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Meagre Subsets of “[0, 1] and B(l?)
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We generalize Talagrand’s characterization of meagre subsets of 42(w) to certain meagre subsets
of “X, where X is a topological space like the real unit interval [0, 1], and to certain meagre
subsets of B(I?);, the collection of bounded linear operators of norm at most 1 on the Hilbert
space I? = {f € “F : 3 |f(n)|? < oo} (where F = R or C), with the weak operator topology.
We obtain a fairly complete characterization of meagre subsets of “ X that are closed under finite
(initial segment) changes and, for metric spaces X, meagre subsets of “X that are closed under
limit O changes. To a lesser extent, we generalize this to characterize meagre subsets of B(l?);
(and the following subsets of B(l?); — the norm < 1 self-adjoint operators, non-negative operators
and orthogonal projections) that are closed under finite rank and compact operator changes.

1 Introduction

Given an interval partition (/,,) € w and a real A C w,
Ma,y)y = {BCw:¥V¥new(ANI,# BnNI,)}
= U N{BCw:AnL #BnI,}

mewn>m

is a countable union of closed nowhere dense sets, and hence meagre, when identifying & (w) with
“2 with the usual product topology. Conversely, every meagre subset of £?(w) is contained in a
set of this form ([1] 5.2). In particular if, for arbitrary (I,), we let M(; ) = My, (1,.), then My,
will be meagre and closed under taking almost subsets. Conversely, every meagre subset of & (w)
closed under taking almost subsets (or even just subsets) will be contained in My, for some
interval partition (I,,) ([1] 6.27). We want to generalize this result in some way to functions from
w to the real unit interval [0, 1] and, in turn, to (orthogonal) projections on the Hilbert space (2
(i.e. (linear) operators P on H that are idempotent (P? = P) and self-adjoint (P* = P)) with
the weak operator topology (or the strong operator topology, as they agree when restricted to just
the projections).

To see the motivation for this, let us first make some definitions. Let H be a fixed infinite
dimensional separable Hilbert space (i.e. a Hilbert space isometrically isomorphic to {?) with some
fixed orthonormal basis (e, ). For any subspace V of H let Py be the unique orthogonal projection
onto V (i.e. R(Py)=V). For any A C w, let P4 = P4 (c,) = Pspan{ennca}. For any A C P(w)
let P4 = {P4 : A € A}. For any transitive relation R on a set S and any subset 7" of S let
clpr(T) = {s€ S:3t € T(sRt)}, the R-closure of T. Define transitive relations, for A, B C w and
P,Q € P(B(H))(= the projections on H), as follows.

AC"B & |A\B| < .

A="B & AC*BABC*A.

P<*@Q & PQ- PecK(H)(= the compact operators on H).
P="Q & P<"QANQ<" P& P-QceK(H).

We would like to prove the following.
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Conjecture 1.1 For any A C 2(«+). clc-(A) is meagre if and only if cl<-(P4) ts meagre.

This, in turn, is motivated by wanting to prove an inequality between certain cardinal invari-
ants. In my presentation at RIMS 2009 I discussed a number of cardinal invariants defined from
P(B(H))/K(H) in analogy with the classical cardinal invariants defined from £?(w)/Fin. In par-
ticular, I showed how these new cardinal invariants could often be related to analogous cardinal
invariants involving interval partitions on w, essentially due to the fact that projections onto block
subspaces are <*-dense in P(B(H)). We need 1.1 to prove such a relation between the analogies
of the groupwise density number g.

Specifically, recall that the (classical) groupwise density number g is the minimum cardinality of
a collection & of C*-closed non-meagre subsets of &(w) whose intersection is empty. Equivalently,
this is the minimum cardinality of a collection & C 2 (Z?(w)) such that, for all A € o7, clc.(A)
is non-meagre and, for all B C w, there exists A € & such that, for all A € A, B * A.

Let us define a new cardinal invariant g'¥ to be the minimum cardinality of a collection
o/ C P(w) such that, for all A € &7, clc-(.A) is non-meagre and, for all interval partitions (I,) of
w, there exists A € & such that, for all A € A, I,, and A are disjoint for infinitely many n € w.
The first defining property of & in the definition of g'F is the same as that in the definition g, but
the second defining property is stronger and hence g < g'F. It can also be proved that g'f > b.
Thus we can in fact have g # g'F, for example in the Hechler model where b = ¢ = X3 and g = R;.
Moreover, the proof that g < 0 given in [1] 6.27 in fact shows that g'’ <9, so g'F is, at least, not
always equal to c.

Let us define yet another cardinal invariant g as the minimum cardinality of a collection
P C P(P(B(H))) such that, for all P € £, cl<-(P) is non-meagre and, for all Q € P(B(H)),
there exists P € &2 such that, for all P € P, Q and P+(=1— P = Pr(p)1) have a non-trivial
(i.e. infinite rank projection) lower bound (w.r.t. <* which, in particular, implies that Q £* P).
For any infinite rank Q € P(B(H)) there exists a projection Q' <* @ such that R(Q’) is a infinite
dimensional block subspace, i.e. there exists a partition (/,,) of w and an orthonormal basis (f,,)
of R(Q') such that f,, € span{ex : k € I,} foralln € w. If A C £ (w) is such that, for any A € A,
there are infinitely many n € w such that [, is disjoint from A then there exists infinitely many
n € w such that f, € R(Pa)t = R(P3) and so the projection onto the closed linear span of all
these f, will be a non-trivial lower bound of Pi and Q’, and hence Q. Thus if we could prove 1.1,
in particular if we could show that if A C &?(w) is such that clc+ (A) is non-meagre then cl<.(P4)
is also non-meagre, then it would follow that gt < g'F.

At first sight it might seem silly to be always taking C* and <* closures. Instead, one might
simply deal only with A that are already C*-closed. Indeed, if A C* B then P4 <* Pgso 1.1 is
equivalent to saying that, for any C*-closed A C P (w), A is meagre if and only if cl<.(P4) is
meagre. However, we still can not replace cl<-(P4) with P4 or even cl=.(P4) because, for any
infinite A C w, there will be many projections P <* P4 that are not of the form Pg for some
B C* A or even =*-equivalent to a projection of this form. Indeed, the conjecture will false if we
do that replacement, as cl—-(Pg(,)) is meagre. In fact, cl=-(Pg(,)) is good meagre, as defined
by Zamora-Aviles in [2] (and even very good meagre, as I show in 3.26).

Before reviewing and extending the Zamora-Aviles theory of good meagre sets, let us look
at nowhere dense and meagre subsets of countable products of topological spaces (like [0, 1]) as
these are interesting in their own right and provide a good basis for studying operators on Hilbert
spaces. Furthermore, as we will see, we can obtain a more complete understanding in the case of
countable products of topological spaces - unfortunately, some of the results in this case to not
seem to easily generalize to the case of operators on Hilbert spaces.

2 Countable Products of Topological Spaces

For the rest of this section X is a topological space and “ X is given the standard product topology,
ie. the sets Og X ... x Op_; x “\?X = {f € “X : Vk € n(f(k) € O)}, for n € w and open
subsets Og,...,0,_1 of X, form a basis for the topology of “X. For ¥ C “X and A C w we
define F |A={f[A: feF}.
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Definition 2.1 A subsetY of X is nowhere dense in X if X\? is dense in X. Equivalently, Y is
nowhere dense if, for every non-empty open subset O of X, there exists a non-empty open subset
O’ of O disjoint from Y. A subsetY of X is meagre in X if it is a countable union of nowhere
dense sets.

Proposition 2.2 For any F C “X, the following are equivalent.
(i) For alln € w, F | w\n is not dense in “\"X.
(ii) For alln € w, F | w\n is nowhere dense in “\"X .
(iii) For all n € w there exists m > n and non-empty open O, ...,0m_1 € X such that
{fe“X :Vkem\n(f(k) € Ok)}

ts disjoint from F.

Proof:
(ili)=>(ii) Assume (iii), fix » € w and take any basic open set B = {f € “\"X : Vk € j\n(f(k) € O)}
of “\"X | where j € w\n and O, ...,0;_1 are non-empty open subsets of X. Take m > j

and open Oj,...,Op_1 such that {f € “X : Vk € m\j(f(k) € O)} is disjoint from F.
Then {f € “X : Vk € m\n(f(k) € Ok)} is also disjoint from F which is equivalent to saying
{f € “\*X :Vk € m\n(f(k) € Ox)} C B is disjoint from F | w\n.

(i1)=(i) Immediate.

(1)=(iii) Immediate. O

Definition 2.3 Any F C “X satisfying any of the equivalent conditions in the proposition above
1s said to be good nowhere dense. A countable union of good nowhere dense sets is said to be good
meagre.

Proposition 2.4 Good nowhere dense sets are closed under subsets, finite unions and topological
closures.

Proof: Follows from characterization (ii) above and the corresponding closures for nowhere dense
setsas FC O =>F [w\nC G [w\n, FUGTw\n=F [w\nUG [w\n and F [ w\n C F [ w\n
forall /,g C“X andn € w. O

Lemma 2.5 Any F C “\"X will be nowhere dense in“\"X if and only if {f € “X : f [ w\n € F}
is nowhere dense in “X.

Proposition 2.6 If X is any finite set with the discrete topology then any nowhere dense subset
N of “X is good nowhere dense.

Proof: If N is not good nowhere dense then there exists n € w such that A/ | w\n is not nowhere
dense. Wlog assume X = |X| = {0,...,|X| — 1} and, for each t € X", define f +t € “X by
(f+t)(k) = f(k)+t(k) mod X fork € nand (f+t)(k) = f(k) for k € w\n. For each t € X", the
map f + f +t is a homeomorphism so if A/ is nowhere dense then sois N+t ={f+t: f € N}.
Then {f € “X : f w\n € N [ w\n} = Usexn NV +t is also nowhere dense which, by the above
lemma, means N | w\n is nowhere dense, a contradiction. [J

The problem is, of course, that when X is not finite there will be other nowhere dense sets.
Indeed, as long as X contains {z} that is closed and not open (i.e. not isolated) then we see that
{f € “X : f(0) = z} is nowhere dense but not good nowhere dense. This gave me the idea that
perhaps these are the only other kinds of nowhere dense sets. However, as the counterexample
below shows, this is not the case.
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Proposition 2.7 For each n € w, let N, = {f € “[0,1] : f(n) = nf(0)}. Then N = N, is
closed nowhere dense in “|[0, 1] but not good nowhere dense nor contained in N x “\n X for any
n € w and nowhere dense subset N of ™[0, 1].

Proof: If f € “[0,1]\N then f(0) # 0, as Ny = {0} x “M%}[0,1], so we may let
m = max{n € w: nf(0) < 2} and e = min{|f(n) — nf(0)|/(2n) : n € m\{0}}.

Then {g € “[0,1] : |f(0) — g(0)] < e AVn € m|f(n) — g(n)| < |f(n) — nf(0)|/2} > f is a basic
open set disjoint from A which, as f was arbitrary, shows that A is closed. Furthermore, for any
basic open set B = {f € “[0,1] : Vk € n(f(k) € Ok)}, for non-empty open subsets O, ...,On_1 of
[0, 1], we may pick f € “[0, 1] such that f(0) € Op\{0} and f(k) € Ox\{kf(0)}, for all k € n\{0},
and hence f € B\N, i.e. N is closed nowhere dense. However, we have Ap [ w\{0} = “M0}[0, 1]
so N is not good nowhere dense. Lastly, take any n € w and nowhere dense N C "[0,1]. Then
there exists open Qg,...,O,_1 such that Og x ... x O,_; is disjoint from N and supO, < 1/n.
Picking any f € “[0, 1] such that f(k) € Ok for all k € n and f(n) = nf(0) < nsupOy < 1, we
see that f € N\ x “\"[0,1]. O

Note, however, that, for every n € w, N, is indeed a subset of N, x “’\"[O, 1] for a nowhere
dense N, C [0.1]™. This begs the following question.

Question 2.8 For X = [0, 1] or some non-trivial class of topological spaces X, is every nowhere
dense M C “X either good nowhere dense or a subset of some N' = |JN,, x wW\n X where N, is
nowhere dense in "X for eachn € w? What if we further require N to be nowhere dense? Is every
meagre M C “X a subset of some JN,, U N, x w“\n X where N, is nowhere dense in "X and Ny,
is good nowhere dense for each n € w?

If the answer to the first question is yes then so is the answer to the last, but unfortunately
I do not know more than that for general nowhere dense and meagre subsets of “X. However, 1
can obtain some relations between good meagre sets and meagre sets that are closed under the
following relations.

Definition 2.9 For any set X and any f,g € “X define
f=% g vineuw(f(n) =gn))
If X is a metric space then define
f =% g d(f(n),g(n)) — 0.
We drop the X subscript when it is clear from the context.
First we find a nice collection of sets which are cofinal in the ideal of good nowhere dense sets.
Lemma 2.10 For any g € “X, interval partition (I,,) of w and m € w,
{fe“X:Inew\m(f [ L.=g1)}
is dense in ¥ .X.

Proposition 2.11 For any sequence of non-empty open subsets (O,) of X, any interval partition
(In) of w and m € w,

./\[(O”)'(]“),‘,” ={fe“X :Vne€w\m3ke I,(f(k) ¢ Ok)}

15 closed good nowhere dense. Furthermore, any good nowhere dense N C “ X is contained in such
a set, with m = 0 in fact.
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Proof: We have N, ) (1,).m = Nnewnm Uer, {f € “ X« f(k) € X\Ox}, which is closed. Good
nowhere density is immediate from 2.2(iii). On the other hand, given a good nowhere dense
N C “X recursively choose an interval partition (I,,) and open subsets (O,) of X such that
min(/,) = max(/,—1) + 1(=0if n =0) and {f € “X : Vk € I,(f(k) € Ok)} is disjoint from N
Then N - ./\/(()”)7([”)’0. L]

Likewise, we have nice collection of sets which are cofinal in the o-ideal of good meagre sets.

Proposition 2.12 For any sequence of non-empty open subsets (O,) of X and any interval par-
tition (I,) of w,

M 0,1 = N0 rym = {f € “X :¥*n € w3k € I (f(k) ¢ Ok)}

m

15 =*-closed good meagre F,. Furthermore, any good meagre M C “X 1is contained in such a set.

Proof: The first part is immediate. On the other hand, given a sequence (N,) of nowhere
dense subsets of X, recursively choose an interval partition (/) and open subsets (O,) of X such
that min(/,) = max(/,-1) + 1(= 0if n = 0) and {f € “X : Vk € I,(f(k) € Ok)} is disjoint
from Uy, Nk, which is possible because a finite union of good nowhere dense sets is again good
nowhere dense. Then the meagre set M = |JN, is a subset of M0, 1.)- Alternatively, one
may first find (O}}), and (I77*) such that N,, C ./\/’(015{»),(1,,:1)70, for all m € w, and then recursively
define (1,,) and (njx)jew kej+1. such that for each j € w, (Iﬁj‘k:)kej.yl are disjoint subsets of I;
(and min(f;) = max(l;_;)+1(=0ifj=0)) and forall j € w, k€ j+1andl € IT’fM, O = Oﬁj,k.
Then letting O,, = X for those n € w\ |J

icwreji1 I, (i.e. those n € w for which O, has not yet
been defined) we see that M = [JN, € M0, 1,.) O

The more interesting result is that we can obtain a converse of this for suitable X.

Theorem 2.13 If X is compact and F C “X is =*-closed F, then, for any f € YX\F there
exists an interval partition (I,) of w together with (Op) such that O, is an open subset of X
containing f(n), for each n € w, and F € M(0,).(1,)

Proof: Let F = [JN,, for closed subsets (N,,) of X. Define (O,,) and ([,) recursively as follows.
Let min(/,,) = max(l,_1)+1(= 0if n = 0) and, for all t € ™irUn) X set f;(k) = t(k) for k € min(I,)
and fi(k) = f(k) for k € w\ min(l,). As F is =*-closed, f; ¢ F and we can find n; € w\ min([,)
and open Of > fi(k), for all k € ny, such that Of x ... x O}, _; x “\™ X is disjoint from the
closed set |J,c,, Nu(C F). As min(ln) X is compact, there exists m, € w and tg,...,t;m, 1 with
min(ln) X C Usemn Hikemin(n O} Let max(I,) = max{n;, : k € m,} and, for all k € I,4,, let
Ok = jem, O;j > fi,(k) = f(k) (for k > ny; set OZJ = X in this intersection). This completes
the recursion and now note that if n € w then g [ min(I,) € HkEmin(In) OZJ, for some j € m,,, so
if g(k) € O C OZJ for all k € I, then g ¢ Uyc,, Nk. Thus if there are infinitely many n € w such
that g(k) € Ox C OY forall k € I,, then g ¢ F,ie. F C Mo,)1,)- O

Note that this theorem holds, with exactly the same proof, if we replace “ X with a closed
subset X of “X.

Corollary 2.14 If X is compact and F C “X is =*-closed meagre F, then F is good meagre.

Proof: As X is compact, “X is also compact, by Tychonoff’s Theorem, and hence a Baire space,
by the Baire Category Theorem. So there exists f € “X\F and the result now follows from 2.13
and (the first part of) 2.12. [
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Corollary 2.15 If X is compact then F C “ X is good meagre if and only if F is contained in a
=*-closed meagre F,.

Proof: Follows from 2.14 and (the second part of) 2.12. [J

Question 2.16 For compact X, is every =*-closed meagre M C “X contained in a =*-closed
meagre F, subset? Can every =*-closed meagre M C “X be written as M = |JN,, where, for all
n € w, N, is nowhere dense and cl_e(N,) is meagre?

Note that a positive answer to the second question would imply a positive answer to the first.
For then we could find nowhere dense (N})icw<w such that clee (M, . 7 ) = Ui Nro,....nie,m for
all k,no,...,nx € wand F = UNn C Uep<w Nt, where this last set is =*-closed meagre F,,. Also
note the answer to the second question would be negative if the last ‘meagre’ were to be replaced
by ‘nowhere dense’, indeed, every non-empty =®-closed set is dense and hence not nowhere dense.

However, the answer to the first question above is positive if X is a metric space and the first
(and even the second) =* is replaced by =*, as shown below in 2.21.

For the rest of this section, X is not just a topological space but a metric space.

Definition 2.17 A subset F C “X is very good nowhere dense if there exists € > 0 such that,
for all n € w, there exists m > n and t € m\n X sych that

{f €e“X :Vk € m\n|f(k) — t(k)| < €}
is disjoint from F. A countable union of very good nowhere dense sets is very good meagre.

Proposition 2.18 The very good nowhere dense sets are closed under subsets, finite unions and
topological closures.

Like before, we have a nice collection of sets which are cofinal in the ideal of very good meagre
sets.

Proposition 2.19 For any € > 0, g € “X, interval partition (I,) of w and m € w,
Negtoym ={f €“X :V¥n € w\mIk € I,|f(k) — g(k)| > €}
is closed very good nowhere dense. Furthermore, any very good nowhere dense N C “X 1is con-

tained in such a set, with m = 0 in fact.

Proof: Proved analogously to 2.11. [

Likewise, we have nice collection of sets which are cofinal in the o-ideal of very good meagre
sets.

Proposition 2.20 For any g € “X and any interval partition (I,) of w,

Mg 1y = U Mymgnym = {f € “X :lim inf géa,flf(k) - g(k)| > 0}

m

is =*-closed very good meagre F,. Furthermore, any very good meagre M C “X is contained in
such a set.

Proof: Proved analogously to 2.12. [J

We again have a converse of this for suitable X.

Theorem 2.21 If X is compact and F C “X is =*-closed meagre then there exists g € “X and
an interval partition (In) of w such that F C Mgy (1,)-
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Proof: Let F = [N, for nowhere dense (N,). Recursively define a sequence (n,,) C w, an
interval partition (/,,) of w, open subsets (O, C I XVmew ken,, and, for each m € w, open
subsets (B; C “lin(h”)X)tEn()Xu.><nv,,, _, as follows. First set By = 0, take arbitrary I, and open
Op.0 C 0 X of diameter < 1 in each coordinate. Once n,,_1, if m > 0, (B¢)tengx...xnm 1, Im and
O 0 have been defined take n,, and open (O, x)ken,,\{0} Of Ln X each of diameter < 1/(m + 1)
in each coordinate, such that Uk_e,nm Ok = " X. Let (tk)kenon, . .n,, enumerate t € ng X... X Ny,.
Recursively define (B, € ™nUm+1) X)), and (Y; € @\minme) Xy, 0000 o, by letting
B, x Y;, be a non-empty open subset disjoint from {J, .., N such that

By, X Yi, C B, % Omytyimy X Ye,y (with Yp_, = “\™@iUns) X by convention).

Then take max([l,,+1) + 1 = min(/,,42) large enough that we can find Onp410 C Im+1X | of
diameter less than 1/(m + 2) in each coordinate, such that O, 410 x @\ ™inUm+2) X C Yigny. nm -
This completes the recursion.

Let g € “X be such that g | L, € O, for all m € w. Take any f € “X\M, ) and
let A € [w]* be such that lim, . maxker, [f(k) — g(k)| = 0, where (an) is the increasing
enumeration of A. For each m € A, let h(m) = 0 and, for each m € w\ A, let h(m) € n,, be such
that f [ I, € Op p(m)- Choose f' € (N, Brx ¥ w\min(lk) ' — ﬂkm x w\minlle) X' noting that
this last expression is non-empty because it is an intersection of non-empty decreasing compact
sets. For each m € A we have

f, € Bh.[Tn X O'm,O X @A min(Im+1)X g Bh['rn X Yh[m - wx\ U Nk

k<m

which, as A is infinite, implies f’ ¢ | JN. Furthermore, by our choice of h, |f(n) — f'(n)| — 0
and hence f ¢ |JN, as F is =*-closed. As f was arbitrary we have 7 C Mg ;). O

Corollary 2.22 If X is compact and F is =*-closed meagre then F is very good meagre.

Corollary 2.23 If X is compact then F is very good meagre if and only if F s contained in a

%k

=*-closed meagre set.

3 Operators on a Hilbert Space

In this section we will be dealing with the collection of bounded linear operators B(H) on a
separable infinite dimensional Hilbert space H (i.e. a Hilbert space H isometrically isomorphic to
[?) with the weak operator topology, i.e. the weakest topology in which, for each z,y € H, the
functions T' — (T'z,y) are continuous. If we are dealing with a uniformly bounded subcollection B
of such operators and we fix a basis (e, ) of H then sets of the form {T" € B : ||P,(S = T)Py,|| < €},
for e >0, n € wand S € B, form a basis for this topology. We will also have occasion to mention
the strong operator topology, i.e. the weakest topology in which, for each x € H, the functions
T +— Tax are continuous. Again, if we are dealing with a uniformly bounded subcollection B of
such operators and we fix a basis (e,) of H then sets of the form {T" € B: ||(S — T)P,|| < €}, for
€ >0,n€wandS € B, form a basis for this topology. It follows that both of these topologies
are second countable when restricted to a uniformly bounded subcollection and hence, being
(completely) regular (as, indeed, are all Hausdorff topological vector spaces) also metrizable, by
Urysohn’s metrization theorem, which, in particular, implies that all closed subsets are Gs. Also
note that both the weak and strong operator topologies are coarser than the norm topology.

Definition 3.1 Let B(H)*/~, B(H)* and P(B(H)) be the collection of self-adjoint operators,
non-negative operators and projections on H respectively. If B C B(H) and r > 0 then let B, be



operators in B of norm at most r.

B(H)Y~ = {TeBH):T=T"}
BH)* = {Te€B(H):Vre H({(Tz,z) >0)}={T"*T:T € B(H)}.
P(B(H)) = {TeBH):T*=TANT=T"}.
B, = {TeB:|T|<r}

For what follows we need a couple of technical lemmas about projections.

Definition 3.2 Let P, and Pgr be the projections H® H — H onto the first and second coordinate
respectively and let I, and Ir be the injections H — H @& H into the first and second coordinate
respectively. Let P; = I1 P, and Py = IrPr

Proposition 3.3 ([2] 3.1.8.) For any T € B(H){ there ezists a projection P on H ® H such
that T = PLPI,. (Equivalently, for any T € B(H & H){ such that P,TP] = T there exists a
projection P on H @ H such that T = P, PP} .)

Proof: As T is non-negative and of norm at most 1, T — T2 is also non-negative and hence
has a non-negative square root VI — T2 Thus we may let P be the operator whose matrix

representation is
o[ T T - 12
VT -T2 1-T
ie. P=(TPL+VT —T?Pr)® (VT — T?PL + (1 —-T)Pgr), which is immediately verified to satisfy
P?=Pand P* = P. O

For the next lemma, note that if (7},), (S,) C B(H) are such that (7,) is uniformly bounded,
T, > T and S, = S then T,,S, = T'S. Also note that, for any S € B(H)Y and ¢ € H,
IVSz|[2 = (Sx,z) < ||Sz||||x]| so if Sy = 0 then /Sy 2 0.

Lemma 3.4 For any Q € P(B(H)), n € w and € > 0, there exists m € w\n and P € P(B(H))
such that PQynPP2'n;, = P, P7nPP7n - /rnQP"l and II(P - Q)P’lH < e.

S

Proof: We have P,QP,, = Q which, as Q% = @, gives \/Pn,QP,, — (PnQPn,)?2 > 0. Let
m > n be large enough that ||\/PnQP., — (PrQPn)?Py|| < €/2 and ||(1 — Pn)QP,|| < €¢/2 and
let P be the projection such that Py, PPs,, = P and P,,PP,, = P,,QP,, = T defined in 3.3. So
PP, =T+ S,VvT —T?, where S,, is the operator that shifts any x € H m places to the right
(i.e. such that S,,ex = exy,, for all £ € w) and then

P‘D‘n = PP‘NLPH = TPn -+ Sm V T — szn = 7nQPn + Sm,\/Pn'zQPm. - (P‘mQPm)2Pn
and hence ||(# — Q) Pyl < [|(Pr. — DQP|| + ||V PrQPr — (PrQPy)2 P, <e. O

Proposition 3.5 A bounded linear operator T on H is a projection if and only if T*T = T.

Proof: If T*7T =T then T* = (I*T)* =T*T** =T*T =T, i.e. T is self-adjoint, and hence also
T? =T*T =T, ie T isidempotent. On the other hand if T is a projection then T*T = T? = T.
O

In fact, we can do even better and not even assume T is bounded.

Proposition 3.6 A linear operator T' on H is a projection if and only if (Tx,Ty) = (Tz,y) for
allx,y € H.
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Proof: If T is a projection then (T'x,Ty) = (T*Tz,y) = (T'z,y), for all x,y € H. On the other
hand, if (T'z,Ty) = (T'xz,y) for all x,y € H then

(Ta,y) =Tz, Ty) = Ty, Tx) = Ty, x) = (x,Ty),

for all x,y € H and hence (Tz,y) = (Tz, Ty) = (T?x,y) for all z,y € H. So T is self-adjoint
(which, being defined everywhere, implies it is bounded, by the Hellinger-Toeplitz theorem) and
idempotent. I

Proposition 3.7 If scalars are complex (i.e. if F = C) then a linear operator T on H is a
projection if and only if (Txz,T+x) =0 for allz € H.

Proof: If T is a projection then (Tz,T%z) = (T1*Tz,z) = 0, for all x € H, as we have
TH*T = T — T*T = 0. On the other hand if (Tz,Tz) = (Tz,z) for all z € H then, for all
x,y € H,

(T(x+y),T(+y) = T(E+y),z+y)
(Tz, Tz) + (Tz,Ty) + (Ty, Tz) + (Ty, Ty) = (Tz,z)+ (Tz,y)+ (Ty,z) + (Ty,y)
(Tz,Ty) + (Ty,Tx) = (Tz,y)+ (Ty,zx).
But also
(T(z —1y), T'(x—1y) = (T'(z-—iy),z—1y)
(Tz,Tz) +i(Tz, Ty) —i(Ty, Tz) + (Ty, Ty) = Tz,z)+i(Tx,y)—i(Ty,z)+ (Ty,y)
(T.’lt, Ty) - <Ty’ TI) = <T:L‘, y) - (Ty’l'>'

Adding these two equations together and dividing by 2 gives (T'z, Ty) = (Tz,y) for all z,y € H.
a

Proposition 3.8 If scalars are real (i.e. if F = R) then T is a projection if and only if T is
self-adjoint and (Txz,T+z) =0 for all x € H.

Proof: For all z,y € H we have (Tz,Tx) = (Tz,x) and (Ty,Ty) = (Ty,y) and hence

(T(x+y), T(z+y)) (T(z+y),z+y)
(T'z, Tx) + (Tz,Ty) + (Ty, Tz) + (Ty, Ty) (Tx,2) + (Tz,y) + (Ty,z) + (Ty,y)
(Ta, Tyy + (Ty,Tz) = (Tz,y)+ (Ty,z)
(Tz, Ty) + Tz, Ty) = (Tz,y)+ (z,Ty)
(Tz, Ty) + Tz, Ty) = (Tz,y)+ (Tx,y)
(Tz,Ty) (Tz,y). O

Proposition 3.9 For anyr € R, B, = {x € H : ||z|| <7} is closed w.r.t. the weak topology.

Proof: If ||y|| > r then the weakly open set {x € H : (z,y) > r||y||} contains y and is disjoint
from B, (because if ||z|| < r then (z,y) < [|z||lly]| < r]ly]]). As y was arbitrary, B, is closed. [J

Proposition 3.10 In the weak operator topology, P(B(H)) is a dense Gs in B(H)7 .
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Proof: Density follows from 3.3. Next note that, for any x € H,

s 1/. 2 T e 1'1. . ! by T 1 112
HII—§1,H _<7£’Il>w§<ll~l>*§<J"’71'>+ZH1’H

SO
1 1
(Tx, T z) =0 (x,Tz) = (Tx,Tx) = (Tz,2) < ||Tz — E.L“ = -2-H.LH

Hence, defining f.(T) = Tx — %:c, which is a continuous map from B(H); with the weak operator

topology to H with the weak topology, we have
{T € B(H)1 : (Tz, T x) = 0} = £ (Byjay) N[ \BHENN\F7 (Byjjay- 1))

which is the intersection of a closed and hence Gs set with another Gs set and thus itself a G
set. If D is a countable dense subset of H then

{T € B(H), : Vz € H(Tz, T 2) =0} = (| {T € B(H): : (Tz,T*z) = 0}
z€D
is also a G5 set. If we are dealing with complex scalars then this is already precisely the collection of
projections, while if we are dealing with real scalars then we must intersect this with the collection

of self-adjoint operators {T" € B(H), : Va,y € H(Tz,y) = (z,Ty)}, which is closed and hence G,
to get the collection of projections, which again shows it is a G4 set. [J

Proposition 3.11 If Y is a comeagre subset of a Baire space X and Z C X\Y then, for any
ACY, A is comeagre in'Y if and only if AU Z is comeagre in X .

Proof: LetY D (O} for open dense (OY) in X. If AU(X\Y) D AUZ D Oy, for open dense
(On) in X, then O, NN, O} is comeagre and hence dense in X and hence in Y, for each n € w.
Therefore A D (), (O, N, O ) is comeagre in Y.

On the other hand, if A is comeagre in Y then A D [ O, for open dense (O,) in Y. But then
there are open (O}) in X such that, for alln € w, O, = 0, NY. As O, isdense in Y and Y is
dense in X, O], D O, is also dense in X, for alln € w. Thus AUZ 2 A D (O, NOY is comeagre
in X. O

Corollary 3.12 IfY is a comeagre subset of a Baire space X and Z C X\Y then, forany ACY,
A is meagre in Y if and only if AU Z is meagre in X.

Proof:

A meagre in Y & Y\ A comeagre in Y & (Y\A)U(X\Y)\Z comeagre in X & AUZ meagre in X.[J

Corollary 3.13 [f Z C B(H)[\P(B(H)) then, for any F C P(B(H)), F is meagre in P(B(H))
w.r.t. the weak operator topology if and only if FU Z is meagre in B(H)Y w.r.t. the weak operator
topology.

From now until 3.27 let B consistently be B(H),, B(H){'~, B(H)} or P(B(H)).

Proposition 3.14 For any F C B, the following are equivalent
(i) For alln € w, P\pF P,\n is not dense in P\ ,BP_\, w.r.t. to the weak operator topology.

(i) For all n € w, P\nFP,\n is nowhere dense in Pp,BP,\, w.r.t. to the weak operator
topology.

(iit) For all n € w there exists m > n, ¢ > 0 and S € B such that Pr\nSPn\n = S and
{T' € B:||IS = PonT P\l < ¢} is disjoint from F
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Proof:
(iii)=-(ii) Assume (iii), fix n € w and take any basic open set @ of PnBP\n of the form
0= {T S Pw\nBPw\n . HPm(S - T)PrnH < 5}

for some S € P\,BP,\,, ¢ > 0and m > n. Take § > 0, |l > m and R € B such that
Pl\‘rVLRPl\'rn, - H and
L= {T €eB: “R - Ijl\m,TlDl\mH < 5}

is disjoint from F. If T = P\nLP,\n = P \nFP,, for some L € £ and F € F then
HR - Pl\mFPl\mH = HR - Pl\mTPl\mH = ”R - Pl\mLPl\mH <9, le.
Pw\n[-:Pw\n n Pw\nfpw\n = Pw\n{F cF: ||R — Pl\mF})l\mH < 5}Pw\n
= Pw\n(‘cnf)Pw\na

80 Po\nLP,\n is disjoint from B\, F P,\, too. Let
K = {Te Pw\nBPw\n “||IR+ PSP, — PTP]|| < min(e, )}
C {T € Pw\nBPw\n : ”R - Pl\mTPl\mH < 6} N {T € Pw\nBPw\n : ||Pm(S - T)PmH < 6}

Pw\n{T €B:||R~ Pl\mTPl\mH < 5}Pw\n nao
Pw\nEPw\n Nno.

t

Note that K is non-empty as it contains R+ P,,SP,,, if B is not P(B(H)), while it contains
PonPP,\n for any P € P(B(H)) such that PP, = R + P, SP,,, which exists by 3.3.
Thus K is a non-empty open subset of O disjoint from P,,\,F P,\, which, as n and O were
arbitrary, shows that (ii) holds.

(ii)=-(i) Immediate.

(i)=-(iii) Assume that (i) holds so, for any n € w, there exists a basic open set @ of P \nBP\n
disjoint from P\, F P\, of the form

O = {T [S Pw\nBPw\n : ||Pm(R — T)P7n|| < 6}

for some R € P \nBF,\n, € > 0 and m > n. Setting S = P, RPy, gives Pr\nSPp\n = S
and

O ={T € Pp\nBP\n : IS — PrTPyl|| <€} = Ppo{T € B: ||S — Po\nTPr\nll < €}Porn
which implies {T" € B : ||S — Pp\nTPp\nl| < €} is disjoint from F. O
Definition 3.15 ([2] 3.1.4) Any F C B satisfying any of the equivalent conditions in the propo-

sition above is said to be good nowhere dense (w.r.t. the basis (e,)). A countable union of good
nowhere dense sets is said to be good meagre (w.r.t. the basis (ey)).

Proposition 3.16 Good nowhere dense sets are closed under subsets, finite unions and topological
closures.

Proof: Follows from characterization (ii) above and the corresponding closures for nowhere dense
sets. [J

Lemma 3.17 For any S € B, n € w and ¢ > 0, there exists m € w\n and T € B such that
Po,TP,, =T and ||[(S - T)P,|| < .
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Proof: If Bis P(B(H)) then this follows from 3.4. Otherwise simply let ' > n be large enough
that ||(1 — P, )SP.]| <e. let T'= P,SP,, and note that then P,, TP, =T, ||(S—T)P,|| < € and
[Tl < ||S]] and if S is self-adjoint or non-negative then the same applies to 7. [J

Proposition 3.18 ([2] 3.1.5.) Take a partition (I,) of w and a sequence (T,,) C B such that
P T, Pr, =T,, for alln € w. Then, for all m € w,

Drn == {T E B : an 2 7n(T‘Il = PI'nTPIIl)}

is dense in B w.r.t. the strong operator topolgy.

Proof: Take any basic open set O = {T € B : ||[(S — T)FPx|| < €}, for some k € w, S € B and
e > 0. Let T and m be as in the above lemma (with n replaced by k), let n be large enough that
m < min(/,) and note that then T+ T,, € OND,,. O

Proposition 3.19 Take a partition (I,) of w and sequences (T,) C B and (e,) C R such that
P T, P, =T, and €, > 0 for alln € w. Then, for all m € w,

N(e,,),(T,L),(I,L),m = {T e B:Vn> m(llTn—PlnTPIHH > Gn)} = m {T € B: HTn'_PI.,‘TPInH > En}
n>m

is a closed nowhere dense subset of B w.r.t. both the weak and strong operator topology. Further-
more every good nowhere dense N'C B is contained in such a set, with m = 0 in fact.

Definition 3.20
T =('e") S < dn € W(Pw\nTPw\n = w\nSPw\‘n)-

Proposition 3.21 ([2] 3.1.5.) Take a partition (I,,) of w and sequences (T,,) C B and (e,) C R
such that Py, T,P;, =T, and ¢, > 0 for all'n € w. Then

M@t = UNen @y m ={T € B :¥°n(||T, — P1,TPL|| > €n)}

m

is a :('e”)—closed meagre F, subset of B w.r.t. both the weak and strong operator topology. Fur-
thermore every good meagre M C B is contained in such a set.

Definition 3.22 A subset F C B is very good nowhere dense (w.r.t. the basis (e,,)) if there exists
€ > 0 such that, for all n € w, there exists m > n and S € B such that P\ n,SPp\n = S

{T €EB: HS - Pm\nTPm\nH < 6}

ts disjoint from F. A countable union of very good nowhere dense sets is sadi to be very good
meagre (w.r.t. the basis (ey)).

Proposition 3.23 The very good nowhere dense sets are closed under subsets, finite unions and
topological closures.

Proposition 3.24 Take € > 0, a partition (I,) of w and (T},,) C B such that P;, T, P, = T, for
all n € w. Then, for all m € w,

Neryimym ={T €B:¥n>m(||T, — P, TP;,|| >€)} = m {TeB:|

n>m

7’" - PI"TPI.”H Z 6}

15 a closed nowhere dense subset of B w.r.t. both the weak and strong operator topology. Further-
more every very good nowhere dense N C B is contained in such a set, with m = 0 in fact.
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Proposition 3.25 Take a partition (I,) of w and (T,) € B such that P;,T,Pr, = Tp for all
n € w. Then

Mz, = UM ymo) 1y m = {T € B : lim inf ||T,, — Pr, TPy, [| > 0}
m
is a =*-closed meagre F, subset of B w.r.t. both the weak and strong operator topology. Further-

‘more every very good meagre M C B is contained in such a set.

Proposition 3.26 cl_-(Pg(,)) is very good meagre.

Proof: Foreachn € wlet I, = {2n,2n+1} and let P, be the projection onto the one dimensional
subspace span{ez, + egn41}. For any A € w, we have ||P, — P;, PaPr, || > 1/v/2 and hence
lim inf HPn - P["PPI,UH > 1/\/5 for all P =* PA. Thus cl=- (Pg(w)) - M(p"),(]n). O

Next we prove the analog of 2.13. Note however that, w.r.t. the weak operator topology,

B(H), B(H)f/_ and B(H)] are closed subsets of B(H), however P(B(H)) is not and hence the
proof of 3.27 below does not work in this case. Indeed, it follows from 3.3 that P(B(H)) is dense
in B(H)T.

For the rest of this section let B consistently be B(H);, B(H)T/_ or B(H)} (but not
P(B(H))).
Theorem 3.27 [fF C B is :(‘en)—closed F, w.r.t. the weak operator topology and T € B\F then

there exists an interval partition (I,) of w and (en) > 0 such that F C Mc,) (p;, TP1,).(In)

Proof: Let F =|JN, for closed subsets (N,,) of X. Define (¢,) and (I,) recursively as follows.
Let min(/,) = max([,_1) + 1(= 0 if n = 0) and, for all S € B(H)3 such that

P\ min(1,) (S = T) P\ min(1,) =0

and hence S ¢ F (and quite possibly S ¢ B), as F is =, ,-closed, there exists ng € w\ min(I,)
and e€g > 0 such that the set

Rsn=Rs={ReB(H):Vjkens(((R—S)ej,ex) <e€s)}
is disjoint from the closed set | J;,, Nx(C F). As

S = {S € B(H)3 : Pw\ min(ln)(s - T)Pw\ min(I,) = O}
= {Se€B(H)s:Vjkew\min(l,)((Sej,ex) = (Tej, ex))}

is closed and hence compact there exist Sg,...,Sm, -1 such that Rg,,...,Rs,, _, cover S. Let
max(Ip+1) = max{ngs, : k € m,} and €, = min{eg, : kK € m,}. This completes the recursion.
Now note that if n € w, R € B and ||P;,, (R~ T)Pr, || < €, then

R/ =R+ Pw\ min(I,”)(T - R)Pw\ min(I,)

has norm at most 3 and P,\ min(1,,)(R’ — T)Po\ min(1,) = 0 s0 R’ € Rs,, n for some m € my,.
For j,k € ng,, \min(Il,) C I,, we have ((R — Sm)ej,ex) = (R—T)ej,ex) < €n < €s,,, while for
Jj.k € ng,, with either j or k less than min(/,,) we have ((R—Sp)ej, ex) = ((R'—Sm)e;, ex) < €s,, .
So we in fact have R € Rg,, , too and hence R ¢ ¢, Nk. Thus if ||Pr, (R — T)Pr, || < €, for
infinitely many n € w then R ¢ F, ie. F C Mc) (P, TP, ) (In) U

Corollary 3.28 If F C B is :('en)—closed meagre F, w.r.t. the weak operator topology then F is
good meagre w.r.t. (e,).
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Proof: As B is compact it is a Baire space, by the Baire Category Theorem, so there exists
1" € B\F and the result now follows from 3.27 and (the first part of) 3.21. O

Corollary 3.29 A subset F of B is good meagre w.r.t. (e,) if and only if F is contained in a
:('e”)—closed meagre F, w.r.t. the weak operator topology.

Proof: Follows from 3.28 and (the second part of) 3.21. O

I should point out that in [2] page 47 (after 3.1.4) Zamora-Aviles makes the comment that if
F is closed under finite-rank changes (and B = B(H){) then good meagreness does not depend
on the basis. While this does indeed follow from the above corollary if F is meagre F, (because
if F is closed under finite rank changes then it will be ={e,)-Closed for any basis (e,)) and might
indeed be true even without the F, assumption, I do not see how it follows directly from what is
written in [2].

Unfortunately, the proof of 2.21, where we get rid of the F, assumption, does not, as far as |
can tell, generalize to B, essentially because it does not generalize to closed subsets of “ X (unlike
the proof of 2.13). The best I can do is the following.

Theorem 3.30 If 7 C B is =*-closed F, w.r.t. the weak operator topology and T € B\F, there
exists and interval partition (I5,) of w such that F C Mp, Tp, ) 1.)-

Proof: By 3.27 there exists and interval partition (I,) of w together with (e,) > 0 such that
F C M(Cn)‘(p]"'pp,")‘(1”). We claim that, in fact, F C M(PI-HTPI-,,)‘(IH)' If not then there exists
S € FA\M(p,, Tp,,).(1,) Which means we have A € [w]¥ such that ||P;, (S — T)Py, || — 0 where
(an) is the increasing enumeration of A. So if we let K = 3 . P;, (S —T)P;, € K(H) then
S — K € F but PI,‘(S - K)PI“ = P[(‘TPI(L for all a € A and hence S — K ¢ M(e,,),(P,_"TP;n),(In),
a contradiction. [J

Corollary 3.31 If F C B is =*-closed meagre F, w.r.t. the weak operator topology then F is
very good meagre.

Corollary 3.32 A subset F of B is very good meagre if and only if F is contained in a =*-closed
meagre Fy w.r.t. the weak operator topology.

Proposition 3.33 If (I,) is an interval partition of w and (T,,) € B(H)%t is such that we have
P, T, P, =T,, for alln € w, then there exists an interval partition (J,) of w and (P,) C P(B(H))
such that P;, PPy, = Py, for alln € w, and M(p,y (s,) Mp,, TP,) (1) (where these M’s are
defined within B(H)} or P(B(H)), or even B(H);).

Proof: Let (J,) be such that, for each n € w, J, contains some I,,,, and is at least twice the size
of I,,,. By 3.3 we can find (P,) C P(B(H)) such that P; P,P;, = P, and P;,, PP, =Tp,,
for all n € w, from which M1, (1.) € M(p,),J,) follows. O

n -

iy

Finally let us summarize we what we can now say about meagre subsets and their closures.
Definition 3.34 For any f,g € “[0,1] define
f <o 9 < limsup(f(n) — g(n)) <O0.

Definition 3.35 For any A C w let 14 : w — 2 be its characteristic function, i.e. 1a(n) =1 if
n € A and 14(n) = 0 otherwise. If AC P(w) then let 14 ={14: A € A}.

Proposition 3.36 For A C P(w), the following are equivalent.
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(1) There exists an interval partition (I,,) of w such that VA € AV>®n3m € I,,\ A.
(it) cl<z(1a) =cley (1) = loic.(a) s meagre.
(iii) Clﬁfo.l](l““) is meagre.
Furthermore, they imply
(iv) cl<+(P4) is meagre.
Proof:

(i)=-(ii),(iii),(iv) Simply note that (i) implies that

cle;(1a) © My, (1,)(€*2),
cer ,, (1) €& My, (1,)(€¥[0,1]) and
cl<(Pa) S Mp, (1,)(C P(B(H)))

(iii)=>(i) Take arbitrary g € “[0,1] and an interval partition (I,) of w. If (i) fails then there exists
C € Aand A € [w]“ such that I, C C for all a € A. If we let C' = Uscw\a fo and
f=9g1C"Ulc [ w\C' then f < 1¢ (everywhere) and f [ I, = g [ I, for all a € A and
hence f € CIS[*o,u (14) € My (1,)- Thus, as g and (I,,) were arbitrary, lefo,l](lA) is not very
good meagre, by 2.20. But ClS{o.u (14) is =*-closed meagre and hence very good meagre by

2.21, a contradiction.

(ii)=-(i) Just like (iii)=>(i), instead taking arbitrary g € “2. O

What we wanted, of course, was to prove that (iv) implies (ii), which would follow if we could

- prove 3.31 without the F,, assumption because then we could also prove it for P(B(H)) — given

any ="-closed meagre subset F of P(B(H)), the =*-closure of F in B(H){ would be meagre by

3.13, hence very good meagre in B(H)} (by 3.31 without the F, assumption) and thus F would

be very good meagre in P(B(H)) by 3.33. Then the proof of (iv)=-(i) would go like the proof of
(ii1)=(i) above.
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