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Abstract
The purpose of this paper is to show fixed point theorems using the topology introduced

by [2]. In particular, we obtain Takahashi’s fixed point theorem in the case where the whole
space is a vector lattice with unit. Using Takahashi’s fixed point theorem in this space,
we also obtain Fan-Browder’s fixed point theorem and Schauder-Tychonoff’s fixed point
theorem.

1 Introduction

There are many fixed point theorems in a topological vector space, for instance, Takahashi’s
fixed point theorem and Fan-Browder’s fixed point theorem in a topological vector space, Ty-
chonoff’s fixed point theorem in a locally convex space, Schauder’s fixed point theorem in a
normed space, and so on; see for example [7].

Takahashi [6] proved the following; see also [7].

Takahashi’s fixed point theorem. Let X be a Hausdorff topological vector space, Y a compact
subset of X and Z a convex subset of Y. Suppose that f a mapping from Z into 2¥ satisfies

(0) f~Y(y) is convex for any y € Y,

and there exists a mapping g from Z into 2¥ satisfying the following conditions:
(1) g(2) is a subset of f(z) for any z € Z;

(2) g7 '(y) is non-empty for any y € Y;

(8) g(2) is an open subset of X for any z € Z.

Then there ezists zo € Z such that zg € f(20).

In the mentioned above, f~1(y) = {z | y € f(z)}.

In this paper, we consider fixed point theorems in a vector lattice. As known well every
topological vector space has a linear topology. On the other hand, although every vector lattice
does not have a topology, it has two lattice operators, which are the supremum V and the
infimum A, and also an order is introduced from these operators; see also [5, 8] about vector
lattices. There are some methods how to introduce a topology to a vector lattice. One method
is to assume that the vector lattice has a linear topology [1]. On the other hand, there is another
method to make up a topology in a vector lattice, for instance, in [2] one method is introduced
in the case of the vector lattice with unit.

The purpose of this paper is to show fixed point theorems using the topology introduced by [2].
In particular, we obtain Takahashi’s fixed point theorem in the case where X is a vector lattice
with unit. Using Takahashi’s fixed point theorem in this space, we also obtain Fan-Browder’s
fixed point theorem and Schauder-Tychonoff’s fixed point theorem.
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2 Topology in a vector lattice

In this section we introduce a topology in a vector lattice introduced by [2].

Let X be a vector lattice. e € X is said to be an unit if e Az > 0 for any z € X with 2 > 0.
Let Kx be the class of units of X. In the case where X is the set of real numbers R, Kgr is
the set of positive real numbers. Let X be a vector lattice with unit and let ¥ be a subset of
X. Y is said to be open if for any x € Y and for any e € Kx there exists ¢ € Kr such that
[z —ee,z 4+ ce] C Y. Let Ox be the class of open subsets of X. Y is closed if Y© € Ox. For
e € Kx and for an interval [a, b] we consider the following subset

la,b]® = {z | there exists some ¢ € Kgr such that £ —a > ce and b — x > ee}.

By the definition of [a,b]¢ it is easy to see that [a,b]® C [a,b]. A mapping from X x Kx into
(0,00) is said to be a gauge. Let Ax be the class of gauges in X. For z € X and § € Ay,
O(z, 8) is defined by

O(x,8) = |J [z - 8(z,e)e,z + 8(z, e)e]”.
eeKx

O(z, ) is said to be a d-neighborhood of z. Suppose that for any z € X and for any § € Ax
there exists U € Ox such that x € U C O(x,9).

Lemma 1. Let X be a vector lattice with unit and Y a subset of X. Then the following are
equivalent.

(1) Y is an open subset of X.
(2) There erists 6 € Ax such that O(z,6) is a subset of Y for anyz €Y.
(83) For anyz €Y there exists § € Ax such that O(z,6) is a subset of Y.

Proof. We first show that (1) implies (2). Suppose that Y € Ox. Let £ € Y and e € Kx. Since
Y € Ox, there exists a positive number §(z, e) such that [z —4(z, e)e,z+d(z,e)e] CY. Thend €
Ax. Let y € O(z, 6) arbitrary. Then there exists e € Kx such that y € [z—8(z, e)e, z+6(z, €)e]®.
Then it follows that

y € [z — 6(z,e)e,z + d(z,e)e]® C [z — §(z,e)e,x + 6(z,e)e] C Y.

Therefore O(x,d) C Y. It is obvious that (2) implies (3). So next we show that (3) implies (1).
Suppose that for any x € Y there exists § € Ax such that O(z,8) C Y. For any e € Kx let
é < 8(z,e). Then [z — de,x + de] C [z — &(z, e)e, = + d(z, €)e]®. By the definition of O(z, §), we
have

[z — de,x + de] C [z — 8(z,e)e,z + 6(z,e)e]® € O(z,8) C Y.
Therefore Y € Ox. O

For a subset Y of X we denote by cl(Y) and int(Y), the closure and the interior of Y,
respectively. Let X and Y be vector lattices with unit, o € Z C X and f a mapping from
Z into Y. f is said to be continuous in the sense of topology at xp if for any V € Oy with
f(zo) € V there exists U € Ox with zq € U such that f(UNZ) C V.
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3 Takahashi’s and Fan-Browder’s fixed point theorems

In this section we show Takahashi’s fixed point theorem and Fan-Browder’s fixed point the-
orem using the topology introduced in Section 2.

Let X be a vector lattice with unit. X is said to be Hausdorff if for any z;,z2 € X with
T1 # x2 there exists 01,02 € Ox such that z1 € Oq, 22 € O3 and O1 N 02 = 0. A subset Y of
X is said to be compact if for any open covering of Y there exists a finite sub-covering. A subset
Y of X is said to be normal if for any closed subsets F;, and F, with F; N F>NY = ) there exists
01,03 € Ox such that Fy, C Oy, F, C O3 and O1 N O3 NY = @. Moreover the following hold.

(1) Let X be a Hausdorff vector lattice with unit and Y a compact subset of X. Then Y is
normal.

(2) Let X be a vector lattice with unit and Y a normal and closed subset of X. If Y C |JI_, O;,
where O; € Ox, then there exists a continuous function 3; in the sense of topology from Y
into [0, 1] for each 4 such that B;(y) =0 for any y € OF NY and Y1, Bi(y) = 1.

A vector lattice is said to be Archimedean if it holds that £ = 0 whenever there exists y € X
with ¥y > 0 such that 0 < rz < y for any r € Kr. A mapping N from X x Kx to [0,00] is
defined by N(z,e) = sup{r | r|z] < e}. Moreover we consider the following condition:

(UA) For any e € Kx and for any {1, - ,Tm} which is a linearly independent subset of
X there exists M € Kgr such that N (3.7 kizi,e) < M for any ky,--- ,km € R with
ZL kiz =1

Lemma 2. FEvery Archimedean vector lattice satisfies the condition (UA).

Proof. By [8, Theorem 1V.11.1] for any Archimedean vector lattice X there exists the completion
X of X. By [8, Theorem V.4.2] for the complete vector lattice X there exists an extremally
disconnected compact set 2 and a vector sublattice Y of Co(€2) such that X is isomorphic to
Y, where

Coo() = { f f is continuous from © into [—o0, o] and
o f71({+£o0}) is nowhere dense :

Therefore it may be assumed that X is a vector sublattice of Co (£2). Then

N (21:; k;x;, e) = sup {r i_"; kizi(w)
. e(w)
- “‘f{ S k)] | © € ”} '

Let S = {(k1, - ,km) | Xoim; k2 = 1} and E,, a mapping from S into [0, co] defined by

o)
k) = T @)

Then for any (k1, -+ ,km) € S there exists w € Q such that e(w) # oo and Y -, kizi(w) # 0.
Actually assume that there exists (k1,- - ,km) € S such that e(w) = oo or 3 ., k;zi(w) = 0 for
any w € Q. Let Q' = {w | Y2, kizi(w) # 0}. Since each x; is continuous, £’ is open. On the
other hand, since @' C {w | e(w) = oo}, ' is nowhere dense. It is a contradiction. Therefore for
any (k1, - ,km) € S there exists w € Q such that e(w) # oo and Y iv, kizi(w) # 0. Let

T

< e(w) for any w € Q}

Ew(kl, Ce

(kl,"' ,km) ES,iki:c,-(w);ﬁO}.

i=1

T, = {(k1,--- s km)
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Then Uwé{wle(w#m} T, = S. Since S is compact and each T, is open, there exists wi,--- ,wp €
{w | e(w) # oo} such that | J5_, To,, = S. Let

E(ky,-- km) =min{E, (k1, - ,km) |j=1,---,p}.

Then E is continuous on S. Let M = max{E(ky, - ,km) | (k1, - ,km) € S}. Then
“ : e(w)
N Zkiwi,e inf{ —=s—>——\|wenN
i=1

130500 kizi(w)]
Therefore X satisfies the condition (UA). 0

Il

< E(ki,-- km) < M.

To prove our main result, we need the following lemma.

Lemma 3. Let X be an Archimedean vector lattice with unit and {z,,--- ,z,} a subset of X.

Then co{z1, -+ ,zn} is homeomorphic to a compact and convexr subset of R™.

Proof. Suppose that {z1, -+ ,Zm} is a linearly independent subset of {zi,--- ,z,} and z; =
i

S ajizi for j=m+1,--- ,n. Let Xg = Span{z1, - ,Zm}, & = (0,---,0,1,0,--- ,0) € R™

forany i = 1,2,--- ,m and f a mapping from X into R™ defined by f (3°1", cizi) = > v, ci€s.
Then f is bijective clearly.

Since by Lemma 2 X satisfies the condition (UA), for any e € Kx there exists M € Kr such
that |k;| < M for any i if |} ., kizi| < e. Actually it is shown as follows. It may be assumed
that 3", k2 # 0. Let e € Kx. Since X satisfies the condition (UA), there exists M € Kr such

that N (Z:’;l \/—E—';“‘——_—IT?mi,e) < M. Since

<e,

m
E k,‘.’L‘i
i=1

1. 1

by the definition of N

|ki| <

ikf <N (i \/_T_Q.mt,e) <M
i=1 =1 V2 in1

for any i. Take ¢ € Kr arbitrary and let V., = (¢c1 —€,¢1 +€) X -+ X (cm — €,¢m + €). Take
0 € Ax satisfying 6 (3°12, cizi,e) < 5. If 327 (ci + hi)zi € O (322, cixy, ), then |h;| < € for
any i. Therefore

f (i(ci + hi)l'i) = f:(ci + hi)e; € Ve.

i=1 i=1

Let U = int (O (3%, cizi,6)). Then f(U N Xo) C V. proving that f is continuous in the sense
of topology.

Conversely f~! is continuous in the sense of topology. In fact, take U € Ox arbitrary. By
Lemma 1 there exists § € Ax such that O (31", ¢;z;,8) C U. Take e > Y i~ |z:| and € € Kr
with e <8 (372, cimi,e). If Y_ov (i + hi)e; € Ve, then |31~ h;z;| < ece. Therefore

-1 (Z(Ci + hi)ei) = Z(Ci + h,,'):L',' €0 (Z C,'(II,;,(S) NXoCcUNXy
=1 i=1 i=1



proving that f~! is continuous in the sense of topology.
Therefore Xo is homeomorphic to R™ C R™ and moreover co{z, - - ,Zn} is homeomorphic
m m
to 60{61, Ctty Emy Zi:l am+1,iei; ttt Ei:l an,iei}' 0

By the above lemma we can show the following Takahashi’s fixed point theorem in a vector
lattice.

Theorem 1. Let X be a Hausdorff Archimedean vector lattice with unit, Y a compact subset of
X and Z a conver subset of Y. Suppose that a mapping f from Z into 2Y satisfies

(0) f~(y) is conver for anyy € Y,

and there exists a mapping g from Z into 2¥ satisfying the following conditions:
(1) g(2) is a subset of f(2) for any z € Z;

(2) g7 (y) is non-empty for any y € Y;

(3) g(2) is an open subset of X for any z € Z.

Then there exists 29 € Z such that 2y € f(20).

Proof. By (2) it holds that Y C |J, 5 g(z). By (3) it holds that g(z) € Ox. Since Y is compact,
there exists 21, , 2, € Zsuch that Y C |J]-_, g(z;). Since Y is normal, there exists a continuous
function S; in the sense of topology from Y into [0, 1] satisfying B;(y) = 0 for any y € 9(2:)€
and > 7, Bi(y) = 1. Let p be a mapping from Y into Z defined by p(y) = S 1 Bi(y)zi. Then
p is continuous in the sense of topology. Since by (1) it holds that ¢~ 1(y) C f~(y), by (0)
it holds that p(y) € f~'(y). Let Zy = co{z1,--- ,2n}. By Lemma 3 Z; is homeomorphic to a
compact and convex subset K of R™. Put a mapping h from Z; into K as this homeomorphism.
Then hopoh~! is continuous in the sense of topology from K into K. Therefore by Brouwer’s
fixed point theorem there exists 2o € K such that A(p(h~1(z¢))) = zo. Let 2o = h~!(zo). Then
p(z0) = 20. Since p(20) € f~!(20), it holds that zo € f~!(20) proving that zo € f(zo). O

In the above theorem, putting Z = Y and g = f, the following theorem is obtained. It is
Fan-Browder’s fixed point theorem in a vector lattice.

Theorem 2. Let X be a Hausdorff Archimedean vector lattice with unit and Y a compact convex
subset of X. Suppose that a mapping f from'Y into 2Y satisfies the following conditions:

(1) f~'(y) is non-empty and convez for any y € Y;
(2) f(y) is an open subset of X for anyy e Y.
Then there exists yo € Y such that yo € f(yo).
In the above theorem, changing from f to f~!, the following theorem is obtained; see {7.

Theorem 3. Let X be a Hausdorff Archimedean vector lattice with unit and Y a compact conver
subset of X. Suppose that a mapping f from'Y into 2Y satisfies the following conditions:

(1) f~(y) is an open subset of X for anyy € Y;
(2) f(y) is non-empty and convez for anyy €Y.
Then there exists yo € Y such that yo € f(yo).
Moreover the following holds. For the sake of completeness, we show its proof.

Theorem 4. Let X be o Hausdorff Archimedean vector lattice with unit, Y a compact convex
subset of X and A CY x Y. Suppose that A satisfies the following conditions:

225
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(1) {z|(z,y) € A} is closed for anyy € Y;

(2) {y| (z,y) & A} is convez for any z € Y';

3) (z,z) € A foranyz €Y.

Then there ezists T9 € Y such that {zo} x Y C A.

Proof. Assume that {z} xY ¢ A for any £ € Y. Then there exists y € Y such that (z,y) € A.
Let f(z) = {y | (z,y) € A}. Then f(x) is non-empty and by (2) it is convex. Moreover by (1)
fYy) ={z| (z,y) € A} € Ox. By Theorem 3 there exists o € Y such that o € f(z¢), that
is, (o0, o) & A. It is a contradiction. Therefore there exists g € Y such that {zo} xY C A. O

4 Schauder-Tychonoff’s fixed point theorem

Let X be a vector lattice with unit and Y a vector lattice. Let U3 (Kx,>) be the class of
{ve | e € Kx} satisfying the following conditions:

(U1) v, €Y with v, > 0;
(U2)? ve, > ve, if e; > e2;
(U3)® For any e € Kx there exists 8(e) € Kr such that vg)e < %ve.

Let zg € Z C X and f a mapping from Z into Y. f is said to be continuous at zg if there exists
{ve} € Uy (Kx,>) such that for any e € Kx there exists 6 € KR such that for any z € Z if
lz — zo| < de, then |f(x) — f(zo)| < ve. In particular if Y has an unit, then we consider often
{ve} € Uy (Kx, >) satisfying the following condition instead of (U1):

(UD* ve € Ky.

Ezample 1. We consider a sufficient condition such that there exists {ve} € Uy (Kx, >) satisfying
the condition (U1)*. Let X be an Archimedean vector lattice. Then there exists a positive
homomorphism f from X into R, that is, f satisfies the following conditions:

(H1) f(az+ By) = af(z) + Bf(y) for any z,y € X and for any a, 3 € R;
(H2) f(z) >0 for any z € X with z > 0.

Indeed it is shown as follows. By [8, Theorem IV.11.1] for any Archimedean vector lattice X
there exists the completion X of X. By [8, Theorem V.4.2] for the complete vector lattice X
there exists an extremally disconnected compact set 2 and a vector sublattice Y of Cy (§2) such
that X is isomorphic to Y, where

f is continuous from  into [—o0, co] and }

Coo () = {f ‘ f1({£oo}) is nowhere dense

Therefore it may be assumed that X is a vector sublattice of Co,(€2). Take w €  arbitrary and
let f(r) = r(w) for any z € X. Then f satisfies the conditions (H1) and (H2). Suppose that X
satisfies that there exists a homomorphism f from X into R satisfying the following condition
instead of (H2):

(H2)* f(z) > 0 for any z € X with z > 0.

Then for any ey € Ky {f(e)ey} satisfies the conditions (U1)*(U2)%(U3)* clearly. Therefore if
X is Archimedean and there exists a homomorphism from X into R satisfying the condition
(H2)®, then it may be assumed that every {v.} € U5 (Kx, >) satisfies the condition (U1)*.



Let X and Y be vector lattices with unit, Z C X and f a mapping from Z into Y. Suppose
that there exists P C Y satisfying the following conditions:

(P1) P is open and convex;

(P2) Ifz € P andz <y, then y € P;
(P3) 0¢ P

(P4) {z|z>0} CP.

Let Py be the class of the above P’s. f is said to be upper semi-continuous with respect to
PePyif{z|y—f(z) e P € OxnNZforanyy €Y. f issaid to be lower semi-continuous with
respect to P € Py if {z | f(z)—y € P} € OxNZ forany y € Y. f is said to be semi-continuous
with respect to P € Py if it is upper and lower semi-continuous with respect to P € Py.

Ezample 2. We consider of a sufficient condition to satisfy Px # . Let X be an Archimedean
vector lattice with unit. Suppose that there exists a homomorphism f from X into R satisfying
the condition (H2)*. Let 0 < 3 < 1 and 4(z,e) = ﬂTf((:T) for any z € X with z > 0 and for any
e € Kx. Put P =, cx with 2>0 e7¢(O(x,4)). Then P is open and {z | z > 0} C P.

Note that by the condition (H2)* for any z1,z2 € X with z;,z2 > 0 and 21 # za, T??clﬁ and
7(a are incomparable mutually. Therefore z — d(z,e)e £ 0 for any z € X with z > 0 and for
any e € Kx. Assume that 0 € P. Then there exists £ € X with 2 > 0 and e € Kx such that
0 € [z —d(z,e)e,z + §(x,e)e]®. Tt is a contradiction. Therefore 0 & P.

Note that z € int(A) if and only if there exists §, € Ax such that O(z,d,;) C A. Let z € P
and z < y. Then there exists z € X with z > 0 and 4, € Ax such that O(z,d;) C O(z,8). Let
Oy(u,e) = §z(u — y + x,€e). Since §(x2,e) < §(x; + xo,¢e) for any z1,z2 € X with z;, 25 > 0, it
holds that z; + O(x2,d) C O(z1 + z2,8). Therefore

O 8,) =y —z+0(2,8:) Cy—z +0(2,6) C O(z +y — ,0),

that is, y € int(O(z + y — z,48)) C P.

Let z9,7z1 € P and a € R with 0 < o < 1. Then for ¢ = 0,1 there exists y; € X with y; > 0
and d; € Ax such that O(z;,8;) C O(y;,d). Let §,(z,e) = (1 — a)bo(z0, €) + ad1(z1,€). Take
z € O((1 — a)zo + ax1,06,) arbitrary. Then there exists e € Kx such that

z € [(1—a)ze+azs —8.((1 — a)xg + azxi,e)e,
(1 - a)zo + az1 + 64((1 — @)zo + az1,e)e]®
= (1 - a)[zo — o(xo, €)e, zo + do(z0, €)e]|® + a[r1 — 81(z1, €)e, z1 + d1(z1, €)e]®.

Since 6(az,e) = ad(z,e) for any r € X with z > 0 and for any a € Kg, it holds that
O(az,d) = aO(z,§). Since

(5(20,60)60 +5(Z1,€1)€1 =46 (ZO + 21, f(.Zo) f(zl) ) (f(z())eo + f(zl)el)

eo + e
fleo)™ " fle) ') \Fleo) " " fler)
for any 29,21 € X with zp, 21 > 0, it holds that O(29,6) + O(z1,0) C O(zp + 21,6). Then
z € (1 - a)O(:L'o, 60) + a0($1,51)

C (1-a)O(ys,d) + aO(y1,8) = O((1 — a)yo,9) + O(ay1,9)
Cc O((1 - a)yo + ay,9).

Therefore O((1 — a)zo + azi1,8.) C O((1 — a)yo + ay, §), that is, (1 — a)zo + az1 € int(O((1 —
a)ye + ay1,90)) C P.

227
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Ezample 3. We consider of another simple sufficient condition to satisfy Px # #. Let X be a
Hilbert lattice with unit, that is, X has an inner product (-,-) and for any z,y € X if |z| < |y|,
then (z,z) < (y,y). Then forany e € Kx P = {z | (z,e) > 0} satisfies the conditions (P1)-(P4).
Actually it is possible to show as follows.

It is clear that P is convex and 0 ¢ P.

Note that (x,y) > 0 if z,y > 0. Actually since |z — y| < z+ y and (|Jz — y|,|z — y|) =
(x - y,x — y), it holds that (x — y,z — y) < (z + y,z + y). Therefore it holds that {z,y) > 0.
Let £ € P and £ < y. Then (y,e) > (z,e) > 0 proving that y € P.

Assume that there exists £ € X with £ > 0 such that (z,e) = 0. Then since (z + e,z +¢€) =
(.’L‘ — 6T — 6) = (lIL‘ - elv I.’L’ - 6,),

O=(z+e+|z—e,z+e—|z—e])=4(xVe,xzAe) >4{zAe,zNe) > 0.

It is a contradiction. Therefore {z | z > 0} C P.
For z € P and e; € Kk putting § < ;2% then (z — de1,e) > 0. Therefore P is open.

ey,e)’?

Lemma 4. Let X be an Archimedean vector lattice with unit, Y a vector lattice with unit, Z C X
and f a mapping from Z into Y. Suppose that there exists a homomorphism from X into R
satisfying the condition (H2)* and that Py # 0. Then f is semi-continuous with respect to any
P € Py if it is continuous at any z € Z.

Proof. Take y € Y and zo € {z | y — f(z) € P} N Z arbitrary. By the assumption there

exists {ve} € UZ(Kx,>) such that for any e € Kx there exists é(e) € Kr such that for any

T € Z if |z — zo| < é(e)e, then |f(z) — f(zo)| < ve. By the asumption it may be assumed

that v € Ky for any e € Kx. Since P is open, there exists a natural number n(e) such that

[y — f(zo0) — 27™ve,y — f(z0) + 27 ™)v.] C P. If |z — x| < 8(8(e,n(€))e)8(e, n(e))e, where

6(e,n) = 6(8(---0(6(e)e) - - - e)e), then |f(z) — f(zo)| < Vo(en(e))e < 2 ™) v,. Therefore y —
N e’

f(2) € ly~f(z0) =27 ve, y— f(z0) +27 "] C P, that is, [zo—5(6(e, n(e))e)8(e, n(e))e, zo+
o(0(e,n(e))e)d(e,n(e))e] C {z |y — f(z) € P} N Z proving that {z | y — f(z) € P} € Ox N Z.
Therefore f is upper semi-continuous with respect to P. Similarly it can be proved that f is
lower semi-continuous with respect to P. (]

Lemma 5. Let X be an Archimedean vector lattice with unit, Y a vector lattice with unit,
To € Z C X and f a mapping from Z into Y. Suppose that there exists a homomorphism from
X into R satisfying the condition (H2)*. Then f is continuous at zo in the sense of topology if
it is continuous at xg.

Proof. By the asumption there exists {ve} € U3 (Kx,>) such that for any e € Kx there exists

d(e) € Kr such that for any z € Z if |z — zo| < d(e)e, then |f(z) — f(x0)| < ve. By the

asumption it may be assumed that v. € Ky for any e € Kx. Let dy be a gauge in Y. Take a

natural number n(e) such that 27™(¢) < §y (f(z0),ve) and put dx (z,e) = (e, n(e))d(8(e, n(e))e),

where f(e,n) = 0((---0(0(e)e)---e)e). Let £ € O(xzo,dx). There exists e € Kx such that
N’

T € [zo — 0x (z0, €)e, z':) + 8x(zo,€)e]®. Then
|f(z) — f(zo)] < Vg(e,n(e))e < 2_n(e)ve < by (f(xo), Ve)ve-

Therefore

f(z) € [f(x0) — 6y (f(Z0), ve)ve, f(To) + by (f(0), ve)ve] " C O(f(z0),y)

proving that f is continuous at zo in the sense of topology. O



Theorem 5. Let X be a Hausdorff Archimedean vector lattice with unit, Y a vector lattice with
unit and Z a compact convezr subset of X. Suppose that Py # @ and that a mapping f from
Z x Z into Y satisfies that there exists P € Py such that

(1) f(-,z2) is upper semi-continuous with respect to P for any xo € Z;
(2) f(z1,-) is convex for any 1 € Z;

(3) There exists c € Y such that c— f(z,z) € P foranyz € Z.

Then there exists xg € Z such that ¢ — f(zg,z) € P for any z € Z.

Proof. Let A = {(z1,z2) | ¢ — f(z1,z2) ¢ P}. By (1) {z1 | (z1,22) € A} is closed for any
29 € Z. By (3) (z,z) € Afor any z € Z. Let 21,22 € {z2 | (z1,22) ¢ A} and 0 < a < 1. By (2)
and convexity of P

c— f(z1,(1 — a)z1 + az) > (1 — a)(c — f(z1,21)) + alc — f(z1,22)) € P.

By (P2) (1 — a)z1 + az € {z2 | (z1,22) & A}, that is, {z2 | (z1,72) & A} is convex for any
z1 € Z. By Theorem 4 there exists zo € Z such that {zo} x Z C A. Therefore ¢ — f(zo,z) € P
for any z € Z. O

Theorem 6. Let X be a Hausdorff Archimedean vector lattice with unit and Z a compact convex
subset of X. Suppose that there exists a homomorphism from X into R satisfying the condition
(H2)* and that a mapping f from Z into X is continuous. Then it holds that (1) or (2).

(1) There exists xg € Z such that f(zo) = 0.

(2) There ezists xg € Z such that f(zo) # zo and |zo— f(zo)| — |z — f(z0)| & P for any P € Px
and for any z € Z.

Proof. Suppose that (1) is not satisfied. Then f(z) # z for any z € Z. Take g(z1,z2) =
|z2 — f(x1)| — |1 — f(z1)]- Then g(-, z3) is continuous for any z2 € Z, g(z1,-) is convex for any
z1 € Z and by (P3) —g(x,z) = 0 ¢ P. By Lemma 4 and Theorem 5 there exists o € Z such
that —g(zo,x) = |zo — f(m0)| — |z — f(x0)| € P for any x € Z. a

Theorem 7. Let X be a Hausdorff Archimedean vector lattice with unit and Z a compact convec
subset of X. Suppose that there exists a homomorphism from X into R satisfying the condition
(H2)*® and that @ mapping f from Z into X is continuous. Then there exists xo € Z such that

f(xo) = xo.

Proof. Assume that (2) in Theorem 6 holds. Then there exists zo € Z such that f(zo) # zo and
|Zo — f(xo)| — |z — f(x0)| & P for any z € Z. Since f(zo) # To, by (P4) |To — f(z0)| € P. Take
x = f(xg). Then |xz¢ — f(zo)| & P. It is a contradiction. Therefore there exists £o € Z such that
Sf(xo) = zo. O
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