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Abstract
The purpose of this paper is to show fixed point theorems using the topology introduced

by [2]. In particular, we obtain Takahashi’s fixed point theorem in the case where the whole
space is a vector lattice with unit. Using Takahashi’s fixed point theorem in this space,
we also obtain Fan-Browder’s fixed point theorem and Schauder-Tychonoff’s fixed point
theorem.

1 Introduction
There are many fixed point theorems in a topological vector space, for instance, Takahashi’s

fixed point theorem and Fan-Browder’s fixed point theorem in a topological vector space, Ty-
chonoff’s fixed point theorem in a locally convex space, Schauder’s fixed point theorem in a
normed space, and so on; see for example [7].

Takahashi [6] proved the following; see also [7].

Takahashi’s fixed point theorem. Let $X$ be a Hausdorff topological vector space, $Y$ a compact
subset of $X$ and $Z$ a convex subset of Y. Suppose that $f$ a mapping from $Z$ into $2^{Y}$ satisfies
(0) $f^{-1}(y)$ is convex for any $y\in Y$ ,

and there exists a mapping $g$ from $Z$ into $2^{Y}$ satisfying the following conditions:

(1) $g(z)$ is a subset of $f(z)$ for any $z\in Z$ ;

(2) $g^{-1}(y)$ is non-empty for any $y\in Y$ ;

(3) $g(z)$ is an open subset of $X$ for any $z\in Z$ .
Then there exists $z_{0}\in Z$ such that $z_{0}\in f(z_{0})$ .
In the mentioned above, $f^{-1}(y)=\{x|y\in f(x)\}$ .

In this paper, we consider fixed point theorems in a vector lattice. As known well every
topological vector space has a linear topology. On the other hand, although every vector lattice
does not have a topology, it has two lattice operators, which are the supremum $\vee$ and the
infimum $\wedge$ , and also an order is introduced from these operators; see also [5, 8] about vector
lattices. There are some methods how to introduce a topology to a vector lattice. One method
is to assume that the vector lattice has a linear topology [1]. On the other hand, there is another
method to make up a topology in a vector lattice, for instance, in [2] one method is introduced
in the case of the vector lattice with unit.

The purpose of this paper is to show fixed point theorems using the topology introduced by [2].
In particular, we obtain Takahashi’s fixed point theorem in the case where $X$ is a vector lattice
with unit. Using Takahashi’s fixed point theorem in this space, we also obtain Fan-Browder’s
fixed point theorem and Schauder-Tychonoff’s fixed point theorem.
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2 Topology in a vector lattice

In this section we introduce a topology in a vector lattice introduced by [2].
Let $X$ bc a vector latticc. $e\in X$ is said to be an unit if $e\wedge x>0$ for any $x\in X$ with $x>0$ .

Let $\mathcal{K}_{X}$ be the class of units of $X$ . In the case where $X$ is the set of real numbers $R,$ $\mathcal{K}_{R}$ is
the set of positive real numbers. Let $X$ be a vector lattice with unit and let $Y$ be a subset of
X. $Y$ is said to be open if for any $x\in Y$ and for any $e\in \mathcal{K}_{X}$ there exists $\epsilon\in \mathcal{K}_{R}$ such that
$[x-\epsilon e, x+\epsilon e]\subset Y$ . Let $\mathcal{O}_{X}$ be the class of open subsets of X. $Y$ is closed if $Y^{C}\in \mathcal{O}_{X}$ . For
$e\in \mathcal{K}_{X}$ and for an interval $[a,$ $b|$ we consider the following subset

$[a, b]^{e}=$ { $x|$ there exists some $\epsilon\in \mathcal{K}_{R}$ such that $x-a\geq\epsilon e$ and $b-x\geq\epsilon e$ }.

By the definition of $[a, b]^{e}$ it is easy to see that $[a, b]^{e}\subset[a, b]$ . A mapping from $X\cross \mathcal{K}_{X}$ into
$(0, \infty)$ is said to be a gauge. Let $\Delta_{X}$ be the class of gauges in $X$ . For $x\in X$ and $\delta\in\Delta_{X}$ ,
$O(x, \delta)$ is defined by

$O(x, \delta)=\bigcup_{e\in \mathcal{K}_{X}}[x-\delta(x, e)e, x+\delta(x, e)e]^{e}$
.

$O(x, \delta)$ is said to be a $\delta$-neighborhood of $x$ . Suppose that for any $x\in X$ and for any $\delta\in\Delta_{X}$

there exists $U\in \mathcal{O}_{X}$ such that $x\in U\subset O(x, \delta)$ .

Lemma 1. Let $X$ be a vector lattice with unit and $Y$ a subset of X. Then the folloutng are
equivalent.

(1) $Y$ is an open subset of $X$ .
(2) There $e$ vists $\delta\in\Delta_{X}$ such that $O(x, \delta)$ is a subset of $Y$ for any $x\in Y$ .

(3) For any $x\in Y$ there exists $\delta\in\Delta_{X}$ such that $O(x, \delta)$ is a subset of $Y$ .

Proof. We first show that (1) implies (2). Suppose that $Y\in \mathcal{O}_{X}$ . Let $x\in Y$ and $e\in \mathcal{K}_{X}$ . Since
$Y\in \mathcal{O}_{X}$ , there exists a positive number $\delta(x, e)$ such that $[x-\delta(x, e)e, x+\delta(x, e)e]\subset Y$ . Then $\delta\in$

$\Delta_{X}$ . Let $y\in O(x, \delta)$ arbitrary. Then there exists $e\in \mathcal{K}_{X}$ such that $y\in[x-\delta(x, e)e, x+\delta(x, e)e]^{e}$ .
Then it follows that

$y\in[x-\delta(x, e)e, x+\delta(x, e)e]^{e}\subset[x-\delta(x, e)e, x+\delta(x, e)e]\subset Y$ .

Therefore $O(x, \delta)\subset Y$ . It is obvious that (2) implies (3). So next we show that (3) implies (1).
Suppose that for any $x\in Y$ there exists $\delta\in\Delta_{X}$ such that $O(x, \delta)\subset Y$ . For any $e\in \mathcal{K}_{X}$ let
$\delta<\delta(x, e)$ . Then $[x-\delta e, x+\delta e]\subset[x-\delta(x, e)e,$ $x+\delta(x, e)e|^{e}$ . By the definition of $O(x, \delta)$ , we
have

$[x-\delta e, x+\delta e]\subset[x-\delta(x, e)e, x+\delta(x, e)e]^{e}\subset O(x, \delta)\subset Y$.

Therefore $Y\in \mathcal{O}_{X}$ . $\square$

For a subset $Y$ of $X$ we denote by $cl(Y)$ and int$(Y)$ , the closure and the interior of $Y$ ,
respectively. Let $X$ and $Y$ be vector lattices with unit, $x_{0}\in Z\subset X$ and $f$ a mapping from
$Z$ into Y. $f$ is said to be continuous in the sense of topology at $x_{0}$ if for any $V\in \mathcal{O}\gamma$ with
$f(x_{0})\in V$ there exists $U\in \mathcal{O}_{X}$ with $x_{0}\in U$ such that $f(U\cap Z)\subset V$ .
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3 Takahashi’s and Fan-Browder’s fixed point theorems
In this section we show Takahashi’s fixed point theorem and Fan-Browder’s fixed point the-

orem using the topology introduced in Section 2.
Let $X$ be a vector lattice with unit. $X$ is said to be Hausdorff if for any $x_{1},$ $x_{2}\in X$ with

$x_{1}\neq x_{2}$ there exists $O_{1},$ $O_{2}\in \mathcal{O}_{X}$ such that $x_{1}\in O_{1},$ $x_{2}\in O_{2}$ and $O_{1}\cap O_{2}=\emptyset$ . A subset $Y$ of
$X$ is said to be compact if for any open covering of $Y$ there exists a finite sub-covering. A subset
$Y$ of $X$ is said to be normal if for any closed subsets $F_{1}$ and $F_{2}$ with $F_{1}\cap F_{2}\cap Y=\emptyset$ there exists
$O_{1},$ $O_{2}\in \mathcal{O}_{X}$ such that $F_{1}\subset O_{1},$ $F_{2}\subset O_{2}$ and $O_{1}\cap O_{2}\cap Y=\emptyset$ . Moreover the following hold.

(1) Let $X$ be a Hausdorff vector lattice with unit and $Y$ a compact subset of $X$ . Then $Y$ is
normal.

(2) Let $X$ be a vector lattice with unit and $Y$ a normal and closed subset of $X$ . If $Y \subset\bigcup_{i=1}^{n}O_{i}$ ,
where $O_{i}\in \mathcal{O}_{X}$ , then there exists a continuous function $\beta_{i}$ in the sense of topology from $Y$

into $[0,1]$ for each $i$ such that $\beta_{i}(y)=0$ for any $y\in O_{i}^{C}\cap Y$ and $\sum_{i=1}^{n}\beta_{i}(y)=1$ .

A vector lattice is said to be Archimedean if it holds that $x=0$ whenever there exists $y\in X$

with $y\geq 0$ such that $0\leq rx\leq y$ for any $r\in \mathcal{K}_{R}$ . A mapping $N$ from $X\cross \mathcal{K}_{X}$ to $[0, \infty]$ is
defined by $N(x, e)= \sup\{r|r|x|\leq e\}$ . Moreover we consider the following condition:

(UA) For any $e\in \mathcal{K}_{X}$ and for any $\{x_{1}, \cdots, x_{m}\}$ which is a linearly independent subset of
$X$ there exists $M\in \mathcal{K}_{R}$ such that $N( \sum_{i=1}^{m}k_{i}x_{i}, e)\leq M$ for any $k_{1},$ $\cdots,$ $k_{m}\in R$ with
$\sum_{i=1}^{m}k_{i}^{2}=1$ .

Lemma 2. Every Archimedean vector lattice satisfies the condition (UA).

Proof. By [8, Theorem IV. II.I] for any Archimedean vector lattice $X$ there exists the completion
$\hat{X}$ of $X$ . By [8, Theorem V.4.2] for the complete vector lattice $\hat{X}$ there exists an extremally
disconnected compact set $\Omega$ and a vector sublattice $Y$ of $C_{\infty}(\Omega)$ such that $\hat{X}$ is isomorphic to
$Y$ , where

$C_{\infty}(\Omega)=\{f|fiscontinuousfrom\Omega into[-\infty, \infty]f^{-1}(\{\pm\infty\})isnowheredense$
and

$\}$ .

Therefore it may be assumed that $X$ is a vector sublattice of $C_{\infty}(\Omega)$ . Then

$N( \sum_{i=1}^{m}k_{i}x_{i},$ $e)$ $=$ $\sup\{r|r|\sum_{i=1}^{m}k_{i}x_{i}(\omega)|\leq e(\omega)$ for any $\omega\in\Omega\}$

$=$ $\inf\{\frac{e(\omega)}{|\sum_{i=1}^{m}k_{i}x_{i}(\omega)|}|\omega\in\Omega\}$ .

Let $S= \{(k_{1}, \cdots, k_{m})|\sum_{i=1}^{m}k_{i}^{2}=1\}$ and $E_{\omega}$ a mapping from $S$ into $[0, \infty]$ defined by

$E_{\omega}(k_{1}, \cdots, k_{m})=\frac{e(\omega)}{|\sum_{i=1}^{m}k_{i}x_{i}(\omega)|}$ .

Then for any $(k_{1}, \cdots, k_{m})\in S$ there exists $\omega\in\Omega$ such that $e(\omega)\neq\infty$ and $\sum_{i=1}^{m}k_{i}x_{i}(\omega)\neq 0$ .
Actually assume that there exists $(k_{1}, \cdots, k_{m})\in S$ such that $e(\omega)=\infty$ or $\sum_{i=1}^{m}k_{i}x_{i}(\omega)=0$ for
any $\omega\in\Omega$ . Let $\Omega’=\{\omega|\sum_{i=1}^{m}k_{i}x_{i}(\omega)\neq 0\}$ . Since each $x_{i}$ is continuous, $\Omega’$ is open. On the
other hand, since $\Omega’\subset\{\omega|e(\omega)=\infty\},$ $\Omega’$ is nowhere dense. It is a contradiction. Therefore for
any $(k_{1}, \cdots, k_{m})\in S$ there exists $\omega\in\Omega$ such that $e(\omega)\neq\infty$ and $\sum_{i=1}^{m}k_{i}x_{i}(\omega)\neq 0$. Let

$T_{\omega}=\{(k_{1}, \cdots, k_{m})|(k_{1}, \cdots, k_{m})\in S,$ $\sum_{i=1}^{m}k_{i}x_{i}(\omega)\neq 0\}$ .
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Then $\bigcup_{\omega\in\{\omega|e(\omega)\neq\infty\}}T_{\omega}=S$ . Since $S$ is compact and each $T_{\omega}$ is open, there exists $\omega_{1},$ $\cdots,$ $\omega_{p}\in$

$\{\omega|e(\omega)\neq\infty\}$ such that $\bigcup_{j=1}^{p}T_{\omega_{3}}=S$ . Let

$E(k_{1}, \cdots, k_{m})=\min\{E_{\omega_{J}}(k_{1}, \cdots, k_{m})|j=1, \cdots,p\}$ .

Then $E$ is continuous on $S$ . Let $M= \max\{E(k_{1}, \cdots, k_{m})|(k_{1}, \cdots, k_{m})\in S\}$ . Then

$N( \sum_{i=1}^{m}k_{i}x_{i},$ $e)$ $=$ $\inf\{\frac{e(\omega)}{|\sum_{i=1}^{m}k_{i}x_{i}(\omega)|}|\omega\in\Omega\}$

$\leq$ $E(k_{1}, \cdots, k_{m})\leq M$ .

Therefore $X$ satisfies the condition (UA). 口

To prove our main result, we need the following lemma.

Lemma 3. Let $X$ be an Archimedean vector lattice with unit and $\{x_{1}, \cdots, x_{n}\}$ a subset of $X$ .
Then $co\{x_{1}, \cdots, x_{n}\}$ is homeomorphic to a compact and convex subset of $R^{n}$ .

Proof. Suppose that $\{x_{1}, \cdots, x_{m}\}$ is a linearly independent subset of $\{x_{1}, \cdots, x_{n}\}$ and $x_{j}=$

$\sum_{i=1}^{m}a_{j,i}x_{i}$ for $j=m+1,$ $\cdots,$ $n$ . Let $X_{0}=Span\{x_{1}, \cdots, x_{m}\},$ $e_{i}=(0, \cdots, 0,1, 0, \cdots, 0)i\in R^{m}$

for any $i=1,2,$ $\cdots,$ $m$ and $f$ a mapping from $X_{0}$ into $R^{m}$ defined by $f( \sum_{i=1}^{m}c_{i}x_{i})=\sum_{i=1}^{m}c_{i}e_{i}$ .
Then $f$ is bijective clearly.

Since by Lemma 2 $X$ satisfies the condition (UA), for any $e\in \mathcal{K}_{X}$ there exists $M\in \mathcal{K}_{R}$ such
that $|k_{i}|\leq M$ for any $i$ if $| \sum_{i=1}^{m}k_{i}x_{i}|\leq e$ . Actually it is shown as follows. It may be assumed
that $\sum_{i=1}^{m}k_{i}^{2}\neq 0$. Let $e\in \mathcal{K}_{X}$ . Since $X$ satisfies the condition (UA), there exists $M\in \mathcal{K}_{R}$ such

that $N( \sum_{i=1}^{m}\frac{k}{\sqrt{\Sigma_{=1}^{m}k^{2}}}x_{i},$ $e)\leq M$ . Since

by the definition of $N$

for any $i$ . Take $\epsilon\in \mathcal{K}_{R}$ arbitrary and let $V_{\epsilon}=(c_{1}-\epsilon, c_{1}+\epsilon)\cross\cdots\cross(c_{m}-\epsilon, c_{m}+\epsilon)$ . Take
$\delta\in\Delta_{X}$ satisfying $\delta(\sum_{i=1}^{m}c_{i}x_{i}, e)\leq\frac{\epsilon}{M}$ . If $\sum_{i=1}^{m}(c_{i}+h_{i})x_{i}\in O(\sum_{i=1}^{m}c_{i}x_{i}, \delta)$ , then $|h_{i}|<\epsilon$ for
any $i$ . Therefore

$f( \sum_{i=1}^{m}(c_{i}+h_{i})x_{i})=\sum_{i=1}^{m}(c_{i}+h_{i})e_{i}\in V_{\epsilon}$ .

Let $U=int(O( \sum_{i=1}^{m}c_{i}x_{i}, \delta))$ . Then $f(U\cap X_{0})\subset V_{\epsilon}$ proving that $f$ is continuous in the sense
of topology.

Conversely $f^{-1}$ is continuous in the sense of topology. In fact, take $U\in \mathcal{O}_{X}$ arbitrary. By
Lemma 1 there exists $\delta\in\Delta_{X}$ such that $O( \sum_{i=1}^{m}c_{i}x_{i}, \delta)\subset U$ . Take $e \geq\sum_{i=1}^{m}|x_{i}|$ and $\epsilon\in \mathcal{K}_{R}$

with $\epsilon\leq\delta(\sum_{i=1}^{m}c_{i}x_{i}, e)$ . If $\sum_{i=1}^{m}(c_{i}+h_{i})e_{i}\in V_{\epsilon}$ , then $| \sum_{i=1}^{m}h_{i}x_{i}|<\epsilon e$ . Therefore

$f^{-1}( \sum_{i=1}^{m}(c_{i}+h_{i})e_{i})=\sum_{i=1}^{m}(c_{i}+h_{i})x_{i}\in O(\sum_{i=1}^{m}c_{i}x_{i},\delta)\cap X_{0}\subset U\cap X_{0}$
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proving that $f^{-1}$ is continuous in the sense of topology.
Therefore $X_{0}$ is homeomorphic to $R^{m}\subset R^{n}$ and moreover $co\{x_{1}, \cdots, x_{n}\}$ is homeomorphic

to $co \{e_{1}, \cdots, e_{m}, \sum_{i=1}^{m}a_{m+1,i}e_{i}, \cdots, \sum_{i=1}^{m}a_{n,i}e_{i}\}$ . $\square$

By the above lemma we can show the following Takahashi’s fixed point theorem in a vector
lattice.

Theorem 1. Let $X$ be a Hausdorff Archimedean vector lattice with unit, $Y$ a compact subset of
$X$ and $Z$ a convex subset of Y. Suppose that a mapping $f$ from $Z$ into $2^{Y}$ satisfies
(0) $f^{-1}(y)$ is convex for any $y\in Y$ ,

and there exists a mapping $g$ from $Z$ into $2^{Y}$ satisfying the following conditions:

(3) $g(z)$ is an open subset of $X$ for any $z\in Z$ .

(1) $g(z)$ is a subset of $f(z)$ for any $z\in Z$ ;

(2) $g^{-1}(y)$ is non-empty for any $y\in Y$ ;

Then there exists $z_{0}\in Z$ such that $z_{0}\in f(z_{0})$ .

Proof. By (2) it holds that $Y \subset\bigcup_{z\in Z}g(z)$ . By (3) it holds that $g(z)\in \mathcal{O}_{X}$ . Since $Y$ is compact,
there exists $z_{1},$ $\cdots,$ $z_{n}\in Z$ such that $Y \subset\bigcup_{i=1}^{n}g(z_{i})$ . Since $Y$ is normal, there exists a continuous
function $\beta_{i}$ in the sense of topology from $Y$ into $[0,1]$ satisfying $\beta_{i}(y)=0$ for any $y\in g(z_{i})^{c}$

and $\sum_{i=1}^{n}\beta_{i}(y)=1$ . Let $p$ be a mapping from $Y$ into $Z$ defined by $p(y)= \sum_{i=1}^{n}\beta_{i}(y)z_{i}$ . Then
$p$ is continuous in the sense of topology. Since by (1) it holds that $g^{-1}(y)\subset f^{-1}(y)$ , by (0)
it holds that $p(y)\in f^{-1}(y)$ . Let $Z_{0}=co\{z_{1}, \cdots, z_{n}\}$ . By Lemma 3 $Z_{0}$ is homeomorphic to a
compact and convex subset $K$ of $R^{n}$ . Put a mapping $h$ from $Z_{0}$ into $K$ as this homeomorphism.
Then $h\circ poh^{-1}$ is continuous in the sense of topology from $K$ into $K$ . Therefore by Brouwer’s
fixed point theorem there exists $x_{0}\in K$ such that $h(p(h^{-1}(x_{0})))=x_{0}$ . Let $z_{0}=h^{-1}(x_{0})$ . Then
$p(z_{0})=z_{0}$ . Since $p(z_{0})\in f^{-1}(z_{0})$ , it holds that $z_{0}\in f^{-1}(z_{0})$ proving that $z_{0}\in f(z_{0})$ . $\square$

In the above theorem, putting $Z=Y$ and $g=f$ , the following theorem is obtained. It is
Fan-Browder’s fixed point theorem in a vector lattice.

Theorem 2. Let $X$ be a Hausdorff Archimedean vector lattice with unit and $Y$ a compact convex
subset of X. Suppose that a mapping $f$ from $Y$ into $2^{Y}$ satisfies the following conditions:

(1) $f^{-1}(y)$ is non-empty and convex for any $y\in Y$ ;

(2) $f(y)$ is an open subset of $X$ for any $y\in Y$ .

Then there exists $y_{0}\in Y$ such that $y_{0}\in f(y_{0})$ .

In the above theorem, changing from $f$ to $f^{-1}$ , the following theorem is obtained; see [7].

Theorem 3. Let $X$ be a Hausdorff Archimedean vector lattice with unit and $Y$ a compact convex
subset of X. Suppose that a mapping $f$ from $Y$ into $2^{Y}$ satisfies the following conditions:

(1) $f^{-1}(y)$ is an open subset of $X$ for any $y\in Y$ ;

(2) $f(y)$ is non-empty and convex for any $y\in Y$ .

Then there exists $y_{0}\in Y$ such that $y_{0}\in f(y_{0})$ .

Moreover the following holds. For the sake of completeness, we show its proof.

Theorem 4. Let $X$ be a Hausdorff Archimedean vector lattice with unit, $Y$ a compact convex
subset of $X$ and $A\subset Y\cross Y$ . Suppose that $A$ satisfies the following conditions:
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(1) $\{x|(x, y)\in A\}$ is closed for any $y\in Y$ ;

(2) $\{y|(x, y)\not\in A\}$ is convex for any $x\in Y$ ;

(3) $(x, x)\in A$ for any $x\in Y$ .

Then there exists $x_{0}\in Y$ such that $\{x_{0}\}\cross Y\subset A$ .

Proof. Assume that $\{x\}\cross Y\not\subset A$ for any $x\in Y$ . Then there exists $y\in Y$ such that $(x, y)\not\in A$ .
Let $f(x)=\{y|(x, y)\not\in A\}$ . Then $f(x)$ is non-empty and by (2) it is convex. Moreover by (1)
$f^{-1}(y)=\{x|(x, y)\not\in A\}\in \mathcal{O}_{X}$ . By Theorem 3 there exists $x_{0}\in Y$ such that $x_{0}\in f(x_{0})$ , that
is, $(x_{0}, x_{0})\not\in A$ . It is a contradiction. Therefore there exists $x_{0}\in Y$ such that $\{x_{0}\}\cross Y\subset A$ . 口

4 Schauder-Tychonoff’s fixed point theorem
Let $X$ be a vector lattice with unit and $Y$ a vector lattice. Let $\mathcal{U}_{Y}^{s}(\mathcal{K}_{X}, \geq)$ be the class of

$\{v_{e}|e\in \mathcal{K}_{X}\}$ satisfying the following conditions:

(Ul) $v_{e}\in Y$ with $v_{e}>0$ ;

$(U2)^{d}$ $v_{e_{1}}\geq v_{e_{2}}$ if $e_{1}\geq e_{2}$ ;

$(U3)^{s}$ For any $e\in \mathcal{K}_{X}$ there exists $\theta(e)\in \mathcal{K}_{R}$ such that $v_{\theta(e)e} \leq\frac{1}{2}v_{e}$ .

Let $x_{0}\in Z\subset X$ and $f$ a mapping from $Z$ into Y. $f$ is said to be continuous at $x_{0}$ if there exists
$\{v_{e}\}\in \mathcal{U}_{Y}^{s}(\mathcal{K}_{X}, \geq)$ such that for any $e\in \mathcal{K}_{X}$ there exists $\delta\in \mathcal{K}_{R}$ such that for any $x\in Z$ if
$|x-x_{0}|\leq\delta e$ , then $|f(x)-f(x_{0})|\leq v_{e}$ . In particular if $Y$ has an unit, then we consider often
$\{v_{e}\}\in \mathcal{U}_{Y}^{s}(\mathcal{K}_{X}, \geq)$ satisfying the following condition instead of (Ul):

$(U1)^{u}$ $v_{e}\in \mathcal{K}_{Y}$ .

Example 1. We consider a sufficient condition such that there exists $\{v_{e}\}\in \mathcal{U}_{Y}^{s}(\mathcal{K}_{X}, \geq)$ satisfying
the condition $(U1)^{u}$ . Let $X$ be an Archimedean vector lattice. Then there exists a positive
homomorphism $f$ from $X$ into $R$ , that is, $f$ satisfies the following conditions:

(Hl) $f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)$ for any $x,$ $y\in X$ and for any $\alpha,$ $\beta\in R$ ;

(H2) $f(x)\geq 0$ for any $x\in X$ with $x\geq 0$ .

Indeed it is shown as follows. By [8, Theorem IV.11.1] for any Archimedean vector lattice $X$

there exists the completion $\hat{X}$ of $X$ . By [8, Theorem V.4.2] for the complete vector lattice $\hat{X}$

there exists an extremally disconnected compact set $\Omega$ and a vector sublattice $Y$ of $C_{\infty}(\Omega)$ such
that $\hat{X}$ is isomorphic to $Y$ , where

$C_{\infty}(\Omega)=\{f|f^{-1}(\{\pm\infty\})isnowheredensefiscontinuousfrom\Omega into[-$
oo $\infty|$ and

$\}$ .

Therefore it may be assumed that $X$ is a vector sublattice of $C_{\infty}(\Omega)$ . Take $\omega\in\Omega$ arbitrary and
let $f(x)=x(\omega)$ for any $x\in X$ . Then $f$ satisfies the conditions (Hl) and (H2). Suppose that $X$

satisfies that there exists a homomorphism $f$ from $X$ into $R$ satisfying the following condition
instead of (H2):

$(H2)^{s}$ $f(x)>0$ for any $x\in X$ with $x>0$ .

Then for any $e_{Y}\in \mathcal{K}_{Y}\{f(e)e_{Y}\}$ satisfies the conditions $(U1)^{u}(U2)^{d}(U3)^{s}$ clearly. Therefore if
$X$ is Archimedean and there exists a homomorphism from $X$ into $R$ satisfying the condition
$(H2)^{s}$ , then it may be assumed that every $\{v_{e}\}\in \mathcal{U}_{Y}^{s}(\mathcal{K}_{X}, \geq)$ satisfies the condition $(U1)^{u}$ .
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Let $X$ and $Y$ be vector lattices with unit, $Z\subset X$ and $f$ a mapping from $Z$ into $Y$ . Suppose
that there exists $P\subset Y$ satisfying the following conditions:

(Pl) $P$ is open and convex;

(P2) If $x\in P$ and $x\leq y$ , then $y\in P$ ;

(P3) $0\not\in P$ ;

(P4) $\{x|x>0\}\subset P$ .

Let $\mathcal{P}_{Y}$ be the class of the above $P’ s$ . $f$ is said to be upper semi-continuous with respect to
$P\in \mathcal{P}_{Y}$ if $\{x|y-f(x)\in P\}\in \mathcal{O}_{X}\cap Z$ for any $y\in Y$ . $f$ is said to be lower semi-continuous with
respect to $P\in \mathcal{P}_{Y}$ if $\{x|f(x)-y\in P\}\in \mathcal{O}_{X}\cap Z$ for any $y\in Y$ . $f$ is said to be semi-continuous
with respect to $P\in \mathcal{P}_{Y}$ if it is upper and lower semi-continuous with respect to $P\in \mathcal{P}_{Y}$ .
Example 2. We consider of a sufficient condition to satisfy $\mathcal{P}x\neq\emptyset$ . Let $X$ be an Archimedean
vector lattice with unit. Suppose that there exists a homomorphism $f$ from $X$ into $R$ satisfying
the condition $(H2)^{s}$ . Let $0<\beta<1$ and $\delta(x, e)=\frac{\beta f(x)}{f(e)}$ for any $x\in X$ with $x>0$ and for any
$e\in \mathcal{K}_{X}$ . Put $P= \bigcup_{x\in X}$ with $x>0^{int(O(x,\delta))}$ . Then $P$ is open and $\{x|x>0\}\subset P$ .

Note that by the condition $(H2)^{s}$ for any $x_{1},$ $x_{2}\in X$ with $x_{1},$ $x_{2}>0$ and $x_{1}\neq x_{2},$ $\frac{x_{1}}{f(x_{1})}$ and
$\vec{f(x}_{2}\overline{)}x$ are incomparable mutually. Therefore $x-\delta(x, e)e\not\leq 0$ for any $x\in X$ with $x>0$ and for
any $e\in \mathcal{K}_{X}$ . Assume that $0\in P$ . Then there exists $x\in X$ with $x>0$ and $e\in \mathcal{K}_{X}$ such that
$0\in[x-\delta(x, e)e, x+\delta(x, e)e]^{e}$ . It is a contradiction. Therefore $0\not\in P$ .

Note that $x\in int(A)$ if and only if there exists $\delta_{x}\in\Delta_{X}$ such that $O(x, \delta_{x})\subset A$ . Let $x\in P$

and $x\leq y$ . Then there exists $z\in X$ with $z>0$ and $\delta_{x}\in\Delta_{X}$ such that $O(x, \delta_{x})\subset O(z, \delta)$ . Let
$\delta_{y}(u, e)=\delta_{x}(u-y+x, e)$ . Since $\delta(x_{2}, e)\leq\delta(x_{1}+x_{2}, e)$ for any $x_{1},$ $x_{2}\in X$ with $x_{1},$ $x_{2}>0$ , it
holds that $x_{1}+O(x_{2}, \delta)\subset O(x_{1}+x_{2}, \delta)$ . Therefore

$O(y, \delta_{y})=y-x+O(x, \delta_{x})\subset y-x+O(z, \delta)\subset O(z+y-x, \delta)$ ,

that is, $y\in int(O(z+y-x, \delta))\subset P$ .
Let $x0,$ $x_{1}\in P$ and $\alpha\in R$ with $0\leq\alpha\leq 1$ . Then for $i=0,1$ there exists $y_{i}\in X$ with $y_{i}>0$

and $\delta_{i}\in\Delta_{X}$ such that $O(x_{i}, \delta_{i})\subset O(y_{i}, \delta)$ . Let $\delta_{\alpha}(z, e)=(1-\alpha)\delta_{0}(x_{0}, e)+\alpha\delta_{1}(x_{1}, e)$ . Take
$z\in O((1-\alpha)x_{0}+\alpha x_{1}, \delta_{\alpha})$ arbitrary. Then there exists $e\in \mathcal{K}_{X}$ such that

$z$ $\in$ $[(1-\alpha)x_{0}+\alpha x_{1}-\delta_{\alpha}((1-\alpha)x_{0}+\alpha x_{1}, e)e$,
$(1-\alpha)x_{0}+\alpha x_{1}+\delta_{\alpha}((1-\alpha)x_{0}+\alpha x_{1}, e)e]^{e}$

$=$ $(1-\alpha)[x_{0}-\delta_{0}(x_{0}, e)e, x_{0}+\delta_{0}(x_{0}, e)e]^{e}+\alpha[x_{1}-\delta_{1}(x_{1}, e)e, x_{1}+\delta_{1}(x_{1}, e)e]^{e}$ .

Since $\delta(\alpha x, e)=\alpha\delta(x, e)$ for any $x\in X$ with $x>0$ and for any $\alpha\in \mathcal{K}_{R}$ , it holds that
$O(\alpha x, \delta)=\alpha O(x, \delta)$ . Since

$\delta(z_{0}, e_{0})e_{0}+\delta(z_{1}, e_{1})e_{1}=\delta(z_{0}+z_{1},$ $\frac{f(z_{0})}{f(e_{0})}e_{0}+\frac{f(z_{1})}{f(e_{1})}e_{1})(\frac{f(z_{0})}{f(e_{0})}e_{0}+\frac{f(z_{1})}{f(e_{1})}e_{1})$

for any $z_{0},$ $z_{1}\in X$ with $z_{0},$ $z_{1}>0$ , it holds that $O(z_{0}, \delta)+O(z_{1}, \delta)\subset O(z_{0}+z_{1}, \delta)$ . Then

$z$ $\in$ $(1-\alpha)O(x_{0}, \delta_{0})+\alpha O(x_{1}, \delta_{1})$

$\subset$ $(1-\alpha)O(y_{0},\delta)+\alpha O(y_{1}, \delta)=O((1-\alpha)y_{0}, \delta)+O(\alpha y_{1}, \delta)$

$\subset$ $O((1-\alpha)y_{0}+\alpha y_{1}, \delta)$ .

Therefore $O((1-\alpha)x_{0}+\alpha x_{1}, \delta_{\alpha})\subset O((1-\alpha)y_{0}+\alpha y_{1}, \delta)$ , that is, $(1-\alpha)x_{0}+\alpha x_{1}\in int(O((1-$

$\alpha)y_{0}+\alpha y_{1},$ $\delta))\subset P$ .
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Example 3. We consider of another simple sufficient condition to satisfy $\mathcal{P}_{X}\neq\emptyset$ . Let $X$ be a
Hilbert lattice with unit, that is, $X$ has an inner product $\langle\cdot,$ $\cdot)$ and for any $x,$ $y\in X$ if $|x|\leq|y|$ ,
then $\langle x,$ $x)\leq\langle y,$ $y\rangle$ . Then for any $e\in \mathcal{K}_{X}P=\{x|\langle x, e\}>0\}$ satisfies the conditions (Pl)$-(P4)$ .
Actually it is possible to show as follows.

It is clear that $P$ is convex and $0\not\in P$ .
Note that $\langle x,$ $y\}\geq 0$ if $x,$ $y\geq 0$ . Actually since $|x-y|\leq x+y$ and $\langle|x-y|,$ $|x-y|\rangle=$

$\langle x-y,$ $x-y\rangle$ , it holds that $\langle x-y,$ $x-y)\leq\langle x+y,$ $x+y\rangle$ . Therefore it holds that $\langle x,$ $y\}\geq 0$ .
Let $x\in P$ and $x\leq y$ . Then $\langle y,$ $e\rangle\geq\langle x,$ $e\rangle>0$ proving that $y\in P$ .

Assume that there exists $x\in X$ with $x>0$ such that $\langle x,$ $e\rangle=0$ . Then since $\langle x+e,$ $x+e\rangle=$

$\langle x-e,$ $x-e\}=\langle|x-e|,$ $|x-e|)$ ,

$0=\langle x+e+|x-e|,$ $x+e-|x-e|\rangle=4\langle x\vee e,$ $x\wedge e)\geq 4\langle x\wedge e,$ $x\wedge e\rangle>0$ .

It is a contradiction. Therefore $\{x|x>0\}\subset P$ .
For $x\in P$ and $e_{1}\in \mathcal{K}_{K}$ putting $\delta<\frac{\langle x,e\rangle}{\langle e_{1},e\rangle}$ , then $\langle x-\delta e_{1},$ $e\rangle>0$ . Therefore $P$ is open.

Lemma 4. Let $X$ be an Archimedean vector lattice with unit, $Y$ a vector lattice with unit, $Z\subset X$

and $f$ a mapping from $Z$ into Y. Suppose that there extsts a homomorphism from $X$ into $R$

satisfying the condition $(H2)^{s}$ and that $\mathcal{P}_{Y}\neq\emptyset$ . Then $f$ is semi-continuous with respect to any
$P\in \mathcal{P}_{Y}$ if it is continuous at any $x\in Z$ .

Proof. Take $y\in Y$ and $x_{0}\in\{x|y-f(x)\in P\}\cap Z$ arbitrary. By the assumption there
exists $\{v_{e}\}\in \mathcal{U}_{Z}^{s}(\mathcal{K}_{X}, \geq)$ such that for any $e\in \mathcal{K}_{X}$ there exists $\delta(e)\in \mathcal{K}_{R}$ such that for any
$x\in Z$ if $|x-x_{0}|\leq\delta(e)e$ , then $|f(x)-f(x_{0})|\leq v_{e}$ . By the asumption it may be assumed
that $v_{e}\in \mathcal{K}_{Y}$ for any $e\in \mathcal{K}_{X}$ . Since $P$ is open, there exists a natural number $n(e)$ such that
$[y-f(x_{0})-2^{-n(e)}v_{e}, y-f(x_{0})+2^{-n(e)}v_{e}]\subset P$. If $|x-x_{0}|\leq\delta(\theta(e, n(e))e)\theta(e, n(e))e$ , where
$\theta(e, n)=\sim\theta(\theta(\cdots\theta(\theta(e)e)\cdots e)e)$, then $|f(x)-f(x_{0})|\leq v_{\theta(e,n(e))e}\leq 2^{-n(e)}v_{e}$ . Therefore $y-$

$f(x)\in[y-f(x_{0})-2^{-n(e)}v_{e}, y-f(x_{0})+2^{-n(e)}v_{e}]\subset P$ , that is, $[x_{0}-\delta(\theta(e, n(e))e)\theta(e, n(e))e,$ $x_{0}+$

$\delta(\theta(e, n(e))e)\theta(e, n(e))e|\subset\{x|y-f(x)\in P\}\cap Z$ proving that $\{x|y-f(x)\in P\}\in \mathcal{O}_{X}\cap Z$ .
Therefore $f$ is upper semi-continuous with respect to $P$ . Similarly it can be proved that $f$ is
lower semi-continuous with respect to P. 口

Lemma 5. Let $X$ be an Archimedean vector lattice with unit, $Y$ a vector lattice with unit,
$x_{0}\in Z\subset X$ and $f$ a mapping from $Z$ into Y. Suppose that there exists a homomorphism from
$X$ into $R$ satisfying the condition $(H2)^{s}$ . Then $f$ is continuous at $x_{0}$ in the sense of topology if
it is continuous at $x_{0}$ .

Proof. By the asumption there exists $\{v_{e}\}\in \mathcal{U}_{Y}^{s}(\mathcal{K}x, \geq)$ such that for any $e\in \mathcal{K}_{X}$ there exists
$\delta(e)\in \mathcal{K}_{R}$ such that for any $x\in Z$ if $|x-x_{0}|\leq\delta(e)e$ , then $|f(x)-f(x_{0})|\leq v_{e}$ . By the
asumption it may be assumed that $v_{e}\in \mathcal{K}_{Y}$ for any $e\in \mathcal{K}_{X}$ . Let $\delta_{Y}$ be a gauge in $Y$ . Take a
natural number $n(e)$ such that $2^{-n\langle e)}<\delta_{Y}(f(x_{0}),$ $v_{e})$ and put $\delta_{X}(x, e)=\theta(e, n(e))\delta(\theta(e, n(e))e)$ ,
where $\theta(e, n)=\sim\theta(\theta(\cdots\theta(\theta(e)e)\cdots e)e)$ . Let $x\in O(x_{0}, \delta_{X})$ . There exists $e\in \mathcal{K}_{X}$ such that

$n$

$x\in[x_{0}-\delta_{X}(x_{0}, e)e, x_{0}+\delta_{X}(x_{0}, e)e]^{e}$ . Then

$|f(x)-f(x_{0})|\leq v_{\theta(e,n(e))e}\leq 2^{-n(e)}v_{e}<\delta_{Y}(f(x_{0}), v_{e})v_{e}$ .

Therefore

$f(x)\in[f(x_{0})-\delta_{Y}(f(x_{0}), v_{e})v_{e}, f(x_{0})+\delta_{Y}(f(x_{0}), v_{e})v_{e}]^{v_{\epsilon}}\subset O(f(x_{0}), \delta_{Y})$

proving that $f$ is continuous at $x0$ in the sense of topology. 口
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Theorem 5. Let $X$ be a Hausdorff Archimedean vector lattice with unit, $Y$ a vector lattice with
unit and $Z$ a compact convex subset of X. Suppose that $\mathcal{P}_{Y}\neq\emptyset$ and that a mapping $f$ from
$Z\cross Z$ into $Y$ satisfies that there exists $P\in \mathcal{P}_{Y}$ such that

(1) $f(\cdot, x_{2})$ is upper semi-continuous with respect to $P$ for any $x_{2}\in Z$;

(2) $f(x_{1}, \cdot)$ is convex for any $x_{1}\in Z$ ;

(3) There exists $c\in Y$ such that $c-f(x, x)\not\in P$ for any $x\in Z$ .

Then there exists $x_{0}\in Z$ such that $c-f(x_{0}, x)\not\in P$ for any $x\in Z$ .

Proof. Let $A=\{(x_{1}, x_{2})|c-f(x_{1}, x_{2})\not\in P\}$ . By (1) $\{x_{1}|(x_{1}, x_{2})\in A\}$ is closed for any
$x_{2}\in Z$ . By (3) $(x, x)\in A$ for any $x\in Z$ . Let $z_{1},$ $z_{2}\in\{x_{2}|(x_{1}, x_{2})\not\in A\}$ and $0\leq\alpha\leq 1$ . By (2)
and convexity of $P$

$c-f(x_{1}, (1-\alpha)z_{1}+\alpha z_{2})\geq(1-\alpha)(c-f(x_{1}, z_{1}))+\alpha(c-f(x_{1}, z_{2}))\in P$.

By (P2) $(1-\alpha)z_{1}+\alpha z_{2}\in\{x_{2}|(x_{1}, x_{2})\not\in A\}$ , that is, $\{x_{2}|(x_{1}, x_{2})\not\in A\}$ is convex for any
$x_{1}\in Z$ . By Theorem 4 there exists $x_{0}\in Z$ such that $\{x_{0}\}\cross Z\subset A$ . Therefore $c-f(x_{0}, x)\not\in P$

for any $x\in Z$ . $\square$

Theorem 6. Let $X$ be a Hausdorff Archimedean vector lattice with unit and $Z$ a compact convex
subset of X. Suppose that there exists a homomorphism from $X$ into $R$ satisfying the condition
$(H2)^{s}$ and that a mapping $f$ from $Z$ into $X$ is continuous. Then it holds that (1) or (2).

(1) There exists $x_{0}\in Z$ such that $f(x_{0})=x_{0}$ .

(2) There exists $x_{0}\in Z$ such that $f(x_{0})\neq x_{0}and|x_{0}-f(x_{0})|-|x-f(x_{0})|\not\in P$ for any $P\in \mathcal{P}_{X}$

and for any $x\in Z$ .

Proof. Suppose that (1) is not satisfied. Then $f(x)\neq x$ for any $x\in Z$ . Take $g(x_{1}, x_{2})=$

$|x_{2}-f(x_{1})|-|x_{1}-f(x_{1})|$ . Then $g(\cdot, x_{2})$ is continuous for any $x_{2}\in Z,$ $g(x_{1}, \cdot)$ is convex for any
$x_{1}\in Z$ and by (P3) $-g(x, x)=0\not\in P$ . By Lemma 4 and Theorem 5 there exists $x_{0}\in Z$ such
that $-g(x_{0}, x)=|x_{0}-f(x_{0})|-|x-f(x_{0})|\not\in P$ for any $x\in Z$ . 口

Theorem 7. Let $X$ be a Hausdorff Archimedean vector lattice with unit and $Z$ a compact convex
subset of X. Suppose that there exists a homomorphism from $X$ into $R$ satisfying the condition
$(H2)^{s}$ and that a mapping $f$ from $Z$ into $X$ is continuous. Then there exists $x_{0}\in Z$ such that
$f(x_{0})=x_{0}$ .

Proof. Assume that (2) in Theorem 6 holds. Then there exists $x_{0}\in Z$ such that $f(x_{0})\neq x_{0}$ and
$|x_{0}-f(x_{0})|-|x-f(x_{0})|\not\in P$ for any $x\in Z$ . Since $f(x_{0})\neq x_{0}$ , by (P4) $|x_{0}-f(x_{0})|\in P$ . Take
$x=f(x_{0})$ . Then $|x_{0}-f(x_{0})|\not\in P$ . It is a contradiction. Therefore there exists $x_{0}\in Z$ such that
$f(x_{0})=x_{0}$ . 口

Acknowledgement. The authors are grateful to Professor Wataru Takahashi for all his sug-
gestions and comments. Moreover, the authors would like to express their hearty thanks to
Professor Tetsuo Kobayashi and Professor Ichiro Suzuki for many valuable suggestions.

References
$[$ 1 $]$ R. Cristescu, Topological Vector Spaces, Noordhoff International Publishing, Leyden, 1977. Zbl 0345.46001
[2] T. Kawasaki, Denjoy integral and Henstock-Kurzweil integral in vector lattices, $I,$ $II$, Czechoslovak Math. J.

59 (2009), 381-399, 401-417.
$[$3$]$ T. Kawasaki, M. Toyoda, and T. Watanabe, Fixed point theorem for set-valued mapping in a Riesz space,

Memoirs of the Faculty of Engineering, Tamagawa University 44 $($ 2009$)$ , 81-85 $($ in Japanese $)$ .

229



[4] –, Takahashe’s and Fan-Browder’s fixed point theorems $m$ a vector lattice, J. Nonlinear Convex Anal.,

to appear.

[5] W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces, North-Holland, Amsterdam, 1971. Zbl 023146014

[6] W. Takaha.shi, $Fxedpo$int, minimax, and fIahn-Banach theorems, Proc. of Symposia in Pure Math. 45 (1986),
$41\triangleright 427$ . Zb10636.47048

[7] –, Nonlinear $Fb$nctional Analysis. Fixed Points Theory and its $Ap\rho$ lications, Yokohama Publishers,

Yokohama, 2000. Zb10997.47002

[8] B. Z. Vulikh, Introduction to the Theory of Partially Orderd Spaces, Wolters-Noordhoff, Groningen, 1967. Zbl

018644601

230


