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1. INTRODUCTION

In this article, we shall report a construction of several holomorphic vertex
operator algebras of central charge 24 using Virasoro frames. The Lie algebras
associated to their weight one subspaces are of the types $A_{1}A_{3}^{4}$ and $A_{1}D_{5}$ ,
$A_{1}^{3}A_{7},$ $A_{1}^{2}C_{3}D_{5},$ $A_{2}^{2}C_{2}A_{5}^{2},A_{3}A_{7}C_{3}^{2},$ $A_{3}C_{7},$ $B_{3}A_{9}A_{4},$ $B_{4}C_{6}^{2}$ and $B_{6}C_{10}$ . These
vertex operator algebras correspond to number 7, 10, 18, 19, 26, 33, 35, 40, 48
and 56 in Schelleken’s list [Sch]. We shall only report the main idea and the
details will appear in another paper.

Holomorphic VOA and Schelleken’s list. Let $V$ be a vertex operator al-
gebra (VOA). $V$ is rational if all of its admissible modules are completely
reducible [DLMI]. A rational vertex operator algebra $V$ is said to be holomor-
phic if it has only one inequivalent irreducible module, namely $V$ itself. It is
well-known that a holomorphic VOA must have the central charge $c$ divisible
by 8.

Let $V=\oplus_{n\in \mathbb{Z}}V_{n}$ be a VOA of CFT-type. i.e.,

$V_{n}=0$ for $n<0$ and $\dim V_{0}=1$ .

Then, the weight one subspace $V_{1}$ has a Lie algebra structure and possesses
an invariant bilinear form [FLM]. When $c=8$ and 16, it is easy to determine
$\dim V_{1}$ by using the theory of modular forms. The corresponding Lie algebra
structure for $V_{1}$ can also be determined. When the central charge is 8 or 16,
it is not difficult to classifiy all holomorphic VOAs.

The classification of holomorphic vertex operator algebras of central charge
24, on the other hand, is much more complicated. In 1993, Schelleken obtained
a partially classification by determining the possible Lie algebra structures for
the weight one subspaces. However, only 39 of the 71 cases in his list have been
constructed explicitly. Besides, it is still an open question if the Lie algebra
structure of $V_{1}$ will determine the VOA structure of $V$ uniquely when $c=24$ .
The most difficult case is probably the case when $V_{1}=0$ . Frenkel-Leposwky-
Meurman [FLM] conjectured that such a VOA is isomorphic to the famous
moonshine VOA $V^{\mathfrak{h}}$ . This conjccture is one of tlie most difficult probleni in
VOA theory and has very little progress in the last 20 years.

Motivated by the work of Schelleken, Montague [Mon] proposed some con-
structions for 70 of the 71 theories by using the so-called $\mathbb{Z}_{2}$ and $\mathbb{Z}_{3}$ orbifold
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constructions. Unfortunately, the existences of such orbifold constructions
have not been established rigorously (at least in mathematical sense).

In this article, we shall discuss an explicit construction of several holomor-
phic vertex operator algebras of central charge 24 by using Virasoro frames.
Our main method is by successive $\mathbb{Z}_{2}$-orbifoldings on certain lattice type framed
VOAs. In general, it is difficult to determine if the Fock space obtained from
$\mathbb{Z}_{2}$-orbifold construction has a VOA structure; however, for a framed VOA, if
an involution fixes the Virasoro frame pointwise, then the corresponding $\mathbb{Z}_{2^{-}}$

orbifold construction always gives a VOA (see [LY] and Section 2.2). By this
method, we shall construct 10 vertex operator algebras (VOAs) in Schelleken’s
list [Sch]. They correspond to number 7, 10, 18, 19, 26, 33, 35, 40, 48 and 56
in his list and the Lie algebras associated to their weight one subspaces are of
the types $A_{1}A_{3}^{4}$ and $A_{1}D_{5},$ $A_{1}^{3}A_{7},$ $A_{1}^{2}C_{3}D_{5},$ $A_{2}^{2}C_{2}A_{5}^{2},A_{3}A_{7}C_{3}^{2},$ $A_{3}C_{7},$ $B_{3}A_{9}A_{4}$ ,
$B_{4}C_{6}^{2}$ and $B_{6}C_{10}$ . For simplicity, only the case $V_{1}\cong A_{1}D_{5}$ will be given in
this article. The other cases can be constructed using the similar method. We
believe that these VOAs have not been constructed explicitly before in the
literature.

TABLE 1. Exceptional Framed VOAs

2. FRAMED VERTEX OPERATOR ALGEBRAS

In this section, we review the notion of framed VOAs from [DGH, M3]. For
the details of VOAs, see [FHL, FLM].

Definition 2.1. Let $V=\oplus_{n=0}^{\infty}V_{n}$ be a VOA. An element $e\in V_{2}$ is called
an Ising vector or a Virasoro element of central charge 1/2 if the subalgebra
Vir $(e)$ generated by $e$ is isomorphic to the simple Virasoro VOA $L(1/2,0)$ . Two
Ising vectors $u,$ $v\in V$ are said to be orthogonal if $[Y(u, z_{1}), Y(v, z_{2})]=0$ .
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Remark 2.2. It is well-known that $L(1/2,0)$ is rational, i.e., all $L(1/2, 0)$ -modules
are completely reducible, and has only three inequivalent irreducible modules
$L(1/2,0),$ $L(1/2^{1}/2)$ and $L(1/2^{1}/16)$ . The fusion rules of $L(1/2,0)$ -modules are com-
puted in [DMZ]:

$L(1/2^{1}/2)\otimes L(1/2^{1}/2)=L(1/2,0)$ , $L(1\prime_{2^{1}},/2)\otimes L(1/2^{1}/16)=L(1/2^{1}/16)$ ,
(2.1)

$L(1/2^{1}16)\otimes L(1/2^{1}/16)=L(1/2,0)\oplus L(1/2^{1}/2)$ .

Definition 2.3. ([DGH]) A simple VOA $(V, \omega)$ is said to be framed if there
exists a set $\{e^{1}, \ldots, e^{n}\}$ of mutually orthogonal Ising vectors of $V$ such that
$\omega=e^{1}+\cdots+e^{n}$ . The sub VOA $T_{n}$ generated by $e^{1},$

$\ldots,$
$e^{n}$ is thus isomorphic

to $L(1/2,0)^{\otimes n}$ and is called a Virasoro frame or simply a frame of $V$ . By abuse
of notation, we sometimes call the set of Ising vectors $\{e^{1}, \ldots, e^{n}\}$ a frame,
also.

2.1. Structure codes. Given a framed VOA $V$ with a frame $T_{n}$ , one can
associate two binary codes $C$ and $D$ of length $n$ to $V$ and $T_{n}$ as follows:

Since $T_{n}=L(1/2,0)^{\otimes n}$ is rational, $V$ is a completely reducible $T_{n}$-module.
That is,

$V\cong$ $\oplus$ $m_{h_{1},\ldots,h_{n}}L(1/2, h_{1})\otimes\cdots\otimes L(1_{2}, h_{n})$ ,
$h_{i} \in\{0,\frac{1}{2},\frac{1}{16}\}$

where the nonnegative integer $m_{h_{1},\ldots,h_{n}}$ is the multiplicity of $L(\iota/2, h_{1})\otimes\cdots\otimes$

$L(1_{2}, h_{n})$ in $V$ . In particular, all thc multiplicities are finite. It was also sliown
in [DMZ] that $m_{h_{1},\ldots,h_{n}}$ is at most 1 if all $h_{i}$ are different from 1/16.

Definition 2.4. Let $U\cong L(1/2, h_{1})\otimes\cdots\otimes L(1/2, h_{n})$ be an irreducible module
for $T_{n}$ . We define the 1/16-word (or $\tau$-word) $\tau(U)$ of $U$ as the binary word
$\beta=(\beta_{1}, \ldots, \beta_{n})\in \mathbb{Z}_{2}^{n}$ such that

(2.2) $\beta_{i}=\{\begin{array}{ll}0 if h_{i}=0 or 1/2,1 if h_{i}=1/16.\end{array}$

For any $\beta\in \mathbb{Z}_{2}^{n}$ , denote by $V^{\beta}$ the sum of all irreducible submodules $U$ of
$V$ such that $\tau(U)=\beta$ .

Definition 2.5. Define $D;=\{\beta\in \mathbb{Z}_{2}^{n}|V^{\beta}\neq 0\}$ . Then $D$ becomes a binary
code of length $n$ and $V$ can be written as a sum

$V= \bigoplus_{\beta\in D}V^{\beta}$
.

For any $c=(c_{1}, \ldots, c_{n})\in \mathbb{Z}_{2}^{n}$ , denote $M^{c}=m_{h_{1},\ldots,h_{n}}L(1/2, h_{1})\otimes\cdots\otimes L(1/2, h_{n})$

where $h_{i}=1/2$ if $c_{i}=1$ and $h_{i}=0$ elsewhere. Note that $m_{h_{1},\ldots,h_{n}}\leq 1$ since
$h_{i}\neq 1/16$ .

Definition 2.6. Define $C:=\{c\in \mathbb{Z}_{2}^{n}|M^{c}\neq 0\}$ . Then $C$ also forms a binary
code and $V^{0}=\oplus_{c\in C}M^{c}$ .
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Summarizing, there exists a pair of even linear codes $(C, D)$ such that

$V= \bigoplus_{\beta\in D}V^{\beta}$
and $V^{0}= \bigoplus_{c\in C}M^{c}$

.

The codes $(C, D)$ are called the structure codes of a framed VOA $V$ associated
to the frame $T_{n}$ . We also call the code $D$ the $\frac{1}{16}$ -code and the code $C$ the

$\frac{1}{2}$ -code of $V$ with respect to $T_{n}$ .

The following theorem is also well-known (cf. [DGH, Theorem 2.9] and [M3,
Theorem 6.1] $)$ :

Theorem 2.7. 1. $D$ is triply even, i. e., wt $(\alpha)\equiv$ Omod8 for all $\alpha\in D$ .
2. $C$ is even.
3. A framed $VOAV$ is holomorphic if and only if $C=D^{\perp}$ .

In [LY], the structure of a general framed VOA has been studied in detail.
It was shown that the structure codes $(C, D)$ satisfy some duality conditions.
In particular, the following result is established.

Theorem 2.8 (cf. Theorem 10 of [LY]). Let $D$ be a linear binary code of
length $16k,$ $k\in \mathbb{Z}^{+}$ . Then $D$ can be realized as the $\frac{1}{16}$ -code of a holomorphic
framed $VOA$ of centml charge $8k$ if and only if (1) $D$ is triply even and (2)
the all-one vector $1\in D$ .

By the theorem above, the classification of the $\frac{1}{16}$codes for holomorphic
framed VOAs is equivalent to the classification of triply even codes of length
$16k$ .

It turns out that most triply even codes can be constructed by certain dou-
bling processes or contained in some doublings [BM, DGH] (see also Section
3 $)$ . However, in [BM], a very special triply even code $D^{ex}$ of length 48 is con-
structed. It has dimension 9 and minimal weight 16 but it is not contained in
any doublings. In this article, we shall constructed explicitly a holomorphic
framed VOA which realizes $D^{ex}$ as the $\frac{1}{16}$ -code. We shall also construct several
other VOAs using the subcodes of $D^{ex}$ .

Our main method is by successive $\mathbb{Z}_{2}$-orbifoldings on certain lattice type
framed VOAs. In general, it is difficult to determine if tlie Fock space obtained
from $\mathbb{Z}_{2}$-orbifold construction has a VOA structure; however, for framed VOA,
if an involution fixes the Virasoro frame pointwise, then the corresponding $\mathbb{Z}_{2^{-}}$

orbifold construction always gives a VOA (cf. [LY]).

2.2. Miyamoto involutions and $\mathbb{Z}_{2}$-orbifold construction. Next, we shall
review tlie definition of Miyamoto involutions [Ml] and the notion of $\mathbb{Z}_{2^{-}}$

orbifold construction.

Definition 2.9. Let $V$ be a framed VOA with the structure codes $(C, D)$ ,
where $C,$ $D\subset \mathbb{Z}_{2}^{n}$ . For a binary word $\beta\in \mathbb{Z}_{2}^{n}$ , we define

(2.3) $\tau_{\beta}(u)$ $:=(-1)^{\langle\alpha,\beta\rangle}u$ for $u\in V^{\alpha}$ .
Then by the fusion rules, $\tau_{\beta}$ defines an automorphism on $V$ [Ml].
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Similarly, we can define an automorphism on $V^{0}$ by

$\sigma_{\beta}(u)$ $:=(-1)^{\langle\alpha,\beta\rangle}u$ for $u\in M^{\alpha}$ ,

where $V^{0}=\oplus_{\alpha\in C}M^{\alpha}$ .
Note that $\sigma_{\beta}$ is just an automorphism of $V^{0}$ . It does not necessarily lift to

an automorphism of $V$ . Nevertheless, the following holds.

Theorem 2.10 (cf. Theorem 12 of [LY]). Let $V$ be a framed $VOA$ with the
structure codes $(C, D)$ . Let $\xi\cdot\beta=(\xi_{1}\cdot\beta_{1}, \ldots, \xi_{n}\cdot\beta_{n})$ be the coordinatewise
product of $\xi$ and $\beta$ . For a binary word $\zeta\in \mathbb{Z}_{2}^{n}$ , there exists $g\in$ Aut(V) such
that $g|_{V^{0}}=\sigma_{\xi}$ if and only if $\xi\cdot\beta\in C$ for all $\beta\in D$ . Moreover, $g$ has order 2
if wt $(\xi\cdot\beta)\equiv 0mod 4$ for all $\beta\in D$ ; otherwise, $g$ has order 4.

2.2.1. $\mathbb{Z}_{2}$ -orbifold construction. Next, we shall recall $\mathbb{Z}_{2}$-orbifold construction
for holomorphic framed VOAs.

Let $V=\oplus_{\beta\in D}V^{\beta}$ be a holomorphic framed VOA with the structure codes
$(C, D)$ . For any $\delta\in \mathbb{Z}_{2}^{n}\backslash C$ , denote

$D^{0}=\{\beta\in D|\langle\beta, \delta\rangle=0\}$ and $D^{1}=\{\beta\in D|\langle\beta, \delta\rangle\neq 0\}$ .

Then the Miyamoto involution $\tau_{\delta}$ has order 2 and tlie fixed point subspace
$V^{\tau_{\delta}}=\oplus_{\beta\in D^{0}}V^{\beta}$ .

Define

$\tilde{V}(\tau_{\delta})=\{\begin{array}{l}(\oplus V^{\beta})\oplus(\oplus M_{\delta+C}\bigotimes_{M_{C}}V^{\beta}) if wt (\delta) is odd,\beta\in D^{0} \beta\in D^{1}(\bigoplus_{\beta\in D^{0}}V^{\beta})\oplus(\bigoplus_{\beta\in D^{0}}M_{\delta}+c_{M_{C}}HV^{\beta}) if wt (\delta) is even,\end{array}$

where $\mathbb{H}_{M_{C}}$ denotes the fusion product over $M_{C}$ .

Theorem 2.11 (cf. [LY]). $\tilde{V}(\tau_{\delta})$ is a holomorphic framed $VOA$ . Moreover, the
structure codes of $\tilde{V}(\tau_{\delta})$ are given by $(C, D)$ ifwt $(\delta)$ is odd and $(C\cup(\delta+C), D^{0})$

if wt $(\delta)$ is even.

2.2.2. $\sigma$ -type involutions. Next, let us consider another kind of $\mathbb{Z}_{2}$-orbifold
construction.

Let $\xi\in \mathbb{Z}_{2}^{n}\backslash D$ such that $D’=\langle D,$ $\xi\rangle$ is still triply even. Then for any
$\beta,$ $\gamma\in D$ , it is clear that wt $(\xi\cdot\beta)\equiv 0mod 4$ and wt $(\xi\cdot\beta\cdot\gamma)\equiv 0mod 2$ ,
i.e., $\xi\cdot\beta\in D^{\perp}=C$ .

Therefore, by Theorem 2.10, there exists an automorphism $g\in$ Aut(V) of
order 2 such that $g=\sigma_{\xi}$ . In this case, $g$ fixes $T$ and stabilizes each $V^{\beta}$ for
$\beta\in D$ . Let

$V^{\beta,+}=\{v\in V^{\beta}|gv=v\}$ and $V^{\beta,-}=\{v\in V^{\beta}|gv=-v\}$ .

Set $C^{0}=\{\alpha\in C|\langle\alpha, \xi\}=0\}$ and $C^{1}=\{\alpha\in C|\langle\alpha.\xi\}=1\}$ . Then
we have $V^{0,+}=\{u\in M_{C}|\sigma_{\xi}u=u\}=M_{C^{0}}$ and $V^{0,-}=M_{C^{1}}$ . Moreover,
$V^{\beta,-}=V^{\beta,+}\mathbb{H}_{M_{C^{0}}}M_{C^{1}}$ . Note also that $C=C^{0}\cup C^{1}$ and $[C:C^{0}]=2$ .
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Notation 2.12. For any $\alpha,$ $\beta\in \mathbb{Z}_{2}^{n}$ , we denote

$L_{\frac{1}{2}}( \alpha):=L(\frac{1}{2}, \frac{1}{2}\alpha_{1})\otimes\cdots\otimes L(\frac{1}{2}, \frac{1}{2}\alpha_{n})$ ,

$L_{\frac{1}{16}}( \beta):=L(\frac{1}{2}, \frac{1}{16}\beta_{1})\otimes\cdots\otimes L(\frac{1}{2}, \frac{1}{16}\beta_{n})$ .

In this notation, every irreducible T-module with $\frac{1}{16}$-word $\beta$ can be written as
$L_{\frac{1}{16}}(\beta)_{\tau}^{\ovalbox{\tt\small REJECT}}L_{\frac{1}{2}}(\gamma\cdot(1+\beta))$ for some $\gamma\in C$.

Let $U$ be an irreducible $M_{C^{0}}$ -module which contains $L_{\frac{1}{16}}(\xi)$ as a T-submodule.
Define

(2.4) $V^{T}(g)= \bigoplus_{\beta\in D}V^{\beta_{M}}\ovalbox{\tt\small REJECT}_{C^{0}}U=\bigoplus_{\beta\in D}((V^{\beta,+}\bigotimes_{M_{C^{0}}}U)\oplus(V^{\beta,-}M_{C^{0}}\mathbb{R}U))$ .

Then by [LY][Theorem 1], $V^{T}(g)$ is a g-twisted module for $V$ . Moreover,
the weights of $V^{\beta,-}\ovalbox{\tt\small REJECT}_{M_{C^{0}}}U$ are integral if wt $(\xi)\equiv 8mod 16$ and are in $\frac{1}{2}+\mathbb{Z}$

if $wt(\xi)\equiv$ Omod16.
Now let $U^{\beta}=V^{\beta,+}$ and

$U^{\xi+\beta}=\{\begin{array}{ll}V^{\beta,-}\otimes_{M_{C^{0}}}U if wt (\xi)\equiv 8 mod 16V^{\beta,+}\otimes_{M_{C^{0}}}U if wt (\xi)\equiv 0 mod 16.\end{array}$

for any $\beta\in D$

The following theorem also follows immediately from [LY][Theorem 8].

Theorem 2.13 ([LY]). Let $D’=\langle D,$ $\xi\rangle$ . Then $\tilde{V}(g)=\oplus_{\beta\in D},$ $U^{\beta}$ is a holo-
morphic framed $VOA$ . Moreover, the structure codes associated to the frame $T$

for $\tilde{V}$ are given by $(C^{0}, D’)$ .

3. $\mathbb{Z}_{4}$-CODES AND FRAMED VOAs
In this section, we shall recall a basic construction of framed VOAs from

codes over $\mathbb{Z}_{4}$ (cf. [DGH]). In fact, almost all known examples of framed
VOAs are constructed by this method.

Let $C$ be a self-orthogonal $\mathbb{Z}_{4}$-code such that the Euclidean weights of all
elements of $C$ is divisible by 8. Define

$A_{4}(C)= \frac{1}{2}\{(x_{1}, \ldots, x_{n})\in \mathbb{Z}^{n}|(x_{1}, \ldots, x_{n})\in C mod 4\}$ .

Then $A_{4}(C)$ is an even lattice. It is also well-known that $A_{4}(C)$ is unimodular if
and only if $C$ is self-dual. Note that if $C=0$ , then $A_{4}(C)=(2\mathbb{Z})^{n}\cong(\sqrt{2}A_{1})^{n}$ .

In [DMZ] and [M2], it was shown that the lattice VOA $V_{\sqrt{2}A_{1}}$ is framed and

$V_{\sqrt{2}A_{1}} \cong L(\frac{1}{2},0)\otimes L(\frac{1}{2},0)\oplus L(\frac{1}{2}, \frac{1}{2})\otimes L(\frac{1}{2}, \frac{1}{2})$

as an $L( \frac{1}{2},0)\otimes L(\frac{1}{2},0)$ -module. Hence the lattice VOA
$V_{A_{4}(C)}\supset V_{A_{4}(0)}\cong(V_{\sqrt{2}A_{1}})^{\otimes n}$
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is also framed for any self-orthogonal $\mathbb{Z}_{4}$-code $C$ .
Now let us study the structure codes for the lattice VOA $V_{A_{4}(C)}$ .

Let $C$ be a self-dual $\mathbb{Z}_{4}$ code. Denote
$C_{0}=\{(\alpha_{1}, \ldots, \alpha_{n})\in\{0,1\}^{n}|(2\alpha_{1}, \ldots, 2\alpha_{n})\in C\}$ ,
$C_{1}=\{\alpha\in\{0,1\}^{n}|\alpha\equiv\beta$ $mod 2$ for some $\beta\in C\}$ .

These codes $C_{0}$ and $C_{1}$ are called torsion and residue codes, respectively. Then
both $C_{0}$ and $C_{1}$ are even binary codes. Moreover, $C_{1}$ is doubly even and
$C_{0}=C_{1}^{\perp}$ .

Now let us define three linear maps $d$ : $\mathbb{Z}_{2}^{n}arrow \mathbb{Z}_{2}^{2n},$ $\ell$ : $\mathbb{Z}_{2}^{n}arrow \mathbb{Z}_{2}^{2n}$ and
$r:\mathbb{Z}_{2}^{n}arrow \mathbb{Z}_{2}^{2n}$ such that

$d(a_{1}, a_{2}, \ldots, a_{n})=(a_{1}, a_{1}, a_{2}, a_{2}, \ldots, a_{n}, a_{n})$ ,

(3.1) $\ell(a_{1}, a_{2}, \ldots, a_{n})=(a_{1},0, a_{2},0, \ldots, a_{n}, 0)$ ,
$r(a_{1}, a_{2}, \ldots, a_{n})=(0, a_{1},0, a_{2}, \ldots, 0, a_{n})$ ,

for any $(a_{1}, a_{2}, \ldots, a_{n})\in \mathbb{Z}_{2}^{n}$ .

Proposition 3.1 (cf. [DGH]). Let $C$ be a self-dual $\mathbb{Z}_{4}$ -code and $C_{0}$ and $C_{1}$

defined as abovc. Then the structure codes of the lattice $VOAV_{A_{4}(C)}$ are given
$by$

$D=d(C_{1})$ and $C=D^{\perp}=\langle H,$ $\ell(C_{0})\}$ ,

where $H=d(\mathbb{Z}_{2}^{n})=$ $\{$ (00), (11) $\}^{n}$ and $\langle H,$ $\ell(C_{0})\rangle$ is the code generated by $H$

and $\ell(C_{0})$ .

Now set $\xi=$ (1010. . . 10). Then for any $\beta=d(\alpha)\in d(C_{1})=D$ , we have

$\xi\cdot\beta=\ell(\alpha)\in\ell(C_{1})\subset\ell(C_{0})\subset C$ and $wt(\xi\cdot\beta)\equiv 0$ mod4.

Therefore, by Theorem 2.10, there exists an automorphism $g\in$ Aut $(V_{A_{4}(C)})$

of order 2 such that $g=\sigma_{\xi}$ . In fact, $g$ is conjugate to the automorphism $\theta$ ,
which is the lift of the (-l)-map on the lattice $A_{4}(C)$ , since $\sigma_{\xi}$ acts as $-1$ on
the weight one subspace of $M_{H}$ , which generates the Heisenberg sub VOA in
$V_{A_{4}(C)}$ . (cf. [DGH, FLM])

By Theorem 2.13, we can construct the g-orbifold VOA $\tilde{V}_{A_{4}(C)}(g)=\oplus_{\beta\in D’}U^{\beta}$ .

Theorem 3.2 ([LY]). $\tilde{V}_{A_{4}(C)}$ is a holomorphic framed $VOA$ . Moreover, the
structure codes associated to the frame $T$ for $\tilde{V}_{A_{4}(C)}$ are given by $(C^{0}, D’)$ .

Definition 3.3. Let $C$ be a binary code of length $n$ . We shall define

$D(C)=\langle d(C),$ (10) $\rangle$

to be the code generated by $d(C)$ and (10) . We call the code $D(C)$ the
extended doubling (or simply the doubling) of $C$ .

Remark 3.4. By the discussion above, for a given Type II $\mathbb{Z}_{4}$-code $C$ , one can
construct a framed VOA $\tilde{V}_{A_{4}(C)}$ whose $\frac{1}{16}$-code is given by $D(C)$ .
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4. AN EXCEPTIONAL $[$48, 9$]$ TRIPLY EVEN CODE

In this section, we shall recall the properties of the exceptional [48, 9] code
constructed by [BM], which is not equivalent to any doublings.

4.1. Triangular graph. Let $X=\{1,2, \ldots, 10\}$ be a set of 10 elements and
let

$\Omega:=(\begin{array}{l}X2\end{array})=\{\{i,j\}|\{i, j\}\subset X\}$

be the set of a112-element subset of $X$ . Then $|\Omega|=(\begin{array}{l}l02\end{array})=45$ .
The triangular graph on $X$ is a graph whose vertex set is $\Omega$ and two vertices

$S,$ $S’\in\Omega$ are joined by an edge if and only if $|S\cap S’|=1$ .
We shall denote by $T_{10}$ the binary code generated by the row vectors of the

incidence matrix of the triangular graph on $X$ .

Remark 4.1. Note that the entries of an incidence matrix are either $0$ or 1 and
we shall view $0$ and 1 as integers modulo 2.

For $\{i,j\}\in\Omega$ , let $\gamma_{\{i,j\}}$ be the binary word supported at $\{\{k, \ell\}||\{i,j\}\cap$

$\{k, \ell\}|=1\}$ , i.e., the set of all vertices joining to $\{i,j\}$ . Note that supp$(\gamma_{\{i,j\}})=$

$\{\{i, k\}, \{i, k\}|k\in X\backslash \{i,j\}\}$ and $wt(\gamma_{\{i,j\}})=16$ .

Lemma 4.2. For any $i,$ $j,$ $k,$ $\ell\in X$ , we have
(1) $\gamma_{\{i,j\}}+\gamma_{\{i,k\}}=\gamma\{j,k\}$ , and
(2) $wt(\gamma_{\{i,j\}}+\gamma_{\{k_{\dagger}\ell\}})=24$ if $\{i,j\}\cap\{k, \ell\}=\emptyset$ .

Lemma 4.3. Let $X=\{i_{1}, j_{1}\}\cup\{i_{2}, j_{2}\}\cup\cdots\cup\{i_{5}, j_{5}\}$ be a partition of $X$ .
Then we have $\gamma_{\{i_{1},j_{1}\}}+\gamma_{\{i_{2},j_{2}\}}+\cdots+\gamma_{\{i_{5},j_{5}\}}=0$ .

Lemma 4.4. The set $\{\gamma_{\{1,j\}}|j=2,3,4, \ldots, 9\}$ is a basis of $T_{10}$ . In particular,
$\dim T_{10}=8$ .

Now let $\iota$ : $\mathbb{Z}_{2}^{45}arrow \mathbb{Z}_{2}^{48}$ be defined by $\iota(\alpha)=(\alpha, 0,0,0)$ . Then we can embed
$T_{10}$ into $\mathbb{Z}_{2}^{48}$ using $\iota$ .

Definition 4.5. We shall denote by $D^{ex}$ the binary code generated by $\iota(T_{10})$

and the all-one vector 1 in $\mathbb{Z}_{2}^{48}$ . Clearly, $\dim D^{ex}=9$ .

Theorem 4.6 (cf. [BM]). The binary code $D^{ex}$ is a maximal triply even code
of length 48, that means, it is not properly contained in any triply even code
of length 48. Moreover, the weight enumerator of $D^{ex}$ is given by $1+45x^{16}+$

$420x^{24}+45x^{32}+x^{48}$ .

Remark 4.7. Note that $\{\gamma_{\{i,j\}}|\{i,j\}\in\Omega\}$ is exactly the set of all weight 16
vectors in $D^{ex}$ .

Let $D^{ex}$ be the triply even code defined $iI1$ Definition 4.5 and let $C^{ex}=$

$(D^{ex})^{\perp}$ be the dual code. Then $\dim C^{ex}=39$ and the weight enumerator of
$C^{ex}$ is given by $1+6x^{2}+342x^{4}+4110x^{6}+23391x^{8}+60396x^{10}+85652x^{12}+$
$60396x^{14}+23391x^{16}+4110x^{18}+342x^{20}+6x^{22}+x^{24}$ .
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Notation 4.8. For $\alpha=(\alpha_{1}, \cdots, \alpha_{n}),$ $\beta=(\beta_{1}, \cdots, \beta_{n})\in \mathbb{Z}_{2}^{n}$ , we shall denote
by $\alpha\cdot\beta$ the coordinatewise product of $\alpha$ and $\beta$ , i.e., $\alpha\cdot\beta=(\alpha_{1}\beta_{2}, \ldots, \alpha_{n}\beta_{n})$ .
We shall also use $p_{\beta}$ to denote the natural projection of $\mathbb{Z}_{2}^{48}$ to the support of
$\beta$ , where $\beta\in \mathbb{Z}_{2}^{48}$ .

Notation 4.9. For any positive integer $n$ , let $\mathcal{E}_{n}$ be the subcode of $\mathbb{Z}_{2}^{n}$ consist-
ing of all even codewords. We also denote the extended Hamming [8,4,4] code
by $H_{8}$ and denote by $d_{16}^{+}$ the doubly even self-dual code of length 16 generated
by

$(\begin{array}{l}11110000000000000011110000000000000011110000000000000011110000000000000011110000000000000011110000000000000011l11010101010101010\end{array})$

The following two lemmas can be proved easily by direct calculation.

Lemma 4.10. Let $\beta\in D^{ex}$ with wt $(\beta)=16$ and let
$C_{\beta}=\{\alpha\in C^{ex}|supp(\alpha)\subset supp(\beta)\}$ .

Then we have
(1) $p_{\beta}(C_{\beta})\cong d_{16}^{+}$ . In particular, it is a doubly even self-dual code.
(2) $p_{1+\beta}(C^{ex})\cong \mathcal{E}_{32}$ .

Lemma 4.11. Let $\beta\in D^{ex}$ and wt $(\beta)=16$ . Let $U$ be any irreducible $M_{C^{ex-}}$

module $U$ with integral weights and $\tau(U)=\beta$ . Then we have

$U= \bigoplus_{\gamma\in C^{ex}\prime C_{\beta}}L_{\frac{1}{16}}(\beta)\bigotimes_{T}L_{\frac{1}{2}}(\gamma\cdot(1+\beta))$

as a T-submodule. In particular, $\dim U_{1}=1$ and $U_{1}\neq 0$ .

5. CONSTRUCTIONS OF VOA

In this section, we shall give an explicit construction of a VOA $V^{ex}$ , whose
$\frac{1}{16}$ -code is isomorphic to $D^{ex}$ . The method is by successive orbifoldings from
certain lattice VOAs. First, we shall find a subcode of $D^{ex}$ which is isomorphic
to a double of some doubly even code.

5.1. Subcodes of $D^{ex}$ . In this subsection, we shall study some subcodes of
$D^{ex}$ .

Notation 5.1. For any binary code $C$ and a positive integer $n$ , we denote

$C(n)=\{\alpha\in C| wt(\alpha)=n\}$ .
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Notation 5.2. Let $\lambda=(\lambda_{1}, \ldots, \lambda_{m})$ be a partition of 10. Let $X_{1},$
$\ldots,$

$X_{m}$ be
subsets of $X$ such that $X= \bigcup_{i=1}^{m}X_{i}$ and $|X_{i}|=\lambda_{i}$ for $1\leq i\leq m$ .

Set $W_{\lambda}=\{\gamma_{\{i,j\}}|\{i,j\}\subset X_{k}, 1\leq k\leq m\}$ . Then $W_{\lambda}$ and the all-one vector
$1\in \mathbb{Z}_{2}^{48}$ generates a subcode of $D^{ex}$ . We shall denote this code by $D_{[\lambda_{1},\ldots,\lambda_{m}]}$

or simply by $[\lambda_{1}, \ldots, \lambda_{m}]$ . Note that $D^{ex}=D_{[10]}=[10]$ .
We also define $C_{[\lambda_{1},\ldots,\lambda_{m}]}$ $:=(D_{[\lambda_{1},\ldots,\lambda_{m}]})^{\perp}$ and denote

$K_{[\lambda_{1},\ldots,\lambda_{m}]}=supp(D_{[\lambda_{1},\ldots,\lambda_{m}]}(16))$ and $K_{[\lambda_{1},\ldots,\lambda_{m}]}’=\Omega\backslash K_{[\lambda_{1},\ldots,\lambda_{m}]}$ .

Lemma 5.3. Let $D$ be a binary code of length $2n$ . Then $D\cong d(C)$ for some
binary code $C$ if and only if there is an involution $g\in Sym_{2n}$ which acts fixed
point free on $\{$ 1, 2, $\ldots,$

$2n\}$ but fixes $D$ pointwise.

Lemma 5.4. The subcode [4, 2, 2, 2] is isomorphic to $d(C)$ where $C$ is genemted
$by$

$(101010110101110110101110100010100101010101010110110011010010011010010000100100010100100011101011010101010000010010101001100001010011010100010000)$

and the weight enumerator of $C$ is $1+9x^{8}+44x^{12}+9x^{16}+x^{24}$ ,

Now let $C$ be a type II self-dual $\mathbb{Z}_{4}$-code such that the residue code $C_{1}=C$ .
We shall note that such a code $C$ does exist.

Lemma 5.5. For any $\alpha\in C(8)$ , we have
$|\{\beta\in C|\beta\equiv\alpha mod 2, Ewt(\beta)=8\}|=|\{\gamma\in C^{\perp}|supp(\gamma)\subset supp(\alpha)\}|=8$ ,
where $Ewt(\beta)$ denotes the Euclidean weight of $\beta$ .

Proof. Let $\mathcal{K}=\{\beta\in C|\beta\equiv\alpha mod 2, Ewt(\beta)=\mathfrak{Z}\}$ . Then for any $\beta,$ $\beta’\in \mathcal{K}$ ,
$\beta-\beta’\equiv 0mod 2$ . Thus, $\beta-\beta’\in C_{0}=C_{1}^{\perp}=C^{\perp}$ .

Since $\beta,$ $\beta’$ both have Euclidean weight 8 and $\beta\equiv\beta’\equiv\alpha mod 2$ , both $\beta$

and $\beta$
’ are supported at supp$(\alpha)$ . Hence

$\mathcal{K}=\beta_{0}+\{2\gamma|\gamma\in(C^{\perp})_{\alpha}\}$

and we have $|\mathcal{K}|=|C_{\alpha}^{\perp}|=2^{3}$ . 1

Proposition 5.6. Let $C$ be a type $\Pi$ self-dual $\mathbb{Z}_{4}$ -code such that the residue
code $C_{1}=C$ . Let

$N=A_{4}(C)= \frac{1}{2}\{(x_{1}, \ldots, x_{24})\in \mathbb{Z}^{24}|(x_{1}, \ldots, x_{24})\in C mod 4\}$ .

Then the kissing number of $N$ is 96 and thus $N$ is isometric to the Niemeier
lattice of type $A_{3}^{8}$ .

Proof. The kissing number of $N$ is equal to the number of codewords with
Euclidean weight 8. Thus, by Lemma 5.5, it is equal to

$|C(8)|\cdot 8+|C^{\perp}(2)|\cdot 4=9\cross 8+6\cross 4=96$
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as desired. 1

Theorem 5.7. There is a Virasoro frame $T$ of $V_{N(A_{3}^{8})}$ such that the 1/16-code

of $V_{N(A_{3}^{8})}$ is isomorphic to [4, 2, 2, 2].

Let $\xi_{0}=\gamma_{\{1,2\}}+\gamma_{\{3,4\}},$ $\xi_{1}=\gamma\{1,2\}$ and $\xi_{2}=\gamma\{7_{2}8\}$ . Set

$\mathcal{D}^{0}=\langle[4,2,2,2],$ $\xi_{0}\rangle,$ $\cong \mathcal{D}(C)$ ,
$\mathcal{D}^{1}=\langle \mathcal{D}^{0},$ $\xi_{1}\}\cong[6,4]$ ,
$\mathcal{D}^{2}=\langle \mathcal{D}^{1},$ $\xi_{2}\rangle\cong[10]\cong D^{ex}$ .

By Theorem 2.11, there exists holomorphic framed VOAs

$V( \mathcal{D}^{0})=\bigoplus_{l’\in \mathcal{D}^{0}}W^{\beta}\cong\tilde{V}_{N(A_{3}^{8})}$
,

$V(D_{[6,4]})=V( \mathcal{D}^{1})=\bigoplus_{\beta\in \mathcal{D}^{1}}U^{\beta}$
,

$V(D^{ex})=V( \mathcal{D}^{2})=\bigoplus_{\beta\in \mathcal{D}^{2}}V^{\beta}$

such that
$U^{\beta}=V^{\beta}\oplus V^{\beta}\otimes M_{\delta_{2}+C_{2}}$ for $\beta\in \mathcal{D}^{1}$ and

$W^{\beta}=U^{\beta}\oplus U^{\beta}\otimes M_{\delta_{1}+C^{1}}$ for $\beta\in \mathcal{D}^{0}$ ,

where $C_{0}=C_{1}\cup(\delta_{1}+C_{1})$ and $C_{1}=C_{2}\cup(\overline{\delta}_{2}+C_{2})$ .

5.2. Lie algebra structure for $V(D^{ex})_{1}$ . Next we shall determine the Lie
algebra structure for the weight one subspaces. First we shall recall a theorem
by Dong and Mason.

Theorem 5.8 (Dong-Mason). Let $V$ be a $C_{2}$ -cofinite holomorphic $VOA$ of
$CFT$ type. Suppose the central charge $c$ of $V$ is 24. Then the Lie algebm

$V_{1}$ has rank less than or equal to 24 and is either abelian (including $0$) or
semi-simple.

Now denote
$V^{ex}=V(D^{ex})= \bigoplus_{\beta\in D^{ex}}V^{\beta}$

.

For any $\beta\in D^{ex}$ with wt $(\beta)=16$ , let $v_{\beta}$ be a highest weight vector of $V^{\beta}$

such that $(v_{\beta}, v_{\beta})=1$ . Since $\dim(V_{1}^{\beta})=1,$
$v_{\beta}$ is unique up to a multiplication

$of\pm 1$ .
For $\alpha\in C^{ex}(2)$ , let $q_{\alpha}$ be a highest weight vector of $L_{\frac{1}{2}}(\alpha)$ with $(q_{\alpha}, q_{\alpha})=1$ .

Again, $q_{\alpha}$ is unique up to a multiplication of $\pm 1$ .

Proposition 5.9. The set $\{v_{\beta}|\beta\in D^{ex}(16)\}\cup\{q_{\alpha}|\alpha\in C^{ex}(2)\}$ forms a
basis for $V_{1}$ . In particular, $\dim V_{1}=48$ .
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Proof. First we shall note that $(V^{\beta})_{1}=0$ for wt $(\beta)>16$ and is spanned by $v_{\beta}$

if wt $(\beta)=16$ . Moreover, $V_{1}^{0}=(M_{C^{e}x})_{1}$ is spanned by $\{q_{\alpha} I\alpha\in C^{ex}(2)\}$ . Since
$V_{1}=\oplus_{\beta\in D}(V^{\beta})_{1}$ , we have the desired result. 1

Note that $|supp(D^{ex}(16))|=45,$ $|supp(C^{ex}(2))|=3$ , and

supp$(D^{ex}(16))\cap supp(C^{ex}(2))=\emptyset$ .

Therefore, for any $\beta\in D^{ex}(16)$ and $\alpha\in C^{ex}(2)$ , we have
$(q_{\alpha})_{0}v_{\beta}=0$ ,

since $M_{\alpha}\otimes_{T}L_{\frac{1}{16}}(\beta)$ has the minimal weight $>\neq 1$ .
Now let $\mathfrak{g}_{1}=span\{v_{\beta}|\beta\in D^{ex}(16)\}$ and $\mathfrak{g}_{2}=span\{q_{\alpha}|\alpha\in C^{ex}(2)\}$ .

Lemma 5.10. The Lie algebm $\mathfrak{g}_{1}$ commutes with $\mathfrak{g}_{2}$ and hence $V_{1}^{ex}\cong \mathfrak{g}_{1}\oplus \mathfrak{g}_{2}$ .

By the fusion rules, it is easy to verify the following two lemmas.

Lemma 5.11. For $\alpha,$ $\alpha’\in C^{ex}(2)$ , we have

$(q_{\alpha})_{0}(q_{0’})=\{\begin{array}{ll}\pm q_{\alpha+\alpha’} if wt (\alpha+\alpha’)=2,0 if wt (\alpha+\alpha’)\neq 2.\end{array}$

Lemma 5.12. Let $\beta,$ $\beta’\in D^{ex}(16)$ . Then we have

$(v_{\beta})_{0}(v_{\beta’})=\{\begin{array}{ll}\pm v_{\beta+\beta’} if|\beta\cap\beta’|=8,0 if|\beta\cap\beta’|=4 or 16.\end{array}$

In particular, $span\{v_{\beta}|\beta\in D^{ex}(16)\}$ forms a Lie subalgebm for $V_{1}$ .

Lemma 5.13. The Lie subalgebm $\mathfrak{g}_{2}$ genemted by $\{q_{\alpha}|\alpha\in C^{ex}(2)\}$ is iso-
morphic to $sl_{2}(\mathbb{C})$ .

Proof. Since $\dim \mathfrak{g}_{2}=3$ and $\mathfrak{g}_{2}$ has no non-trivial ideals, it is clear that
$\mathfrak{g}_{2}\cong 1$

$sl_{2}(\mathbb{C})$ .
Lemma 5.14. Let $\beta_{1}=\gamma_{\{1,6\}},$ $\beta_{2}=\gamma_{\{2,7\}},$ $\beta_{3}=\gamma_{\{3,8\}},$ $\beta_{4}=\gamma_{\{4,9\}},$ $\beta_{5}=\gamma_{\{5,10\}}$

and let $\mathfrak{h}=span\{v_{\beta_{1}}, \ldots, v_{\beta_{5}}\}$ . Then $\mathfrak{h}$ is a maximal abelian subalgebm of
$\mathfrak{g}_{1}=span\{v_{\beta}|\beta\in D^{ex}(16)\}$ .

Proof. By Lemma 5.12, it is clear that $\mathfrak{h}$ is abelian. Let $u= \sum_{\beta}a_{\beta}v_{\beta}\in \mathfrak{g}_{1}$

such that $[\mathfrak{h}, u]=0$ . Then

$(v_{\beta_{i}})_{0}u= \sum_{|\alpha\cap\beta_{i}|=1}a_{\alpha}v_{\alpha}=0$
for all $i=1,2,3,4,5$ .

It implies that $a_{\alpha}=0$ unless $\alpha=\beta_{1},$ $\cdots,$
$\beta_{5}$ and hence $u\in \mathfrak{h}$ . 1

Theorem 5.15. The Lie algebm $\mathfrak{g}_{1}$ spanned by $\{v_{\beta}|\beta\in D^{ex}(16)\}$ is isomor-
phic to $o_{10}(\mathbb{C})$ , i. e., of the type $D_{5}\cdot$ .

Pmof. Since $\mathfrak{g}_{1}$ is semi-simple, has rank 5 and $\dim \mathfrak{g}_{1}=45$ , the only possibility
is $o_{10}(\mathbb{C})$ . 1

Theorem 5.16. The Lie algebm $V_{1}^{ex}$ is isomorphic to $sl_{2}(\mathbb{C})\oplus o_{10}(\mathbb{C})$ , i. e., of
the type $A_{1}D_{5}$ .
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