. (i) is obvious from the definition of strict pseudo-contraction. To prove (ii),
use (2.1) of Lemma 2.1 to derive

(I — Sp)x— (I — Sn)y”2

N
= 1A - Te — (- Tyl
=1

N N
= S AT - T — I - Towll? = S APAN(Tie — Tiy) — (T2 — Tyw) |
i=1 1]

This yields a simple form:

N
S AN - T — (I =Tyl = I(I - Sa)z — (I - Sp)yll* + J, (4.5)

=1

where J := Zf;] /\l(.")/\gn)”(fl’ix — Tyy) — (Tjz — Tjy)||* = 0. Use (2.1), (i) and (4.5)
in turn to get

N
1Snz — Sagll®> = || DAY (G — To)|)?
=1
N
= S AT - Tyl - J
t=1

IA

N
S oA lle ~yl? + £ = Tz~ (I = Tyll*y — J

i=1
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N
e — gl + & S AN~ Tz — (- Tyll? — J
=1
=z —ylI> + sl (I = Sp)z — (I — Sp)yll*> — (1 — k)J
< lz —yl> + &|(I — Sp)z — (I — Sa)yll*

I

Hence (ii) is proven.
Finally to prove (iii), by (4.4), it suffices to show that F' C Fp. Indeed, let
x = Spx for all n > 1. Since Fy # 0, for p € Fi, use (2.1) and (i) to derive

N
lp—2l? = lp—Sazl? = > A" (p - Tiz)||?
=1
N N
= 3 ap - Ta)® = oA Tiz - Tya)?
i=1 i#£j

N
S A llp - 2)? + klle — Tizl|?} - 6

1=1

IA

N
= lp—zl?+&> Ae - Tzl? -6

=1

where § := Zg’é] Ag")/\g.n)HTim — Tjz||?. Therefore, we have

N
§ < mllp —2l? + &3 AV|lz — Tyzl. (4.6)

=1

On the other hand, since S,z = x for all n > 1, it follows from (2.1) that

N
0 = [Snz—zll = > ATz — o)
=1
N T
= S ATz —2)? - 6. (4.7)
=1

Substituting (4.7) into (4.6) and simplifying, we have

N
0 < (1-k)) XN|Tiz—z|?
=1

IA

N

(1= 5) > A Tiz — 2
=1

< 0.

This implies that, for 1 <i < N, T;z = x and so ¢ € Fy = N{¥, F(T;), which proves
(iii). 0
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Lemma 4.2. Assume the common fized point set Fy = NN F(T;) is nonempty.
Let 1 <i< N,ze€C andp € Fy. Then,

() (1-r) SN Az - Tz)? < 2lp - xflllz — Snzll.

(ii) Let {z,} C C such that x, — z and ||z, — Spxn| — 0. Assume, in addition,
|zn — ni1ll — 0. Then z € Fy.

Proof. Put I := SN A ||z = Tuz||? and J = 0, Al — Tjz|2 Use (2.1)

to get
al 2
Iz = Spall? = || A (@ — T)||* =
i=1
Observe
lp — Snzll® = ll(p—2)+ (z — Sp2)|I?
= lp—=l* + llz — Snz|® - 2(z — p,x — Sn2)
= llp—2)>+1—J~2(z—pz— Sn2) (4.8)

by parallelogram law. Using (2.1) and (i) of Lemma 4.1 we have
N , &
lp = Sazl? = | SN0 -T)|* = A" lp - Tixll® —
=1 i=1

N
< S Al — 2l + sllz — Tial?) - J

i=1
< |p—zl|? +xI—J (4.9)
Substituting (4.8) into (4.9) and simplifying we have
(1-r) < 2(x—p,x— Spz)
< 2|lp - zllllz — Snz,

which proves (i). To show (ii), replacing & with xz, in (i) gives

N
1— 1) S APz, — Tizall® < 2lp — znllllz — Snzall.
=1

Since {z,} is bounded and ||z, — Spzx|| — 0, we can easily derive
|zn — Tiznll = 0, 1<i< N (4.10)
Then the demiclosedness principle of I — T; implies that z € F(T;) for all 1 <
1 < N. Hence z € Fy = ﬂfvle(Ti) and the proof is complete. O

As direct applications of Theorem 3.4, we have following weak convergence for the
parallel algorithm (4.1) (or see (4.3) for a compact form) for a finite family {T; W
of N k;-strict pseudo-contractions; compare with Theorem 3.3 in Lopez Acedo and
Xu [5)].
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Theorem 4.3. Let C be a nonempty closed convex subset of a Hilbert space H. Let
{1} and {/\Z(.")} be as in (c1) and (c2), respectively. Let k := max{r; : 1 <i < N}.
Assume that Fy = ﬂfilF(’l’i) # ) and the control sequence {a,,} are chosen so that
k+e<a, <1—¢ wheree € (0,1) is a small enough constant. Starting from
an arbitrarily given x1 = a € C, let {z,} be the sequence generated by the parallel
algorithm (4.1) or (4.3). Then {x,} converges weakly to a common fized point of
{1}

Proof. By (ii) and (iii) of Lemma 4.1, it suffices to show that wy,(z,) < F. This fact
is directly derived from (ii) of Lemma 4.2 by reminding of (b) of Lemma 3.2. Then
our conclusion is obtained by Theorem 3.4. O

As direct applications of Theorem 3.5, we have following strong convergence for
the parallel algorithm (4.1) (or see (4.3) for a compact form) for a finite family {7;}Y
of N k;-strict pseudo-contractions due to Lopez Acedo and Xu [5]; see Theorem 5.1
in [5].

Theorem 4.4. ([5]; see Theorem 5.1) Let C be a nonempty closed convex subset
of a Hilbert space H. Let {T;}Y and {/\gn)} be as in (c1) and (c2), respectively. Let
k= max{k; : 1 <i < N}. Assume that Fy := NN, F(T;) is a nonempty bounded
subset of C, and also that the control sequence {an} is chosen so that 0 < a, < 1
for n > 1. Let {z,} be the sequence generated by the following modified parallel
algorithm:

x1 = x € C chosen arbitrarily,

Yn = antn + (1 — an) SN AM T2, = 0nzn + (1 — ) Spa,
Cn={2€C:|lyn — 2| < llzn — 2|I> + (1 — an)(k — an)llzn — Snzall®},
Qn={2€C:{zn,— 2,z —x,) >0},

Tn+1 = Po,n@.z, mn=>1.

Then z, — Ppyx.

Proof. By (ii) and (iii) of Lemma 4.1, & = {S, : C — C} is s-SPC on C and
F = Fy. Immediately, the fact w@n) C F is required from (ii) of Lemma 4.2 by
reminding of (b) of Lemma 3.3. Then our conclusion is achieved by Theorem 3.5. O

Lopez Acedo and Xu [5] also investigated the convergence problems for the fol-
lowing cyclic algorithm:

x1 := z € C chosen arbitrarily,

o = i1+ (1 — al)Tlxl,

3 = oaoz2+ (1 — a)lhzs,
zn+1 = onzn+ (1 —an)INzn,

TN+2 anvy1ZN+1 + (1 — any1)T1T N4,
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where {«,} be a sequence in [0, 1]. The above cyclic algorithm can be written in a
more compact form as

Tni1 = apxy + (1 — a.n)T[n]a:n, n>1, (4.11)

where Ty = Timoda N for integer £k > 1. The mod function takes values in the set

{1,2,--- ,N} as
T = Tn, if q=0;
K=\ 1, ifo<g<N
for kK = jN + q for some integers j > 0 and 0 < qg < N.

Finally, as direct consequences of our main theorems, we obtain the following
weak and strong convergence problems for the cyclic algorithm (4.11) for a finite
family {73}, of k;-strict pseudo-contractions due to Lopez Acedo and Xu [5]; see
Theorem 4.1 and 5.2, respectively, in [5].

Theorem 4.5. ([5]; see Theorem 4.1) Under the same hypotheses with Theorem
4.8, the sequence {x,} generated by the cyclic algorithm (4.11) converges weakly to
a common fized point of {T;}N,.

Proof. Replacing all the S, in the process of the proof of Lemma 3.2 with T}, we
can immediately prove the following facts:

(1) limp—eo ||Zn — p|| exists for p € Fy;
(2) llzn — Tjnyxnll — O (hence ||zn — Tnt1|l — 0) as n — oo.

By (2), it is not hard to see that, for 1 < < N

lZn — Tniill = 0 (4.12)
and
”T[n]mn — Tniill — 0, (4.13)
that is,
lzn — Tizn|| = 0, 1<i<N. (4.14)

Finally to show wy(z,) C Fp, use the demiclosedness property of I — T;. Use
Lemma 2.4 (with K = Fpy) to conclude that {z,} converges weakly to a point in
Fy. ]

Theorem 4.6. ([5]; see Theorem 5.2) Let C be a nonempty closed convex subset
of a Hilbert space H. Let {T;}Y and {)\Sn)} be as in (c1) and (c3), respectively. Let
k= max{k; : 1 <1 < N}. Assume that Fy := N F(T;) is a nonempty bounded
subset of C, and also that the control sequence {a,} is chosen so that 0 < a, < 1 for
alln. Let {x,} be the sequence generated by the following modified cyclic algorithm:

z1 :=x € C chosen arbitrarily,

Yn = 0pZy + (1 — an)T[':l(]")xn,

Crn={2€C: llyn = 2|2 < & — 2II2 + (1 — @n)(k — an)l@n — TpyVznl2},
Qn={z€C:{zp— 2,2 —x,) >0},

Tn+1 = Pc,no, T,
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where 0,, = v, - sup{||z,, — 2||? : z € Fy} — 0. Then 2,, — Py x.

Proof. First, to claim the following observations (i)-(vi), simply replace S, in the
proof of Lemma 3.3 with Tl

(i) x, is well defined for all n > 1.

(i) lzn — z|| < |lg — || for all n, where q = Pr, z.
(iii) |lznt1 — zn]| — O.
(vi) ||zn — Tiyznl| — 0.

To derive wn(xn) C Fi, repeat the argument of (4.12)-(4.14) in the proof of Theorem
4.5. Finally use (ii) and Lemma 2.5 to arrive at the our conclusion. O
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