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On applications of the cellular algebras

Nobuharu Sawada,

Department of Mathematics
Tokyo University of Science

ABSTRACT. In this report we explain briefly the results of parts of papers [SawS]
and [Sa).

1. CELLULAR ALGEBRAS

1.1. Cellular bases. We begin with the definition of a cellular basis.

Let R be a commutative domain with 1 and A an associative unital R-algebra
which is free as an R-module. Suppose that (A, >) is a (finite) posct and that for each
A € A there is a finite indexing set 7()) and elements c), € A for all 5,t € 7()) such
that

€ ={ch|r€Aands, te T(\)}
is a (free) basis of A. For each A € A let A* be the R-submodule of A with basis
{co |l t€A, n>X and u,0 € T(u)}.
The pair (¥, A) is cellular basis of A if

(i) the R-linear map * : A — A determined by ¢)\" = ¢}, for all A € A and all s
and t in 7()), is an algebra anti-isomorphism of A,
(ii) forany A € A, t € 7()) and a € A there exist 7, € IR such that for all s € 7()\)

(1.1) cha = Z ToCa, mod A*.
vET(N)

If A has a cellular basis we say that A is a cellular algebra.

Throughout this section we assume that (%, A) is a fixed cellular basis of the
algebra A.

For A € A let A* be the R-module with basis the set of ¢, where u € A, u > X
and u,v € 7 (u). Thus, A* € A* and A*/A* has basis ¢}, + A* where s,t € T(\).

Lemma 1.2 (cf. [Ma, Lemma 2.3]). Let A be an element of A.
(i) Suppose that s € T(A) and a € A. Then for all t € T())

* A A AN
a*cy = E rucy, mod A
ue7T ()

where 7, is the element of R determined by (1.1) for each u.

(ii) The R-modules A* and A* are two-sided ideals of A.

(iii) Suppose that s and t are elements of T()\). Then there exists an element 4 of
R such that for any u,o € T())

A X — A A\
CusCly = TstCh, mod A7,
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Fix an element A of A. If s € 7(\) define C2 to be the R-submodule of A*/A* with
basis {c) + A* | t € T(\)}. Then C? is a right A-module by (1.1) and, importantly,
the action of A on C2 is completely independent of 5. That is, C} = C) for any
s,t € T()\). This motivates us to define the right cell module C* to be the right
A-module which is free as an R-module with basis {c} | t € 7(\)} and where for each
a€A

(1.2) cra = Z ToCp

vET (M)

where 7, is the element of R determined by (1. 1) Then C* = C2, for any s € 7()\), via
the canonical R-linear map which sends ¢} to ¢} + A* for all t € T(\). In particular,
(1.2) determines a well-defined action of A on o

Abusing notation, define the left cell module C** to be the free R-module with
basis {c} | t € T(\)} and A-action given by

a*c} = E ToCo

veT (A)

for all a € A and where, once again, 7, is given by (1.1). Then C** is a left A-module
and C** = Hompg(C*, R).
Moreover, as (A, A)-bimodules, A*/A* and C** ® C* are canonically isomorphic
via the R-linear map determined by ¢} + A* — ¢} ® ¢} for all s and t in T ().
Furthermore, as a right A-module,

(1.3) AR =cP e = @ C

s€T (N)

So, as a right A-module, A*/A”* is isomorphic to a direct sum of |7(\)| copies of C*.
By Lemma 1.2 (iii) there is a unique bilinear map { ; ) : C* x C* — R such that

(e}, ct), for s,t € T(N), is given by

(1.4) (), )ty = chyeh mod AN

where u and v are any elements of 7(\). The bilinear form ( , ) is both symmetric

and associative.

Let rad C* = {z € C* | (z,y) = 0 for all y € C*}. One can see that rad C* is an
A-submodule of C?. Accordingly, we define D* = C*/rad C*.

1.2. Simple modules in a cellular algebra. We are almost ready to show that
every irreducible A-module is isomorphic to D*, for some i € A. In this section we
also define and describe the decomposition matrix of A. Throughout, we assume that
the poset A is finite. Thus A is a finite dimensional algebra.

One of the main points of the cellular basis is that it gives rise to many filtrations
in A. To formalize this, call a subset I' of A a posct ideal if A € ' whenever A > p
for some p € T'. If I' is a poset ideal let A(I') be the R-submodule of A with basis
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{cho | p € T and u,0 € T(p)}. Then A(T') = > . A*. So A(T) is a two-sided ideal
by Lemma 1.2 (ii).

Lemma 1.3 (cf. [Ma, Lemma 2.14]). Suppose that A is finite and let § = To C 'y C
.. C Tx = A be any mazimal chain of ideals in A. Then there exists a total ordering
g1, ..., pk of A such that Ty = {u1,..., i}, for alli, and

0=A(ly) — A(l1) > - = A(Tx) = A
is a filtration of A with composition factors A(I';)/A(Iioq) = C* @p CH.
Let Ag = {jt € A | D* # 0}. Then i € Ao if and only if the bilinear form (, )

on C* is non-zero. In principle, the next theorem classifies the simple A-modules.
However, in practice, it is often difficult to determine the set Ao.

Theorem 1.4 (Graham-Lehrer). Suppose that R is a field and that A is finite. Then
{D* | u € Ao} is a complete set of pairwise inequivalent irreducible A-modules.

Suppose that € Ag and A € A. Definc dy, = [C* : D¥] to be the decomposition
number (or composition multiplicity) of the irreducible module D* in C*. By the
Jordan-Holder Theorem, d,, is well-defined. The matrix D = (d,), where A.€ A and
it € Ao, is the so-called decomposition matrix of A.

Corollary 1.5 (cf. [Ma, Corollary 2.17]). Suppose that IR is a field. Then the decom-
position matriz D of A is unitriangular. That is, if 1 € Ao and A € A then d,, =1
and dy, # 0 only if A > p.

The last result in this section connects the theory of quasi-hereditary algebras and

cellular algebras. Quasi-hereditary algebras are a very important class of algebras
which were introduced by Cline, Parshall and Scott [CPS].

Proposition 1.6 (cf. [Ma, Corollary 2.23]). Suppose that R is a field. Then the
following are equivalent.

(ii) The decomposition matriz D is a square unitriangular matriz.
Furthermore, if these conditions are satisfied then A is quasi-hereditary.

As this criterion indicates, being quasi-hereditary is a non-degeneracy property on
A.

2. PRELIMINARIES ON ARIKI-KOIKE ALGEBRAS AND CYCLOTOMIC ¢g-SCHUR
ALGEBRAS

2.1. Fix positive integers 7 and n and let &,, be the symmetric group of degree n. Let
R be an integral domain with 1 and ¢, @1, ..., Q- be elements in I?, with invertible g.
The Ariki-Koike algebra associated to the complex reflection group W, = G(r, 1,n),
is the associative unital algebra J# = 5, , over R with generators Ty, ..., T, subject
to the following conditions,

(=@ (Th —Qr) =0,

(T; —q)(T;+¢7') =0 (¢ > 2),
N1, =T 1VIZTh,
LT, =1,T; (li = 71 > 2),

T.TinT, =TinTTin (2<i<n-1).



53

It is known that % is a free R-module of rank nlr™. The subalgebra J#(6,) of
J€ generated by Ty, ..., T, is isomorphic to the Iwahori-Hecke algebra 7, of the
symmetric group &,,.

For i = 2,...,n let s; be the transposition (i — 1,7) in &,.Then {s;,...,s,}
generate &,. For w € &, we set T, = T;, ---T;, where w = s;, ---s;, is a reduced
expression. Then T,, is independent of the choice of a reduced expression. We also
put Ly = Ty -- - ToyTYTp--- Ty for k = 1,2,...,n. Note that all Ly,..., L, commutes.
Moreover, these elements produce a basis of J2°.

Theorem 2.2 ([AK, Theorem 3.10]). The Ariki-Koike algebra 5 is free as an R-
module with basis {L$* - LT, |w € &, 0 < a; <7 for 1 <i<n}.

Recall that a composition of n is sequence ¢ = (03,032, .. .) of non- negative integers

such that o] = Y, 0; = n. ¢ is a partition if in addition 0y > 09 > ---. If 0; =0 for
all 4 > k then we write o = (01,...,0%).
- An r-composition (or multlcomposmon) of n is an r- tuple A= (A )

of compositions with A® = (A, AP ) such that |AW| + .- + |AD| = n. An r-
composition A is an r-partition if each 2@ is a partition. If A is an r-partition of
n then we write A - n. The diagram [A] of the r-composition A is the set [A] =
{(i,7,8) | 1 <3 < /\(3) 1 < s < r}. The elements of [A] are called nodes. The
set of r-compositions of n is partially ordered by dominance, i.e, if A and s are two
r-compositions then A dominates u, and we write A & pu, if

s—1 1 s-1 i
S 31 S+ S

for 1 < s < r and for all i > 1. If A\> u and A # p then we write A > p.
If X is an r-composition let &) = &,u) x - -+ X &, be the corresponding Young
subgroup of G,,. Set

A= Z ql(w)Twa uj{ = HI:[(LIC - Qs)

weES) s=2k=1

where a; = |AD| + -+ |]AED| for 2 < s < r. If s = 1 then we set a; = 0. Set
my = zaul = ufzy and define M* to be the right ideal M* = m,s¢ of .

For any r-composition p, a p-tableau t = (1), ... t() is a bijection t : [u] —
{1,2,...,n}, where t) is a tableau of Shape(t®) = p®. We write Shape(t) = pu if
tis a p- tableau A p-tableau t is called standard (resp. row standard) if all t@ are
standard (resp. row standard). Let Std(\) be the set of standard A-tableaux.

For each r-composition i, let t* be the pi-tableau with the numbers 1,2,...,n
attached in order from left to right along its rows and from top to bottom, and from
1M to (. If tis any row standard u-tableau let d(t) € &, be the unique permutation
such that t = t*d(t). Furthermore, let * : 5# — 5 be the anti-isomorphism given by
Tr =T, fori=1,2,...,n, and set mg = Tj(s)m,\Td(t).

Theorem 2.3 ([DJM, Theorem 3.26]). The Ariki-Koike algebra 5& is free as an IR-
module with cellular basis {ms | 5,t € Std(A\) for some A n}.
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2.4. We can now give a definition of the cyclotomic g-Schur algebras. A set A of
r-compositions of n is saturated if A is finite and whenever ) is an r-partition such
that A > u for some u € A then A € A. If A is a saturated set of r-compositions, we
denote by A* be the set of r-partitions in A.

Definition 2.5. Suppose that A is a saturated set of multicompositions of n. The
cyclotomic q-Schur algebra with weight poset A is the endomorphism algebra

S(A) = End(M(A)), where M(A) = EHM*.

AEA

Let A be an r-partition and g an r-composition. A A-Tableau of type u is a map
T:[MN— {(Gs)|i>1,1<s<r} such that ugs) =f#{z € [A\] | T'(z) = (¢, s)} for all
i>1land 1 <s<r. Weregard T as an r-tuple T' = (T, ..., TM), where T is
the A®)-tableau with 7% (i, j) = T'(4, 3, s) for all (i, 4, s) € [A]. In this way we identify
the standard tableaux above with the Tableaux of type w = ((0),...,(1")). If T is a.
Tableau of type u then we write Type(T') = pu.

Given two pairs (7,s) and (j,t) write (i,s) < (j,t) if either s < ¢, or s = t and
i <j.

Definition 2.6. A Tableau T is (row) semistandard if, for 1 <t < r, the entries in
T® are

(1) weakly increasing along the rows with respect to <,

(ii) strictly increasing down columns,

(iii) (i, s) appears in T™ only if s > t.

Let 7o(A, 1) be the set of semistandard A-Tableaux of type p and let To(A\) =
TM(X) = Upen To(A, ). Notice that if Zo(A, 1) is non-empty, then A & p.

Suppose that t is a standard A-tableau and let u be an r-composition. Let u(t) be
the Tableau obtained from t by replacing each entry j with (7, k) if j appears in row 2
of (t*)*¥). The tableau u(t) is a A-Tableau of type u. It is not necessarily semistandard.
If S and T are semistandard A-Tableaux of type p and v respectively, let

mer = S g,

s,teStd(\)
u(s)=S, v()=T

For S and T as abovc we define a map psr on M(A) by psr(mah) = damsrh,
for all h € 5# and all @ € A. Here 64, is the Kronecker delta, i.e, do = 1 if a = v
and it is zero otherwise. Then pgr is well-defined, and it belongs to S(A). Moreover,

Theorem 2.7 ([DJM, Theorem 6.6]). The cyclotomic q-Schur algebra S(A) is free as
an R-module with cellular basis C(A) = {psr | S,T € T5*()\) for some X € A*}.

The basis {psr} is called a semistandard basis of S(A). Since this basis is cellular,
the map * : S(A) — S(A) which is determined by %, = ¢rs is an anti-automorphism
of S(A). This involution is closely related to the x-involution on s#. Explicitly,
if p : M” — M*" is an J€-module homomorphism then ¢* : M* — MY is the
homomorphism given by ¢*(m,h) = (p(m,))*h, for all h € 2.

For each r-partition A € A+, we define S¥V* = SY(A)* as the R-span of pgr such
that S, T € 75*(a) with a > A, which is a two-sided ideal of S(A). We define the Weyl
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module W?* by the right S(A)-submodule of S(A)/SV(A)* generated by the image
©x = prapx € S(A) where T* = A\(t}). For each T € 7*()), let or be the image of
@pap in W2, Then the Weyl module W is R-free with basis {7 | T € 7*(A)}. Asin
the case of Specht modules there is an inner product on W?* which is determined by

ersprr = (@s, er)erars  mod SV,

Let radW* = {z € W* | (z,y) = Oforally € W?}. The quotient module
L* = W*/radW? is absolutely irreducible and {L* | A € A*} is a complete set of
non-isomorphic irreducible S(A)-modules.

2.8. For an r-composition u, we define the type a = a(i) of 1 by @ = (ng,...,n,)
with n; = ||, and the size of p by n = Y ;_ n;. We also define a sequence a =
a(p) = (a1, .. .,a.). (Recall that a; = S_1 % [u®] = S5h2) ny.)

We define a partial order > on the set Z%, by a > a’ for a = (a;,...,a,), a' =
(al,...,al) € Z%, if a; > a! for any i. We write a > a’ if a > a’ and a # a’. It is clear
that -

(2.1) If A\ p, then a(X) > a(u) for r-compositions A, p.

Hence if To(), 1) is non-empty, then A > u, and so we have a(A) > a(u).

For any r-partition A and r-composition x, we define a subset 7,7 (), 1) of To(), )
by

T () = {S € To(A 1) | a() = a(u)}.

Note that the condition a()\) = a(u) is equivalent to a(A\) = a(u). Take S € T35 (), u).
Then one can check that S € 75t(A, u) if and only if each entry of S is of the
form (i, k) for some i. Hence in this case S*) can be identified with a semistandard
Ak)_Tableau of type u*) under the usual definition of the semistandard Tableaux for
1-partitions A¥) and 1-compositions p(*). It follows that we have a bijection

76+()‘) ,LL) = 76()‘(1)’/-1'(1)) XX %(A(T)ﬂ u(’r))

via § « (S, ..., SM). Moreover, if s € Std()\) is such that u(s) = S with S €

7o (A, 1), then the entries of i-th component of s consist of numbers a; + 1, ..., a4
for a(A\) = (a1,...,a,). In particular, d(s) € &, for a = a()).
Fix an r-tuple m = (m,, ..., m,) of non-negative integers. Then, an r-composition

= (O, p®y with p® = (&9,... . u5)) € 2T is called an (r, m)-composition,
and (r, m)-partition is defined similarly. We denote by ﬁn,r = ﬁn,r(m) (resp. Pn, =
Pn(m)) the set of (r, m)-compositions (resp. (r, m)-partitions) of size n. (Note that
Pn(m) are naturally identified with cach other for any m such that m; > n. However,
73n,r depends on the choice of m.) Finally, let

Co(A) = AU A+{<,03T eCAN)| SeTohn), T e Ty(\v),
o a(A) > a(w) if a(w) # a(v))

and we define S°(A) as the R-submodule of S(A) with basis CO(A).
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3. THE STANDARD BASIS FOR S%(A)

3.1. First, we prepare some notation. Let
2= (A" x{0,1})\ {(\,1) | To(M ) =0 for any i € A such that a(\) > a(u)}

and we define a partial order (A, &) > (A2,€2) on 2 by (A1, €1) > (A2, €2) if A D> Ao,
or A\ = Ay and €; > 5. For a (), €) € §2, we define index scts I(A, €), J(A, €) by

T (M) ife =0, 755 (N ife =0,
I(A\e) = i Ag) =
(A €) U To(X, 1) ife=1, T €) { To(N) ife=1,

BEA, a(A)>a(p)

where 75" (A) = U .en 57 (A, ). Then I(X,e) and J(),¢€) are not empty for all (A, ) €
£2. Assume that (), €) € £2. We define a subset C°(), €) of S°(A) by

C°(\,€) = {psr | (S,T) € I(A,€) x J(\€)}.
It is easy to see that

(3.1) the union U Co(\,€) is disjoint and is equal to the set C°(A).
(re)en

3.2. For any (A e) € §2, we define by S(\,/(A'E) = S°A)(> (A g)) the R-submodule of
S%(A) spanned by @yy where (U, V) € I(N,€') x J(X,¢') for some (X, &') € §2 with
(XN,€') > (M ¢€). Note that S°(A)NSY* = Sy*" for every A € A*. Similarly, we
define S°(A)(> (), €)) as the R-submodule spanned by pyy with (X, €') > (A,g). We
can now state.

Theorem 3.1. The subalgebra S°(A) is standardly based (in the sense of [DR]) on
(£2,>) with standard basis C°(A), that is,
(i) The union |J C°(\, €)= CO(A) is disjoint and forms an R-basis for S°(A).
(Ae)en
(ii) For any p € S°(A), pst € C°(A,€), we have

w-ost = o, fs.oe(w,S) psr mod Sy
(3.2) SeIthe) . Vne)
ost o= 2. foeor(T,e) psr mod S5,

T'eT(\e)

where psir, st € CO(A) and fs .6 (0, S), foe.r(T,p) € R are independent of
T and S, respectively.

Note that the cellular algebra is a special case of the standardly based.

3.3. Next we introduce the Weyl module for S°(A). By (3.2) in Theorem 3.1, it is
easy to see that R-modules S°(A)(> (A, e)) and Sy = SOA)(> (A €)) are two-
sided ideals of S°(A). Fix a (M, e) € §2. For S € I(A €), we define the Weyl module
Z29) for S°(A) by the R-submodule of {S°(A)(> (X, €))}/{S°(A)(> (\€))} with
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basis {@sr + Sy | T € J(A,e)}. Moreover, by (3.2), we see that Zé’\’s) is the right
S9(A)-module and the action of S°(A) on Z5* is independent of the choice of S, i.e,
Zg’s) ~ Zg’:’s) for all Sy, S, € I()\,€). However, since T? is not an element in I(A,1)
for (A\,1) € {2, one should pay attention that there is no “canonical”’-Weyl module
for the case (A,1). (That is, we can not define Z%’l).) For the convenience sake let

Z00) = Z;’\A’O) and put @2 = prap + Sy for any T € J(A,0) = T3 (N).

3.4. Suppose that S,T € 7,7 ()). Then there exists an element rs7 € R such that for
any U,V € T;F()\)
Yus - prv =Tst - puv mod Sy 9.

We define a bilinear form ( , )o : Z*0) x Z*A0) — R by (%, %) = rsy. Hence
we have

(3.3) (0%, %0 - puv = pus - pry  mod Sy M,

where U and V are any elements of 7,7 ()\). It is easy to see that

(34) (5, ¢7)0 = (ws, 1) for every S,T € To" (X).
Let radZ*9) = {2 € ZXO | (z,y) = 0 for all y € Z*N},
Lemma 3.2. radZ*9 4s an S°(A)-submodule of ZX9).

We put L) = ZX0) /radZ(*0). Then we have the following.

Proposition 3.3. Suppose that R is a field, and A € A*. Then

(i) L) # 0 and

(ii) radZ*0 is the unique mazimal submodule of Z*® and L} is absolutely irre-
ducible. Moreover, the Jacobson radical of Z*®) is equal to radZ*®.

4. A RELATIONSHIP BETWEEN S”(m,n) AND S°(A)

First, we recall the definition of modified Ariki-Koike algebras and their cyclotomic
g-Schur algebras ([SawS]).

4.1. From now on, throughout this paper, we consider the following condition on
parameters @y, ..., Q, in R whenever we consider the modified Ariki-Koike algebras
(and their cyclotomic g-Schur algebras).

(4.1) Q; — Qj are invertible in R for any ¢ # j.

Let A be a square matrix of degree r whose i-j entry is given by Q;’-*l forl1 <i,5 <
r. Thus A is the Vandermonde matrix, and A = det A = HD].(Qi — @;) is invertible
by (4.1). We express the inverse of A as A™! = A™!'B with B = (hy;), and define a
polynomial F;(X) € R[X], for 1 <1 <7, by Fi(X) = 3",¢;<, hiy X771
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The modified Ariki-Koike algebra #° = (%'jfr is an associative algebra over It

with generators Ty, -- ,T, and &, ..., &, and relations

(4.2)
(Ti—q)(Ti+4q¢71)=0 (2<i<n),
&—=Q1) - (&—Q)=0 (1 <i<mn),
TTinT = TinTiTiy (2 <1< n),
ILT; = T;T; (li =31 22),
&5 = & (1<%7<n),
T;& = &1T; + A™? ; (Qe, = Qe )(q — a7 ) Fey (§5-1) Fea (&),
Ti&io = &T; — A7 3 (Qe, — Q)@ — 47 ) Fey (§5-1) Fey (€5,

c1<c2

It is known that if R = Q(3,Q;,.--,@,), the field of rational functions with
variables §, @), . . ., @,, 2" is isomorphic to J#, and it gives an alternate presentation
of 5 apart from 2.1.

The subalgebra J#°(S,) of #” generated by Ty,...,T, is isomorphic to %,
hence it can be naturally identified with the corresponding subalgebra J#(6,) of .
Moreover, it is known by [Sh] that the set {£]* - - é5*T, |w € G,, 0 < ¢ <7 forl<
i < n} gives rise to a basis of J#°.

Let V = @,_, Vi be a free R-module, with rank V; = m;. We put m = > m;.
It is known by [SakS] that we can define a right S#-module structure on V", We
denote this representation by p : ¥ — End V®™. Note that this construction works
without the condition (4.1). Also it is shown in [Sh] that, under the assumption
(4.1), a right action of #* on V®" can be defined. We denote this representation by
o’ #" — End V®". By [Sh, Lemma 3.5], we know that Imp C Imp’.

We consider the condition

(43) my>nfori=1,---,r

Lemma 4.2 ([SawS, Lemma 1.5}). Under the conditions (4.1), (4.3), there ezists an I2-
algebra homomorphism pg : S — F° such that py induces the identity on J,. (Here
we regard €, C H, H, C H° under the previous identifications.) If Imp® = Imp and
R is a field, then J€ ~ H°.

From now on, throughout the paper, we fix an r-tuple m = (m, ..., m,) of non-
negative integers and always assume the condition (4.3) whenever we consider J¢”.
Any p € P,.(m) may be regarded as an element in P, (i.e, 1-composition) of n

by arranging the entries of ;1 = (/ly)) in order
1 2 r r
/’L:(l)7"'7ll'7()’11,2)/‘1'§_)7""uf’)’%l?"')/’l‘(l))"'7u1(’n,z’
which we denote by {u}.
For a = (ny,...,n,) € Z>o such that Y n; = n, we define c(a) by
clay=(r,...,myr=1,...,r—1,...,1,...,1)
———— ~ — ———

np-times na-times ny-times
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and let c(a) = (a1, ..., ¢,). We define F,, € by F = AF, (6)F,, (&) - F., (&).
For any p € P, ., put m’L = Fu(u - my.y where my,, = ZweG{“} ¢™T, (=x,) € 4.

We define an R-linear anti-automorphism h — h* on J#” by the condition that *
fixes the generators T; (2 < i < n) and & (1 < j < n). As discussed in [SawS, 2.7],
this condition induces a well-defined anti-automorphism on S#”. Moreover, by Lemma
2.9 in [SawS], we know that (m)* = m!,. For s,t € Std(A) with A € P,,,, we define
an element m’, € J#° by m’, = T; s)m;’LTd(t). By the above fact, we have (m®,)* = m",.
Theorem 4.3 ([SawS, Theorem 2.18]). The modified Ariki-Koike algebra " is free
as an R-module with cellular basis {m’, | 5,t € Std()) for some ) € P,,}.

Put M} = m}#" for p € Ppnr. We define a cyclotomic g-Schur algebra S*(m, n)
as follows.

Definition 4.4. The cyclotomic q-Schur algebra for #° with weight poset ’ISM is the
endomorphism algebra

S’ (m,n) = End 4 (M*(Pn,)), where M*(Py,) = @ ME.

uEﬁn,r

For an r-tuples a € P, 1, let My = D,,.0(y=o My - Then by Proposition 5.2 (i) in -

[SawS], we have $*(m, n) ~ @, 5, , End 4» M2 as R-algebras.

Theorem 4.5 ([SawS, Theorem 5.5]). Let S”(m,n) be the cyclotomic q-Schur algebra
associated to the modified Ariki-Koike algebra 5#° and S(m;,n;) be the q-Schur algebra
assoctiated to the Iwahori-Hecke algebra 5%,,. Then there exists an isomorphism of R-
algebras

S’(m, n) ~ EB S(my,ny) & - - @ S(my, Ny ).

- (n1y..n4)
n=ni+---+nr

Let u,v € ﬁn,r and A € P,,. We assume that a(y) = a(v) = a()). For S €
Tot (A, 1) and T € 75t (), v), put

Mgy = Z g AN HAO) b

s,teStd(\)
u(s)=38, v()=T

Moreover, for S € Tt (A, 1) and T € 757 (A, v), one can define Wr € S*(m, n) by
Por(mih) = 6,miyph, for all h € #* and all a € Py,

Theorem 4.6 ([SawS, Theorem 5.9]). The cyclotomic g-Schur algebra S*(m,n) is

free as an R-module with cellular basis C*(m,n) = {¢% | S, T € T;H(N), for some X €
Pnr}.

4.2. Let S°(A) be as in Section 3. We describe a relationship between the algebra

S°(A) and the cyclotomic ¢g-Schur algebra S*(m,n) in the case where A = P, .. But
in the moment, we shall consider an arbitrary A as in Section 3.
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First, let C°°(A) = {@sr | (S,T) € I(A\, 1) x J(A\, 1), A € AT} C CO(A) and S*°(A)
be the R-span of @gr € C%(A), which is an R-submodule of S°(A). We note that,
S%(A) is a two-sided ideal of S°(A) by the second and fourth formula in [Sa, Lemma
2.4]. Thus one can define the quotient algebra SO(A) = S°(A)/S®(A). We write
T =4 S®A) (z € S°%(A)). It is easy to see that SO(A) has a free R-basis {pgr |
S e I()0), T e J()0), A€ A*}. Note that the condition (S,T) € I(X,0) x J(X,0)
is nothing but S, T € 7,5 (). For A € A%, let S_ov'\ = :SEV(A)’\ be the R-submodule of
SO(A) spanned by pgp with S, T € T3t (a) for various a € A* such that a > X. We
show the following.

Theorem 4.7. The algebra S°(A) has a free basis
CO(A) = {Bsr | ST € T," (M), A€ A™}

satisfying the following properties. .

(i) The R-linear map * : S°(A) — SO(A) determined by @sr = Prg, for all
S,T € 15" (M) and all X € A¥, is an anti-automorphism of S°(A).

(ii) Let T € T;"()\). Then for all g € S°(A), and any V € Ty ()), there exists
rv € IR such that

Psr P = Z rvPgy mod Sg*
VeTsh ()

for any S € 137 (X), where ry is independent of the choice of T'.

In particular, CO(A) is a cellular basis of SO(A).

In the case where S”(m, n) is defined, S°(A) can be identified with S°(m, n), i.e,
we have the following proposition. :

Proposition 4.8. Let A = P, and assume that (4.1) and (4.3) holds. Then there
exists an algebra isomorphism b : S°(A) — S*(m, n) satisfying the following. For
Bor € CO(A) such that S, T € Ty (M) and A € AT, we have (Psp)’ = Py

We now return to the general setting, and consider S9(A) for arbitrary A. The
above proposition says that the SO(A) is a natural “cover” of the S’(m, n).

For A € A*, P, = Ppaps is an element in S°(A). Hence, by the cellular theory
[GL], one can define a Weyl module Z" of SO(A) as the right S°(A)-submodule of
@(A)/S—OV/\ spanned by the image of ¥,. We denote by pr the image of Ppar in
SB(A)/ESVA. Then the set {p; | T € 7,7 (N)} is a free R-basis of Z”. Define a bilinear
form (, )g on zZ by requiring that

— — _ =VA
PrrsPrrs = (Ps, Pr)o - $a  mod So

for all S,T € 7,7(\). Let L' = Z%/radZ”, where radZ" = {z € 2" | (z,y)5 =
0 for ally € —Z_’\}. In the case where R is a ficld, by a genceral theory of cellular
algebras, the set {ZA | A € AT, 7’ # 0} gives a complete set of non-isomorphic
irreducible S°(A)-modules. Furthermore, we have the following result.
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Proposition 4.9. Suppose that R is a field. Then % # 0 for any A € At. Hence,

{f)‘ | A € A*} is a complete set of non-isomorphic irreducible SO(A)-modules. There-
fore, S°(A) is quasi-hereditary.

The following result connects the decomposition numbers in Z~ and in Z*9).

Theorem 4.10. Suppose that R is a field. Then
(i) {L§ | @ € AT, A a} is a complete set of pairwise inequivalent irreducible
S°(A)-modules occurring in the composition factors of the S°(A)-module Z*9).

(ii) For A, p € A*, we have
Z*:T" = [2™0 . LY.
(iii) For A\, p € A* such that a()) # a(p), we have
Z*: T =o0.
5. AN ESTIMATE FOR DECOMPOSITION NUMBERS

We are now ready to estimate the decomposition numbers for the cyclotomic g-
Schur algebras.

5.1. We keep the notation in Section 4, and consider the gencral A.

Theorem 5.1. Suppose that R is a field. Then, for all \,u € AT with a(X) = a(u),

(2" TH) = (209 : L¥] = W™ : LH).
5.8. We return to the setting in 4.1. Let A = 75,” under the condition-(4.1) and
(4.3). For an r-partition A € P,,, we denote by Sy* the R-submodule of S*(m,n)
spanned by ¢%; such that S,7 € 7;"(«) with @ > X\. Moreover, for an r-partition
A€ Pnyr, T € T3H(A,)), and in fact T? is the unique semistandard A-Tableau of
type A\. Moreover, t = t* is the unique element in Std(A) such that A\(t) = T?. Thus,
m‘;,ATA = mi’,\p =m}, and ¢} = goE}AT,\ is the identity map on M;}. We define the Weyl
module W as the right S°(m, n)-submodule of S*(m, n)/Sy* spanned by the image
of . For each T € 73" (), i), we denote by ¢4 the image of Y., in §(m,n)/S*.
Then we know that the Weyl module W} is R-free with basis {¢} | T € Z5"()\)}.
The Weyl module W} enjoys an associative symmetric bilinear form, defined by the
equation

PrrsPirrs = (D%, @) - 04 mod S
for all S,T € 75" (\). Let L} = W,/radW,}, where radW;} = {z € W)} | (z,y), =
0 for ally € W})}. By [SawS, Proposition 5.11], we know that, for all r-partition
A € Pn, L is an absolutely irreducible and {L} | A € P,,} is a complete set
of non-isomorphic irreducible S”(m, n)-modules. Furthermore, for \,u € Py, we
denote by [W;} : L{] the composition multiplicity of L{' in W;*. Note that the above
definition of the Weyl module W}} coincides with the definition of the Weyl module

Z" when S’(m, n) is isomorphic to S9(A) under the isomorphism b in Proposition 4.8.
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Consequently, under the isomorphism b, we have [W}} : L!] = [2* : L"] for every
A, € Prr. On the other hand, note that in the case where r = 1, the notation
for S°(m, n) coincides with the standard notation for g-Schur algebras discussed as in
[Ma, Chapter 4]. So, we use freely such a notation. For A\, € P,,, we denote by
(WA . L) (1 < 4 < r) is defined as the composition multiplicity of L*" in W
for A= (AW, ... Ay and p= (1D, .., u).

Proposition 5.2 ([SawS, Proposition 5.14)). Let A = 73,1‘,. Suppose that R is a field,
and that (4.1) and (4.3) are satisfied. Let A, p € P, .. Then under the isomorphism
mn Theorem 4.5, we have

T W,\(i) . uld) . -
lwA . Lu] — ]._L=1[ L ] 'Lf a()\) a(ﬂ')a
0 otherwise.
Corollary 5.3. Let A = 75,1,,. Suppose that R is a field, and that (4.1) and (4.3) are
satisfied. Then, for all A\, u € Pp, with a()\) = a(u), we have

(WX LH] = H[W)‘(i) . LHY).

=1
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