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1. INTRODUCTION

Let $C$ be a closed and convex subset of a real Banach space. Then
a mapping $T:Carrow C$ is called nonexpansive if $\Vert Tx-Ty\Vert\leq\Vert x-$

$y\Vert$ for all $x,$ $y\in C$ . In 1975, Baillon [3] originally proved the first
nonlinear ergodic theorem in the framework of Hilbert spaces: Let
$C$ be a closed and convex subset of a Hilbert space and let $T$ be a
nonexpansive mapping of $C$ into itself. If the set $F(T)$ of fixed points
of $T$ is nonempty, then for each $x\in C$ , the Ces\‘aro means

$S_{n}(x)= \frac{1}{n}\sum_{k=0}^{n-1}T^{k_{X}}$

converge weakly to some $y\in F(T)$ . In this case, putting $y=Px$ for
each $x\in C$ , we have that $P$ is a nonexpansive retraction of $C$ onto
$F(T)$ such that $PT=TP=P$ and $Px$ is contained in the closure of
convex hull of $\{T^{n}x : n=1,2, \ldots\}$ for each $x\in C$ . We call such a
retraction an ”ergodic retraction”. In 1981, Takahashi [28, 30] proved
the existence of ergodic retractions for amenable semigroups of nonex-
pansive mappings on Hilbert spaces. Rode [21] also found a sequence of
means on a semigroup, generalizing the Ces\‘aro means, and extended
Baillon’s theorem. These results were extended to a uniformly con-
vex Banach space whose norm is $\Gamma_{\Gamma\zeta_{\text{ノ}}^{1}}’\dashv chet$ differentiable in the casc of
commutative semigroups of nonexpansive mappings by Hirano, Kido
and Takahashi [12]. In 1999, Lau, Shioji and Takahashi [15] extended
Takahashi’s result and Rode’s result to amenable semigroups of non-
expansive mappings in the Banach space.
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By using Rod\’e’s method, Kido and Takahashi [14] also proved a
mean ergodic tbeorem for $noiicomi\iota in$tativc semigroups of bounded lin-
ear operators in Banach spaces.

On the other hand, by using results of Bruck [5], Atsushiba and
Takahashi [1] proved a nonlinear ergodic theorem for nonexpansive
mappings on a compact and convex subset of a strictly convex Ba-
nach space. This result was extended to commutative semigroups of
nonexpansive mappings by Atsushiba, Lau and Takahashi [2]. Miyake
and Takahashi [16] proved a nonlinear ergodic theorem for nonexpan-
sive mappings on a compact and convex subset of a general Banach
space. Later, these results were extended to amenable semigroups of
nonexpansive mappings by Miyake and Takahashi [17].

Motivated by Kido and Takahashi [14], Hirano, Kido and Taka-
hashi [12], Lau, Shioji and Takahashi [15], Atsushiba, Lau and Taka-
hashi [2] and Miyake and Takahashi [17], Miyake and Takahashi [18]
proved weak and strong mean ergodic theorems for vector-valued weakly
almost periodic functions (in the sense of Eberlein) defined on a semi-
group which take values in a Banach space. Using these results, they
obtained well-known and new mean ergodic theorems for commutative
and noncommutative semigroups of nonexpansive mappings, affine non-
expansive mappings and bounded linear operators in Banach spaces.

In this paper, we introduce the notion of weakly almost periodic-
ity for vector-valued bounded functions defined on a semigroup which
take values in a locally convex topological vector space and show mean
ergodic theorems for vector-valued weakly almost periodic functions
in the sense of Eberlein. Next, motivated by Fr\’echet [10], we study
the relationship between almost periodicity of semigroups of mappings
and their equicontinuity in order to prove a mean ergodic theorem for
equicontinuous semigroups of mappings. We also show mean ergodic
theorems for such semigroups in Banach spaces as special cases.

2. PRELIMINARIES

Throughout this paper, we denote by $S$ a semigroup with identity
and by $E$ a locally convex topological vector space (or l.c. $s.$ ). We also
denote by $\mathbb{R}_{+}$ and $\mathbb{N}_{+}$ the set of non-negative real numbers and the
set of non-negative integers, respectively. Let $\langle E,$ $F\}$ be the duality
between vector spaces $E$ and $F$ . For each $y\in F$ , we definc a linear
functional $f_{y}$ on $E$ by $f_{y}(x)=\langle x,$ $y\}$ . We denote by $\sigma(E, F)$ the weak
topology on $E$ generated by $\{f_{y} : y\in F\}$ . If $X$ is a l.c. $s.$ , we denote
by $X’$ the topological dual of $X$ . We also denote by $\langle\cdot,$ $\cdot\rangle$ the canonical
bilinear form between $E$ and $E’$ , that is, for $x\in E$ and $x’\in E’,$ $\langle x,$ $x’\rangle$

117



is the value of $’\iota:$

’ at.c. Let $A$ be a subset of $E$ . We also denote $1$ )$y\overline{A}$

the closure of $A$ .
We denote by $l^{\infty}(S)$ the Banach space of bounded real-valued fuiic-

tions on $S$ . For each $s\in S$ , wc $d(^{1},liiic$ opcrators $l(s)$ and $r(s)$ on $1^{\infty}(S)$

by
$(l(s)f)(t)=f(st)$ aiid $(r(s)f)(t)=f(ts)$

for each $t\in S$ and $f\in l^{\infty}(S)$ , respectively. A subspacc $X$ of $l^{\infty}(S)$ is
said to be translation invariant if $l(s)X\subset X$ and $r(s)X\subset X$ for each
$s\in S$ . Let $X$ be a subspace of $l^{\infty}(S)$ which contains constants. A linear
functional $\mu$ on $X$ is said to be a mean on $X$ if $\Vert\mu\Vert=l^{\iota(e)}=1$ , where
$e(s)=1$ for each $s\in S$ . We often write $\mu_{s}f(s)$ instead of $l^{l}(f)$ for each
$f\in X$ . For $s\in S$ , we define a point evaluation $\delta_{s}$ by $\delta_{s}(f)=f(s)$

for each $f\in X$ . A convex combination of point evaluations is called a
finite mean on $S$ . As is well known, $\mu$ is a mean on $X$ if and only if

$\inf_{s\in S}f(s)\leq\mu(f)\leq\sup_{s\in S}f(s)$

for each $f\in X$ ; see Day [6] and Takahashi [31] for more details. Let
$X$ be also translation invariant. Then, a mean $\mu$ on $X$ is said to be
left (or right) invariant if $\mu(l(s)f)=\mu(f)$ $(or \mu(r(s)f)=\mu(f))$ for
each $s\in S$ and $f\in X$ . A mean $\mu$ on $X$ is said to be invariant if $\mu$

is both left and right invariant. If there exists an invariant mean on
$X$ , then $X$ is said to be amenable. We know from Day [6] that if $S$

is commutative, then $X$ is amenable. Let $\{\mu_{\alpha}\}$ be a net of means on
X. Then $\{\mu_{\alpha}\}$ is said to be (strongly) asymptotically invariant if for
each $s\in S$ , both $l(s)’\mu_{\alpha}-\mu_{\alpha}$ and $r(s)’\mu_{\alpha}-\mu_{\alpha}$ converge to $0$ in the
weak topology $\sigma(X’, X)$ (the norm topology), where $l(s)’$ and $r(s)’$ are
the adjoint operators of $l(s)$ and $r(s)$ , respectively. Such nets were first
studied by Day [6].

We denote by $l^{\infty}(S, E)$ the vector space of vector-valued functions
defined on $S$ with values in $E$ such that for each $f\in l^{\infty}(S, E),$ $f(S)=$
$\{f(s) : s\in S\}$ is bounded. Let E.t is a neighborhood base of $0$ in $E$ and
let $M(V)=\{f\in l^{\infty}(S, E) : f(S)\subset V\}$ for each $V\in$ U. We denote
by $\mathfrak{B}$ the filter base $\{M(V) : V\in U\}$ . Then, $l^{\infty}(S, E)$ is a l.c. $s$ . with
the topology $\mathfrak{T}$ of uniform convergence on $S$ that has a neighborhood
base $\mathfrak{B}$ of $0$ . For each $s\in S$ , we define the operators $R(s)$ and $L(s)$ on
$l^{\infty}(S, E)$ by

$(R(s)f)(t)=f(ts)$ and $(L(s)f)(t)=f(st)$

for each $t\in S$ and $f\in l^{\infty}(S, E)$ , respectively. A subspace $\Xi$ of $l^{\infty}(S, E)$

is said to be translation invariant if $L(s)\Xi\subset\Xi$ and $R(s)\Xi\subset\Xi$ for
each $s\in S$ . Let $\Xi$ be a subspace of $l^{\infty}(S, E)$ which contains constant
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functions. For each $s\in S$ , we defiiie a poirit evaluation $\triangle_{s}$ bv $\triangle_{s}(f)=$

$f(s)$ for each $f\in l^{\infty}(S’, E)$ . Antapping $1|_{/’}I$ of 三 $ii\sim toE$ is called avector-
valued mean on $\Xi$ if $M$ is contained in the closure of convex hull of $\{\triangle_{s}$ :
$s\in S\}$ in the product space $(E_{\sigma})^{\Xi}$ where $E_{\sigma}$ denotes a l.c. $s$ . $E$ with the
weak topology $\sigma(E, E’)$ . Then, $M$ is a linear continuous mapping of $\Xi$

into $E$ such tliat (i) $Nlp=p$ for each constant function $p$ in $\Xi$ , and (ii)
$M(f)$ is contained in the closure of convex hull of $f(S)$ for each $f\in\Xi$ .
We denote $by$ $\Phi$

菖 the set of vector-valued means on $\Xi$ . Let $\Xi$ be also
translation invariant. Then, a vector-valued mean $M$ on $\Xi$ is said to be
left (or right) invariant if $M(L(s)f)=M(f)$ $(or M(R(s)f)=M(f))$
for each $s\in S$ and $f\in$ 三. A vector-valued mean $M$ on 三 is said to
be invariant if $M$ is both left and right invariant. We also denote by
$l_{c}^{\infty}(S, E)$ the subspace of $l^{\infty}(S, E)$ such that for each $f\in l_{c}^{\infty}(S, E)$ ,
$f(S)$ is relatively weakly compact in $E$ . Let $X$ be a subspace of $l^{\infty}(S)$

containing constants such that for each $f\in l_{c}^{\infty}(S, E)$ and $x’\in E’$ ,
the function $s\mapsto\langle f(s),$ $x’\rangle$ is contained in $X$ . Such an $X$ is called
admissible. Let $\mu\in X’$ . Then, for each $f\in l_{c}^{\infty}(S, E)$ , we define a
linear functional $\tau(\mu)f$ on $E’$ by

$\tau(\mu)f:x’\mapsto\mu\langle f(\cdot),$ $x’\rangle$ .

It follows from the bipolar theorem that $\tau(\mu)f$ is contained in $E$ . A
mapping $\tau$ of $X’$ into $(E_{\sigma})^{l_{c}^{\infty}(S,E)}$ is linear and continuous where $X’$ is
equipped with the weak topology $\sigma(X’, X)$ . Then, for each mean $\mu$ on
$X,$ $\tau(\mu)$ is a vector-valued mean on $l_{c}^{\infty}(S, E)$ (generated by $\mu$). Every
vector-valued mean on $l_{c}^{\infty}(S, E)$ is also a (vector-valued) mean in the
sense of Goldberg and Irwin [11], that is, for each $M\in\Phi_{l_{c}^{\infty}(S,E)}$ , there
exists a mean $\mu$ on $X$ such that $\tau(\mu)=M$ ; and the converse holds true.
Note that $\Phi_{l_{c},(S,E)}\infty$ is compact and convex; see also Day [6] and Kada
and Takahashi [13]. Let $X$ be also translation invariant and amenable.
If $\mu$ is a left (or right) invariant mean on $X$ , then $\tau(\mu)$ is also left (or
right) invariant. Conversely, if $M$ is a left (or right) invariant vector-
valued mean on $l_{c}^{\infty}(S, E)$ , then there exists a left (or right) invariant
mean $\mu$ on $X$ such that $\tau(\mu)=M$ .

Let $C$ be a closed convex subset of a l.c. $s$ . $E$ and let $\mathfrak{F}$ be the semi-
group of continuous self-mappings of $C$ under operator multiplication.
If $T$ is a semigroup homomorphism of $S$ into $\mathfrak{F}$ , then $T$ is said to
be a representation of $S$ as continuous self-mappings of $C$ . Let $S=$
$\{T(s) : s\in S\}$ be a representation of $S$ as continuous self-mappings
of $C$ such that for each $x\in C$ , the orbit $\mathcal{O}(x)=\{T(s)x : s\in S\}$ of
$x$ is relatively weakly compact in $C$ and let $X$ be a subspace of $l^{\infty}(S)$

containing constants such that for each $x\in C$ and $x’\in E’$ , the func-
tion $s\mapsto\langle T(s)x,$ $x’\}$ is contained in $X$ . Such an $X$ is called admissible
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with respect to $S$ . If no confusion will occur, then $X$ is simply called
admissible. Let $l^{l}\in X’$ . Then, there exists a unique point.$’\iota;_{()}$ of $E$ such
that $\mu\langle\ulcorner l’(\cdot)x,$ $x’\}=\langle x_{0},$ $x’\}$ for each.c’ $\in E’$ . We denote such a point $x_{0}$

by $T(\mu)x$ . Note that if $l^{\iota}$ is a mean on $X$ , then for eaclt $x\in C,$ $T(\mu)x$

is contained in the closure of convex hull of the orbit $\mathcal{O}(x)$ of $x$ .
Let $f\in l^{\infty}(S, E)$ . We denote by $\mathcal{R}\mathcal{O}(f)$ the right orbit of $f$ , that is,

the set $\{R(s)f\in l^{\infty}(S, E) : s\in S\}$ of right translates of $f$ . Similarly,
we also denote by $\mathcal{L}\mathcal{O}(f)$ the left orbit of $f$ , that is, the set $\{L(s)f\in$

$l^{\infty}(S, E)$ : $s\in S\}$ of left translates of $f$ . A function $f\in l^{\infty}(S, E)$ is said
to be almost periodic if $\mathcal{R}\mathcal{O}(f)$ is relatively compact in $(l^{\infty}(S, E), \mathfrak{T})$ ;
the notion of almost periodicity for real-valued functions on an abstract
group is due to von Neumann [20]. We denote by $AP(S, E)$ the set of
almost periodic functions defined on $S$ which take values in $E$ . See
also Bochner and von Neumann [4]. A function $f\in l^{\infty}(S, E)$ is said
to be right (or left) weakly almost periodic (in the sense of Eberlein) if
$\mathcal{R}\mathcal{O}(f)$ $(or \mathcal{L}\mathcal{O}(f))$ is relatively weakly compact in $(l^{\infty}(S, E), \mathfrak{T})$ ; the
notion of weakly almost periodicity was introduced by Eberlein [8].
If $f\in l^{\infty}(S, E)$ is both left and right weakly almost periodic, then
$f$ is said to be weakly almost peWiodic in the sense of Eberlein. We
denote by $WR(S, E)$ $(or WL(S, E))$ the set of right (or left) weakly
almost periodic functions defined on $S$ which take values in $E$ . See also
de Leeuw and Glicksberg [7], Goldberg and Irwin [11] and Miyake and
Takahashi [18]. Let $S=\{T(s) : s\in S\}$ be a representation of $S$ as
continuous mappings of a bounded, closed and convex subset $C$ of $E$

into itself and define a mapping $\phi_{S}$ of $C$ into $l^{\infty}(S, E)$ by $(\phi_{S}(x))(s)=$

$T(s)x$ for each $s\in S$ . Then, $S$ is also said to be (weakly) almost
periodic if, for each $x\in C,$ $\phi_{S}(x)\in AP(S, E)(WR(S, E))$ . Note that
every right (or left) weakly almost periodic function $f\in l^{\infty}(S, E)$ is
contained in $l_{c}^{\infty}(S, E)$ .

3. MEAN ERGODIC THEOREMS FOR WEAKLY ALMOST PERIODIC
FUNCTIONS

In 1934, von Neumann first provcd the existence of the mean values
for real-valued almost periodic functions defined on an abstract group.
Later, Bochner and von Neumann [4] extended von Neumann’s result
to vector-valued almost periodic functions defined on a group which
take values in a complete locally convex space.

Theorem 1 (von Neumann [20]). Let $G$ be a group, let $AP(G)$ be the
Banach space of real-valued almost periodic functions defined on $G$ and
let $f\in AP(G)$ . Then, there exists the unique constant function $c_{f}$ in
the closure of convex hull of $\mathcal{R}\mathcal{O}(f)$ . In this case, putting $\mu(f)=c_{f}$ ,
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$\mu$ is an invariant mean on $AP(G)$ such that $\mu_{x}(f(x^{-1}))=\mu_{x}f(x)$ for
each $f\in AP(G)$ .

In 1949, Eberlein [8] introduced the notion of weakly almost peri-
odicity for real-valued bounded functions (lefined on a locally compact
abelian group. Goldberg and Irwin [11] studied weakly almost period-
icities for vector-valued functions defined on a semigroup whose ranges
are relatively compact in a Banach space.

The following lemma is crucial for proving main results of this paper,
which can be obtained as in the proof of Lemma 3.3 in [18].

Lemma 1. Let $S$ be a semigroup with identity, let $E$ be a $l.c.s.$ , let
$f\in WR(S, E)$ , let $X$ be a closed, tmnslation invariant and admissible
subspace of $l^{\infty}(S)$ containing constants and let $\mu$ be a mean on $X$ .
Then, the function $s\mapsto\tau(l(s)’\mu)f=\tau(\mu)(L(s)f)$ is contained in the
closure of convex hull of $\mathcal{R}\mathcal{O}(f)$ .

Remark 1. Let $\mu$ be a mean on $X$ and let $f\in WR(S, E)$ . Motivated by
this lemma, we call such a $\tau(l(\cdot)’\mu)f$ an “ergodic mean” of $f$ . In partic-
ular, if $\lambda$ is a finite mean on $S$ , then $\tau(l(\cdot)’\lambda)f$ is a convex combination
of right translates of $f$ .

Using Lemma 1, we can prove the existence of the mean values for
vector-valued weakly almost periodic functions in the sense of Eberlein
as in the proof of Lemma 3.5 in [18].

Theorem 2. Let $S$ be a semigroup with identity, let $E$ be a $l.c.s.$ , let
$f\in WR(S, E)$ and let $X$ be a closed, tmnslation invariant and ad-
missible subspace of $l^{\infty}(S)$ containing constants. If $X$ has an invariant
mean $\mu$ , then there exists the unique constant function $c_{f}$ in the closure

$\mathcal{K}$ of convex hull of $\mathcal{R}\mathcal{O}(f)$ . In this case, $\tau(\mu)f=c_{f}$ .

As in the proofs of Theorem 3.7 and Theorem 3.8 in [18], we can also
prove mean ergodic theorems for vector-valued weakly almost periodic
functions in the sense of Eberlein by using Lemma 1 and Theorem 2.
Theorem 3. Let $S$ be a semigroup with identity, let $E$ be a $l.c.s.$ , let
$f\in WR(S, E)$ , let $X$ be a closed, translation invariant and admissible
subspace of $l^{\infty}(S)$ containing constants and let $\{\mu_{\alpha}\}$ be an asymptot-
ically invariant net of means on X. Then, $\{\tau(l(\cdot)’\mu_{\alpha})f\}$ converges
weakly to the constant function $c_{f}$ in the closure $\mathcal{K}$ of convex hull of
$\mathcal{R}\mathcal{O}(f)$ . In this case, $\tau(\mu)f=c_{f}$ for each invariant mean $\mu$ on $X$ .

Theorem 4. Let $S$ be a semigroup with identity, let $E$ be a $l.c.s_{f}$ let
$f\in WR(S, E)$ , let $X$ be a closed, translation invariant and admissi-
ble subspace of $l^{\infty}(S)$ containing constants and let $\{\mu_{\alpha}\}$ be a strongly
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asymptotically $invar\cdot iant$ net of means on X. Then, $\{\tau(l(\cdot)’\mu_{\alpha})f\}$ con-
verges to the constant function $c_{f}$ in the $closu7e\mathcal{K}$ of convex hull of
$\mathcal{R}\mathcal{O}(f)$ . In this case, $\tau(,J,)f=c_{f}fo7^{\cdot}$ each invariant $7ne(m’\iota$ on $X$ .

Corollary 1. Let $E$ be a Banach space and let $f\in WR(\mathbb{R}_{+}, E)$ . Then,

$\frac{1}{t}\int_{0}^{t}f(r+h)dr$

converges uniformly in $h\in \mathbb{R}_{+}$ as $tarrow+\infty$ .

Corollary 2. Let $E$ be a Banach space and let $f\in WR(\mathbb{R}_{+}, E)$ . Then,
the Abel means

$r \int_{0}^{\infty}\exp(-rt)f(t+h)dt$

converge uniformly in $h\in \mathbb{R}_{+}$ as $rarrow+\infty$ .

4. MEAN ERGODIC THEOREMS FOR ALMOST PERIODIC SEMIGROUPS

We can apply mean ergodic theorems for vector-valued weakly al-
most periodic functions in the sense of Eberlein in order to obtain new
and well-known mean ergodic theorems for semigroups of linear and
non-linear operators in a locally convex space $E$ . See also Ruess and
Summers [23, 24] and Miyake and Takahashi [18]. For example, the
following theorem follows from Theorem 4.

Theorem 5. Let $S$ be a semigroup with identity, let $E$ be a Banach
space, let $S=\{T(s) : s\in S\}$ be a weakly almost periodic representation
of $S$ as bounded linear operators on $E$ , that is, $S$ be a representation of
$S$ as bounded linear opemtors on $E$ such that for each $x\in E$ , the orbit
$\mathcal{O}(x)$ of $x$ is relatively weakly compact, let $X$ be a closed, tmnslation
invariant and admissible subspace of $l^{\infty}(S)$ containing constants and
let $\{\mu_{\alpha}\}$ be a strongly asymptotically invariant net of means on $X$ .
Then, for each $x\in E,$ $\{T(l(h)’\mu_{\alpha})x\}$ converges to a fixed point $p$ for $S$

uniformly in $h\in S.$ In this case, $p=T(\mu)x$ for each invariant mean
$\mu$ on $X$ .

Remark 2. By the uniform boundedness theorem, every weakly almost
periodic representation $S=\{T(s) : s\in S\}$ of $S$ as bounded linear
operators on $E$ is uniformly bounded, that is, there exists a $K>0$
such that $\Vert T(s)\Vert\leq K$ for each $s\in S$ .

In 1941, Fr\’echet proved a mean ergodic theorem for one-parameter
equicontinuous semigroups of mappings in an Euclidian space.
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Theorem 6 (Fr\v{c}chet [10]). Let $C$ be a bounded, closed and convex
subset of an Eucliclian space $\mathbb{R}^{7n}$ and let $S=\{\ulcorner 1^{\tau}(t) : t\geq 0\}$ be $a$ one-
pammeter semigroup of continuous mappings of $C$ into itself such that
$S$ is equicontinuous. Then, for each $x\in C$ ,

$\frac{1}{t}\int_{0}^{t}7^{\urcorner}(r)xclr$

converges to a point of $C$ as $tarrow+\infty$ .

Motivated by Fr\’echet, we study the relationship between almost pe-
riodicity of semigroups of mappings in a locally convex space and their
equicontinuity.

Lemma 2. Let $S$ be a semigroup with $identity_{f}$ let $C$ be a bounded,
closed and convex subset of a $l.c.s$ . $E$ and let $S=\{T(s) : s\in S\}$ be a
representation of $S$ as continuous mappings of $C$ into itself. Then, the
following are equivalent:

(i) $S$ is almost periodic;
(ii) for each $x\in C,$ $\mathcal{O}(x)$ is relatively compact and $S$ is equicontin-

uous on the closure of $\mathcal{O}(x)$ .
As in the proof of Theorem 4.1 in [18], we can prove a mean ergodic

theorem for equicontinuous semigroups of mappings of a compact con-
vex subset of a locally convex space $E$ into itself by using Lemma 2
and Theorem 3.
Theorem 7. Let $S$ be a semigmup with identity, let $C$ be a compact
convex subset of a $l.c.s$ . $E$ , let $S=\{T(s) : s\in S\}$ be a representation
of $S$ as continuous mappings of $C$ into itself such that $S$ is equicontinu-
ous, let $X$ be a closed, tmnslation invariant and admissible subspace of
$l^{\infty}(S)$ containing constants and let $\{\mu_{\alpha}\}$ be an asymptotically invariant
net of means on X. Then, for each $x\in C,$ $\{T(l(h)’\mu_{\alpha})x\}$ converges to
a point $p$ of $C$ uniformly in $h\in S.$ In this case, $p=T(\mu)x$ for each
invariant mean $\mu$ on $X$ .

Remark 3. Note that the limit point $T(\mu)x$ is not always a common
fixed point for $S$ . In fact, we know that there exists a nonexpansive
mapping $T$ of $C$ into itself such that for some $x\in C$ , its Ces\‘aro means
$\{1/n\sum_{k=0}^{n-1}T^{k}x\}$ converge, but its limit point is not a fixed point of $T$ ;
see also Suzuki and Takahashi [27] and Suzuki [26].

The following corollaries are the case when $E$ is a Banach space with
the norm topology.

Corollary 3. Let $S$ be a semigmup with identity, let $C$ be a compact
convex subset of a Banach space $E$ , let $S=\{T(s) : s\in S\}$ be a
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representation of $S$ as continuous mappings of $C$ into itself such that
$S$ is equicontinuous, let $X$ be a closed, translation invariant and ad-
missible subspace of $l^{\infty}(S)$ containing constants and let $\{\mu_{\alpha}\}$ be an
asymptotically invariant net of means on X. $\Gamma 1^{\tau}l\iota en$, for each $x\in C$ ,
$\{T(l(h)’\mu_{\alpha})x\}$ converges strongly to a point $p$ of $C$ uniformly in $h\in S$ .
In this case, $p=T(\mu)x$ for each invariant mean $l^{l}$ on $X$ .

Corollary 4. Let $C$ be a compact convex subset of a Banach space $E$ ,
let $U$ and $W$ be continuous mappings of $C$ into itself such that $UW=$
$WU$ and the families $\{U^{n}\}$ and $\{W^{n}\}$ are equicontinuous. Then, for
each $x\in C$ , the Ces\‘aro means

$\frac{1}{n^{2}}\sum_{i=0}^{n-1}\sum_{j=0}^{n-1}U^{i+h}W^{j+h_{X}}$

converge to a point $p$ of $C$ uniformly in $h\in \mathbb{N}_{+}$ .

Corollary 5. Let $C$ be a compact convex subset of a Banach space
and let $S=\{T(t) : t\geq 0\}$ be $a$ one-parameter semigmup of continuous
mappings of $C$ into itself such that $S$ is equicontinuous. Then, for each
$x\in C$ , the Abel means

$r \int_{0}^{\infty}\exp(-rt)T(t+h)xdt$

converge to a point $p$ of $C$ uniformly in $h\in \mathbb{R}_{+}$ as $rarrow+\infty$ .

The following corollary is the case when $E$ is a Banach space with
the weak topology.

Corollary 6. Let $S$ be a semigmup with identity, let $C$ be a weakly
compact convex subset of a Banach space $E$ , let $S=\{T(s) : s\in S\}$ be a
representation of $S$ as weakly continuous mappings of $C$ into itself such
that $S$ is weak-to-weak equicontinuous, let $X$ be a closed, tmnslation
invariant and admissible subspace of $l^{\infty}(S)$ containing constants and
let $\{\mu_{\alpha}\}$ be an asymptotically invariant net of means on X. Then, for
each $x\in C,$ $\{T(l(h)’\mu_{\alpha})x\}$ converges weakly to a point $p$ of $C$ uniformly
in $h\in S$ . In this case, $p=T(\mu)x$ for each invariant mean $\mu$ on $X$ .
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