On applications of the cellular algebras

Nobuharu Sawada

Department of Mathematics Tokyo University of Science

ABSTRACT. In this report we explain briefly the results of parts of papers [SawS] and [Sa].

1. CELLULAR ALGEBRAS

1.1. Cellular bases. We begin with the definition of a cellular basis.

Let R be a commutative domain with 1 and A an associative unital R-algebra which is free as an R-module. Suppose that (Λ, \geq) is a (finite) poset and that for each $\lambda \in \Lambda$ there is a finite indexing set $\mathcal{T}(\lambda)$ and elements $c_{\mathfrak{st}}^{\lambda} \in A$ for all $\mathfrak{s}, \mathfrak{t} \in \mathcal{T}(\lambda)$ such that

$$\mathscr{C} = \{c_{\mathfrak{s}\mathfrak{t}}^{\lambda} \mid \lambda \in \Lambda \text{ and } \mathfrak{s}, \mathfrak{t} \in \mathcal{T}(\lambda)\}$$

is a (free) basis of A. For each $\lambda \in \Lambda$ let \check{A}^{λ} be the R-submodule of A with basis $\{c_{\mathfrak{u}\mathfrak{v}}^{\mu} \mid \mu \in \Lambda, \ \mu > \lambda \ \text{ and } \ \mathfrak{u}, \mathfrak{v} \in \mathcal{T}(\mu)\}.$

The pair (\mathcal{C}, Λ) is cellular basis of A if

- (i) the R-linear map $*: A \longrightarrow A$ determined by $c_{\mathfrak{st}}^{\lambda^*} = c_{\mathfrak{ts}}^{\lambda}$, for all $\lambda \in \Lambda$ and all \mathfrak{s} and \mathfrak{t} in $\mathcal{T}(\lambda)$, is an algebra anti-isomorphism of A,
- (ii) for any $\lambda \in \Lambda$, $\mathfrak{t} \in \mathcal{T}(\lambda)$ and $a \in A$ there exist $r_{\mathfrak{v}} \in R$ such that for all $\mathfrak{s} \in \mathcal{T}(\lambda)$

$$c_{\mathfrak{st}}^{\lambda} a \equiv \sum_{\mathfrak{v} \in \mathcal{T}(\lambda)} r_{\mathfrak{v}} c_{\mathfrak{sv}}^{\lambda} \mod \check{A}^{\lambda}.$$

If A has a cellular basis we say that A is a cellular algebra.

Throughout this section we assume that (\mathscr{C}, Λ) is a fixed cellular basis of the algebra A.

For $\lambda \in \Lambda$ let A^{λ} be the R-module with basis the set of $c_{\mathfrak{u}\mathfrak{v}}^{\mu}$ where $\mu \in \Lambda$, $\mu \geq \lambda$ and $\mathfrak{u}, \mathfrak{v} \in \mathcal{T}(\mu)$. Thus, $\check{A}^{\lambda} \subset A^{\lambda}$ and $A^{\lambda}/\check{A}^{\lambda}$ has basis $c_{\mathfrak{s}\mathfrak{t}}^{\lambda} + \check{A}^{\lambda}$ where $\mathfrak{s}, \mathfrak{t} \in \mathcal{T}(\lambda)$.

Lemma 1.2 (cf. [Ma, Lemma 2.3]). Let λ be an element of Λ .

(i) Suppose that $\mathfrak{s} \in \mathcal{T}(\lambda)$ and $a \in A$. Then for all $\mathfrak{t} \in \mathcal{T}(\lambda)$

$$a^*c^\lambda_{\mathfrak{st}} \equiv \sum_{\mathfrak{u} \in \mathcal{T}(\lambda)} r_\mathfrak{u} c^\lambda_{\mathfrak{ut}} \mod \check{A}^\lambda$$

where $r_{\mathfrak{u}}$ is the element of R determined by (1.1) for each \mathfrak{u} .

- (ii) The R-modules A^{λ} and \check{A}^{λ} are two-sided ideals of A.
- (iii) Suppose that $\mathfrak s$ and $\mathfrak t$ are elements of $\mathcal T(\lambda)$. Then there exists an element $r_{\mathfrak s\mathfrak t}$ of R such that for any $\mathfrak u,\mathfrak v\in\mathcal T(\lambda)$

$$c_{\mathsf{us}}^{\lambda} c_{\mathsf{tv}}^{\lambda} \equiv r_{\mathsf{st}} c_{\mathsf{uv}}^{\lambda} \mod \check{A}^{\lambda}.$$

Fix an element λ of Λ . If $\mathfrak{s} \in \mathcal{T}(\lambda)$ define $C_{\mathfrak{s}}^{\lambda}$ to be the R-submodule of $A^{\lambda}/\check{A}^{\lambda}$ with basis $\{c_{\mathfrak{s}\mathfrak{t}}^{\lambda} + \check{A}^{\lambda} \mid \mathfrak{t} \in \mathcal{T}(\lambda)\}$. Then $C_{\mathfrak{s}}^{\lambda}$ is a right A-module by (1.1) and, importantly, the action of A on $C_{\mathfrak{s}}^{\lambda}$ is completely independent of \mathfrak{s} . That is, $C_{\mathfrak{s}}^{\lambda} \cong C_{\mathfrak{t}}^{\lambda}$ for any $\mathfrak{s},\mathfrak{t} \in \mathcal{T}(\lambda)$. This motivates us to define the right cell module C^{λ} to be the right A-module which is free as an R-module with basis $\{c_{\mathfrak{t}}^{\lambda} \mid \mathfrak{t} \in \mathcal{T}(\lambda)\}$ and where for each $a \in A$

$$c_{\mathfrak{t}}^{\lambda}a = \sum_{\mathfrak{v}\in\mathcal{T}(\lambda)} r_{\mathfrak{v}}c_{\mathfrak{v}}^{\lambda}$$

where $r_{\mathfrak{v}}$ is the element of R determined by (1.1). Then $C^{\lambda} \cong C_{\mathfrak{s}}^{\lambda}$, for any $\mathfrak{s} \in \mathcal{T}(\lambda)$, via the canonical R-linear map which sends $c_{\mathfrak{t}}^{\lambda}$ to $c_{\mathfrak{s}\mathfrak{t}}^{\lambda} + \check{A}^{\lambda}$ for all $\mathfrak{t} \in \mathcal{T}(\lambda)$. In particular, (1.2) determines a well-defined action of A on C^{λ} .

Abusing notation, define the left cell module $C^{*\lambda}$ to be the free R-module with basis $\{c_{\mathfrak{t}}^{\lambda} \mid \mathfrak{t} \in \mathcal{T}(\lambda)\}$ and A-action given by

$$a^*c_{\mathfrak{t}}^{\lambda} = \sum_{\mathfrak{v} \in \mathcal{T}(\lambda)} r_{\mathfrak{v}} c_{\mathfrak{v}}^{\lambda}$$

for all $a \in A$ and where, once again, $r_{\mathfrak{v}}$ is given by (1.1). Then $C^{*\lambda}$ is a left A-module and $C^{*\lambda} \cong \operatorname{Hom}_R(C^{\lambda}, R)$.

Moreover, as (A, A)-bimodules, $A^{\lambda}/\check{A}^{\lambda}$ and $C^{*\lambda} \otimes_R C^{\lambda}$ are canonically isomorphic via the R-linear map determined by $c_{\mathfrak{s}\mathfrak{t}}^{\lambda} + \check{A}^{\lambda} \longmapsto c_{\mathfrak{s}}^{\lambda} \otimes c_{\mathfrak{t}}^{\lambda}$ for all \mathfrak{s} and \mathfrak{t} in $\mathcal{T}(\lambda)$.

Furthermore, as a right A-module,

(1.3)
$$A^{\lambda}/\check{A}^{\lambda} \cong C^{*\lambda} \otimes_{R} C^{\lambda} \cong \bigoplus_{\mathfrak{s} \in \mathcal{T}(\lambda)} C^{\lambda}_{\mathfrak{s}}.$$

So, as a right A-module, $A^{\lambda}/\check{A}^{\lambda}$ is isomorphic to a direct sum of $|\mathcal{T}(\lambda)|$ copies of C^{λ} . By Lemma 1.2 (iii) there is a unique bilinear map $\langle \; , \; \rangle : C^{\lambda} \times C^{\lambda} \longrightarrow R$ such that $\langle c^{\lambda}_{\mathfrak{s}}, c^{\lambda}_{\mathfrak{t}} \rangle$, for $\mathfrak{s}, \mathfrak{t} \in \mathcal{T}(\lambda)$, is given by

(1.4)
$$\langle c_{\mathfrak{s}}^{\lambda}, c_{\mathfrak{t}}^{\lambda} \rangle c_{\mathfrak{u}\mathfrak{v}}^{\lambda} \equiv c_{\mathfrak{u}\mathfrak{s}}^{\lambda} c_{\mathfrak{t}\mathfrak{v}}^{\lambda} \mod \check{A}^{\lambda},$$

where $\mathfrak u$ and $\mathfrak v$ are any elements of $\mathcal T(\lambda)$. The bilinear form $\langle \ , \ \rangle$ is both symmetric and associative.

Let rad $C^{\lambda} = \{x \in C^{\lambda} \mid \langle x, y \rangle = 0 \text{ for all } y \in C^{\lambda}\}$. One can see that rad C^{λ} is an A-submodule of C^{λ} . Accordingly, we define $D^{\lambda} = C^{\lambda}/\operatorname{rad} C^{\lambda}$.

1.2. Simple modules in a cellular algebra. We are almost ready to show that every irreducible A-module is isomorphic to D^{μ} , for some $\mu \in \Lambda$. In this section we also define and describe the decomposition matrix of A. Throughout, we assume that the poset Λ is finite. Thus A is a finite dimensional algebra.

One of the main points of the cellular basis is that it gives rise to many filtrations in A. To formalize this, call a subset Γ of Λ a poset ideal if $\lambda \in \Gamma$ whenever $\lambda > \mu$ for some $\mu \in \Gamma$. If Γ is a poset ideal let $A(\Gamma)$ be the R-submodule of A with basis

 $\{c_{\mathfrak{u}\mathfrak{v}}^{\mu} \mid \mu \in \Gamma \text{ and } \mathfrak{u}, \mathfrak{v} \in \mathcal{T}(\mu)\}$. Then $A(\Gamma) = \sum_{\mu \in \Gamma} A^{\mu}$. So $A(\Gamma)$ is a two-sided ideal by Lemma 1.2 (ii).

Lemma 1.3 (cf. [Ma, Lemma 2.14]). Suppose that Λ is finite and let $\emptyset = \Gamma_0 \subset \Gamma_1 \subset \cdots \subset \Gamma_k = \Lambda$ be any maximal chain of ideals in Λ . Then there exists a total ordering μ_1, \ldots, μ_k of Λ such that $\Gamma_i = \{\mu_1, \ldots, \mu_i\}$, for all i, and

$$0 = A(\Gamma_0) \hookrightarrow A(\Gamma_1) \hookrightarrow \cdots \hookrightarrow A(\Gamma_k) = A$$

is a filtration of A with composition factors $A(\Gamma_i)/A(\Gamma_{i-1}) \cong C^{*\mu_i} \otimes_R C^{\mu_i}$.

Let $\Lambda_0 = \{ \mu \in \Lambda \mid D^{\mu} \neq 0 \}$. Then $\mu \in \Lambda_0$ if and only if the bilinear form \langle , \rangle on C^{μ} is non-zero. In principle, the next theorem classifies the simple A-modules. However, in practice, it is often difficult to determine the set Λ_0 .

Theorem 1.4 (Graham-Lehrer). Suppose that R is a field and that Λ is finite. Then $\{D^{\mu} \mid \mu \in \Lambda_0\}$ is a complete set of pairwise inequivalent irreducible A-modules.

Suppose that $\mu \in \Lambda_0$ and $\lambda \in \Lambda$. Define $d_{\lambda\mu} = [C^{\lambda} : D^{\mu}]$ to be the decomposition number (or composition multiplicity) of the irreducible module D^{μ} in C^{λ} . By the Jordan-Hölder Theorem, $d_{\lambda\mu}$ is well-defined. The matrix $\mathbf{D} = (d_{\lambda\mu})$, where $\lambda \in \Lambda$ and $\mu \in \Lambda_0$, is the so-called decomposition matrix of A.

Corollary 1.5 (cf. [Ma, Corollary 2.17]). Suppose that R is a field. Then the decomposition matrix D of A is unitriangular. That is, if $\mu \in \Lambda_0$ and $\lambda \in \Lambda$ then $d_{\mu\mu} = 1$ and $d_{\lambda\mu} \neq 0$ only if $\lambda \geq \mu$.

The last result in this section connects the theory of quasi-hereditary algebras and cellular algebras. Quasi-hereditary algebras are a very important class of algebras which were introduced by Cline, Parshall and Scott [CPS].

Proposition 1.6 (cf. [Ma, Corollary 2.23]). Suppose that R is a field. Then the following are equivalent.

- (i) $\Lambda = \Lambda_0$.
- (ii) The decomposition matrix D is a square unitriangular matrix.

Furthermore, if these conditions are satisfied then A is quasi-hereditary.

As this criterion indicates, being quasi-hereditary is a non-degeneracy property on A.

- 2. Preliminaries on Ariki-Koike algebras and Cyclotomic q-Schur algebras
- **2.1.** Fix positive integers r and n and let \mathfrak{S}_n be the symmetric group of degree n. Let R be an integral domain with 1 and q, Q_1, \ldots, Q_r be elements in R, with invertible q. The Ariki-Koike algebra associated to the complex reflection group $W_{n,r} = G(r, 1, n)$, is the associative unital algebra $\mathscr{H} = \mathscr{H}_{n,r}$ over R with generators T_1, \ldots, T_n subject to the following conditions,

$$(T_{1} - Q_{1}) \cdots (T_{1} - Q_{r}) = 0,$$

$$(T_{i} - q)(T_{i} + q^{-1}) = 0 \qquad (i \ge 2),$$

$$T_{1}T_{2}T_{1}T_{2} = T_{2}T_{1}T_{2}T_{1},$$

$$T_{i}T_{j} = T_{j}T_{i} \qquad (|i - j| \ge 2),$$

$$T_{i}T_{i+1}T_{i} = T_{i+1}T_{i}T_{i+1} \quad (2 \le i \le n-1).$$

It is known that \mathcal{H} is a free R-module of rank $n!r^n$. The subalgebra $\mathcal{H}(\mathfrak{S}_n)$ of \mathcal{H} generated by T_2, \ldots, T_n is isomorphic to the Iwahori-Hecke algebra \mathcal{H}_n of the symmetric group \mathfrak{S}_n .

For $i=2,\ldots,n$ let s_i be the transposition (i-1,i) in \mathfrak{S}_n . Then $\{s_2,\ldots,s_n\}$ generate \mathfrak{S}_n . For $w\in\mathfrak{S}_n$, we set $T_w=T_{i_1}\cdots T_{i_k}$ where $w=s_{i_1}\cdots s_{i_k}$ is a reduced expression. Then T_w is independent of the choice of a reduced expression. We also put $L_k=T_k\cdots T_2T_1T_2\cdots T_k$ for $k=1,2,\ldots,n$. Note that all L_1,\ldots,L_n commutes. Moreover, these elements produce a basis of \mathscr{H} .

Theorem 2.2 ([AK, Theorem 3.10]). The Ariki-Koike algebra \mathcal{H} is free as an R-module with basis $\{L_1^{a_1} \cdots L_n^{a_n} T_w \mid w \in \mathfrak{S}_n, \ 0 \leq a_i < r \text{ for } 1 \leq i \leq n\}$.

Recall that a composition of n is sequence $\sigma = (\sigma_1, \sigma_2, \ldots)$ of non-negative integers such that $|\sigma| = \sum_i \sigma_i = n$. σ is a partition if in addition $\sigma_1 \geq \sigma_2 \geq \cdots$. If $\sigma_i = 0$ for all i > k then we write $\sigma = (\sigma_1, \ldots, \sigma_k)$.

An r-composition (or multicomposition) of n is an r-tuple $\lambda = (\lambda^{(1)}, \ldots, \lambda^{(r)})$ of compositions with $\lambda^{(i)} = (\lambda^{(i)}_1, \lambda^{(i)}_2, \ldots)$ such that $|\lambda^{(1)}| + \cdots + |\lambda^{(r)}| = n$. An r-composition λ is an r-partition if each $\lambda^{(i)}$ is a partition. If λ is an r-partition of n then we write $\lambda \vdash n$. The diagram $[\lambda]$ of the r-composition λ is the set $[\lambda] = \{(i,j,s) \mid 1 \leq i \leq \lambda^{(s)}_j, 1 \leq s \leq r\}$. The elements of $[\lambda]$ are called nodes. The set of r-compositions of n is partially ordered by dominance, i.e, if λ and μ are two r-compositions then λ dominates μ , and we write $\lambda \trianglerighteq \mu$, if

$$\sum_{c=1}^{s-1} |\lambda^{(c)}| + \sum_{j=1}^{i} |\lambda_j^{(s)}| \ge \sum_{c=1}^{s-1} |\mu^{(c)}| + \sum_{j=1}^{i} |\mu_j^{(s)}|$$

for $1 \le s \le r$ and for all $i \ge 1$. If $\lambda \ge \mu$ and $\lambda \ne \mu$ then we write $\lambda \triangleright \mu$.

If λ is an r-composition let $\mathfrak{S}_{\lambda} = \mathfrak{S}_{\lambda^{(1)}} \times \cdots \times \mathfrak{S}_{\lambda^{(r)}}$ be the corresponding Young subgroup of \mathfrak{S}_n . Set

$$x_{\lambda} = \sum_{w \in \mathfrak{S}_{\lambda}} q^{l(w)} T_w, \qquad u_{\lambda}^+ = \prod_{s=2}^r \prod_{k=1}^{a_s} (L_k - Q_s),$$

where $a_s = |\lambda^{(1)}| + \cdots + |\lambda^{(s-1)}|$ for $2 \le s \le r$. If s = 1 then we set $a_s = 0$. Set $m_{\lambda} = x_{\lambda}u_{\lambda}^{+} = u_{\lambda}^{+}x_{\lambda}$ and define M^{λ} to be the right ideal $M^{\lambda} = m_{\lambda}\mathcal{H}$ of \mathcal{H} .

For any r-composition μ , a μ -tableau $\mathfrak{t} = (\mathfrak{t}^{(1)}, \dots, \mathfrak{t}^{(r)})$ is a bijection $\mathfrak{t} : [\mu] \to \{1, 2, \dots, n\}$, where $\mathfrak{t}^{(i)}$ is a tableau of Shape($\mathfrak{t}^{(i)}$) = $\mu^{(i)}$. We write Shape(\mathfrak{t}) = μ if \mathfrak{t} is a μ -tableau. A μ -tableau \mathfrak{t} is called standard (resp. row standard) if all $\mathfrak{t}^{(i)}$ are standard (resp. row standard). Let $\mathrm{Std}(\lambda)$ be the set of standard λ -tableaux.

For each r-composition μ , let \mathfrak{t}^{μ} be the μ -tableau with the numbers $1, 2, \ldots, n$ attached in order from left to right along its rows and from top to bottom, and from $\mu^{(1)}$ to $\mu^{(r)}$. If \mathfrak{t} is any row standard μ -tableau let $d(\mathfrak{t}) \in \mathfrak{S}_n$ be the unique permutation such that $\mathfrak{t} = \mathfrak{t}^{\mu}d(\mathfrak{t})$. Furthermore, let $*: \mathcal{H} \to \mathcal{H}$ be the anti-isomorphism given by $T_i^* = T_i$ for $i = 1, 2, \ldots, n$, and set $m_{\mathfrak{s}\mathfrak{t}} = T_{d(\mathfrak{s})}^* m_{\lambda} T_{d(\mathfrak{t})}$.

Theorem 2.3 ([DJM, Theorem 3.26]). The Ariki-Koike algebra \mathcal{H} is free as an R-module with cellular basis $\{m_{\mathfrak{s}\mathfrak{t}} \mid \mathfrak{s}, \mathfrak{t} \in \operatorname{Std}(\lambda) \text{ for some } \lambda \vdash n\}$.

2.4. We can now give a definition of the cyclotomic q-Schur algebras. A set Λ of r-compositions of n is saturated if Λ is finite and whenever λ is an r-partition such that $\lambda \trianglerighteq \mu$ for some $\mu \in \Lambda$ then $\lambda \in \Lambda$. If Λ is a saturated set of r-compositions, we denote by Λ^+ be the set of r-partitions in Λ .

Definition 2.5. Suppose that Λ is a saturated set of multicompositions of n. The cyclotomic q-Schur algebra with weight poset Λ is the endomorphism algebra

$$\mathcal{S}(\Lambda) = \operatorname{End}_{\mathscr{H}}(M(\Lambda)), \quad \text{where } M(\Lambda) = \bigoplus_{\lambda \in \Lambda} M^{\lambda}.$$

Let λ be an r-partition and μ an r-composition. A λ -Tableau of type μ is a map $T:[\lambda] \to \{(i,s) \mid i \geq 1, \ 1 \leq s \leq r\}$ such that $\mu_i^{(s)} = \sharp \{x \in [\lambda] \mid T(x) = (i,s)\}$ for all $i \geq 1$ and $1 \leq s \leq r$. We regard T as an r-tuple $T = (T^{(1)}, \ldots, T^{(r)})$, where $T^{(s)}$ is the $\lambda^{(s)}$ -tableau with $T^{(s)}(i,j) = T(i,j,s)$ for all $(i,j,s) \in [\lambda]$. In this way we identify the standard tableaux above with the Tableaux of type $w = ((0), \ldots, (1^n))$. If T is a Tableau of type μ then we write $Type(T) = \mu$.

Given two pairs (i, s) and (j, t) write $(i, s) \leq (j, t)$ if either s < t, or s = t and $i \leq j$.

Definition 2.6. A Tableau T is (row) semistandard if, for $1 \le t \le r$, the entries in $T^{(t)}$ are

- (i) weakly increasing along the rows with respect to \leq ,
- (ii) strictly increasing down columns,
- (iii) (i, s) appears in $T^{(t)}$ only if $s \ge t$.

Let $\mathcal{T}_0(\lambda, \mu)$ be the set of semistandard λ -Tableaux of type μ and let $\mathcal{T}_0(\lambda) = \mathcal{T}_0^{\Lambda}(\lambda) = \bigcup_{\mu \in \Lambda} \mathcal{T}_0(\lambda, \mu)$. Notice that if $\mathcal{T}_0(\lambda, \mu)$ is non-empty, then $\lambda \geq \mu$.

Suppose that \mathfrak{t} is a standard λ -tableau and let μ be an r-composition. Let $\mu(\mathfrak{t})$ be the Tableau obtained from \mathfrak{t} by replacing each entry j with (i,k) if j appears in row i of $(\mathfrak{t}^{\mu})^{(k)}$. The tableau $\mu(\mathfrak{t})$ is a λ -Tableau of type μ . It is not necessarily semistandard. If S and T are semistandard λ -Tableaux of type μ and ν respectively, let

$$m_{ST} = \sum_{\substack{\mathfrak{s}, \mathfrak{t} \in \operatorname{Std}(\lambda) \\ \mu(\mathfrak{s}) = S, \ \nu(\mathfrak{t}) = T}} q^{l(d(\mathfrak{s})) + l(d(\mathfrak{t}))} m_{\mathfrak{s}\mathfrak{t}}.$$

For S and T as above we define a map φ_{ST} on $M(\Lambda)$ by $\varphi_{ST}(m_{\alpha}h) = \delta_{\alpha\nu}m_{ST}h$, for all $h \in \mathcal{H}$ and all $\alpha \in \Lambda$. Here $\delta_{\alpha\nu}$ is the Kronecker delta, i.e, $\delta_{\alpha\nu} = 1$ if $\alpha = \nu$ and it is zero otherwise. Then φ_{ST} is well-defined, and it belongs to $S(\Lambda)$. Moreover,

Theorem 2.7 ([DJM, Theorem 6.6]). The cyclotomic q-Schur algebra $S(\Lambda)$ is free as an R-module with cellular basis $C(\Lambda) = \{\varphi_{ST} \mid S, T \in \mathcal{T}_0^{\Lambda}(\lambda) \text{ for some } \lambda \in \Lambda^+\}.$

The basis $\{\varphi_{ST}\}$ is called a semistandard basis of $\mathcal{S}(\Lambda)$. Since this basis is cellular, the map $*: \mathcal{S}(\Lambda) \to \mathcal{S}(\Lambda)$ which is determined by $\varphi_{ST}^* = \varphi_{TS}$ is an anti-automorphism of $\mathcal{S}(\Lambda)$. This involution is closely related to the *-involution on \mathcal{H} . Explicitly, if $\varphi: M^{\nu} \to M^{\mu}$ is an \mathcal{H} -module homomorphism then $\varphi^*: M^{\mu} \to M^{\nu}$ is the homomorphism given by $\varphi^*(m_{\mu}h) = (\varphi(m_{\nu}))^*h$, for all $h \in \mathcal{H}$.

For each r-partition $\lambda \in \Lambda^+$, we define $S^{\vee \lambda} = S^{\vee}(\Lambda)^{\lambda}$ as the R-span of φ_{ST} such that $S, T \in \mathcal{T}_0^{\Lambda}(\alpha)$ with $\alpha \rhd \lambda$, which is a two-sided ideal of $S(\Lambda)$. We define the Weyl

module W^{λ} by the right $S(\Lambda)$ -submodule of $S(\Lambda)/S^{\vee}(\Lambda)^{\lambda}$ generated by the image $\varphi_{\lambda} = \varphi_{T^{\lambda}T^{\lambda}} \in S(\Lambda)$ where $T^{\lambda} = \lambda(\mathfrak{t}^{\lambda})$. For each $T \in \mathcal{T}_{0}^{\Lambda}(\lambda)$, let φ_{T} be the image of $\varphi_{T^{\lambda}T}$ in W^{λ} . Then the Weyl module W^{λ} is R-free with basis $\{\varphi_{T} \mid T \in \mathcal{T}_{0}^{\Lambda}(\lambda)\}$. As in the case of Specht modules there is an inner product on W^{λ} which is determined by

$$\varphi_{T^{\lambda}S}\varphi_{TT^{\lambda}} \equiv \langle \varphi_S, \varphi_T \rangle \varphi_{T^{\lambda}T^{\lambda}} \mod \mathcal{S}^{\vee \lambda}.$$

Let $\operatorname{rad}W^{\lambda} = \{x \in W^{\lambda} \mid \langle x, y \rangle = 0 \text{ for all } y \in W^{\lambda}\}$. The quotient module $L^{\lambda} = W^{\lambda}/\operatorname{rad}W^{\lambda}$ is absolutely irreducible and $\{L^{\lambda} \mid \lambda \in \Lambda^{+}\}$ is a complete set of non-isomorphic irreducible $\mathcal{S}(\Lambda)$ -modules.

2.8. For an r-composition μ , we define the type $\alpha = \alpha(\mu)$ of μ by $\alpha = (n_1, \ldots, n_r)$ with $n_i = |\mu^{(i)}|$, and the size of μ by $n = \sum_{i=1}^r n_i$. We also define a sequence $\mathbf{a} = \mathbf{a}(\mu) = (a_1, \ldots, a_r)$. (Recall that $a_i = \sum_{k=1}^{i-1} |\mu^{(k)}| = \sum_{k=1}^{i-1} n_k$.)

We define a partial order \geq on the set $\mathbb{Z}_{\geq 0}^r$ by $\mathbf{a} \geq \mathbf{a}'$ for $\mathbf{a} = (a_1, \ldots, a_r)$, $\mathbf{a}' = (a_1, \ldots, a_r)$.

We define a partial order \geq on the set $\mathbb{Z}_{\geq 0}^r$ by $\mathbf{a} \geq \mathbf{a}'$ for $\mathbf{a} = (a_1, \ldots, a_r)$, $\mathbf{a}' = (a'_1, \ldots, a'_r) \in \mathbb{Z}_{\geq 0}^r$ if $a_i \geq a'_i$ for any i. We write $\mathbf{a} > \mathbf{a}'$ if $\mathbf{a} \geq \mathbf{a}'$ and $\mathbf{a} \neq \mathbf{a}'$. It is clear that

(2.1) If
$$\lambda \geq \mu$$
, then $\mathbf{a}(\lambda) \geq \mathbf{a}(\mu)$ for r-compositions λ, μ .

Hence if $\mathcal{T}_0(\lambda, \mu)$ is non-empty, then $\lambda \supseteq \mu$, and so we have $\mathbf{a}(\lambda) \ge \mathbf{a}(\mu)$.

For any r-partition λ and r-composition μ , we define a subset $\mathcal{T}_0^+(\lambda,\mu)$ of $\mathcal{T}_0(\lambda,\mu)$ by

$$\mathcal{T}_0^+(\lambda,\mu) = \{ S \in \mathcal{T}_0(\lambda,\mu) \mid \mathbf{a}(\lambda) = \mathbf{a}(\mu) \}.$$

Note that the condition $\mathbf{a}(\lambda) = \mathbf{a}(\mu)$ is equivalent to $\alpha(\lambda) = \alpha(\mu)$. Take $S \in \mathcal{T}_0^+(\lambda, \mu)$. Then one can check that $S \in \mathcal{T}_0^+(\lambda, \mu)$ if and only if each entry of $S^{(k)}$ is of the form (i,k) for some i. Hence in this case $S^{(k)}$ can be identified with a semistandard $\lambda^{(k)}$ -Tableau of type $\mu^{(k)}$ under the usual definition of the semistandard Tableaux for 1-partitions $\lambda^{(k)}$ and 1-compositions $\mu^{(k)}$. It follows that we have a bijection

$$\mathcal{T}_0^+(\lambda,\mu) \simeq \mathcal{T}_0(\lambda^{(1)},\mu^{(1)}) \times \cdots \times \mathcal{T}_0(\lambda^{(r)},\mu^{(r)})$$

via $S \leftrightarrow (S^{(1)}, \ldots, S^{(r)})$. Moreover, if $\mathfrak{s} \in \operatorname{Std}(\lambda)$ is such that $\mu(\mathfrak{s}) = S$ with $S \in \mathcal{T}_0^+(\lambda, \mu)$, then the entries of *i*-th component of \mathfrak{s} consist of numbers $a_i + 1, \ldots, a_{i+1}$ for $\mathbf{a}(\lambda) = (a_1, \ldots, a_r)$. In particular, $d(\mathfrak{s}) \in \mathfrak{S}_{\alpha}$ for $\alpha = \alpha(\lambda)$.

Fix an r-tuple $\mathbf{m} = (m_1, \ldots, m_r)$ of non-negative integers. Then, an r-composition $\mu = (\mu^{(1)}, \ldots, \mu^{(r)})$ with $\mu^{(i)} = (\mu_1^{(i)}, \ldots, \mu_{m_i}^{(i)}) \in \mathbb{Z}_{\geq 0}^{m_i}$ is called an (r, \mathbf{m}) -composition, and (r, \mathbf{m}) -partition is defined similarly. We denote by $\widetilde{\mathcal{P}}_{n,r} = \widetilde{\mathcal{P}}_{n,r}(\mathbf{m})$ (resp. $\mathcal{P}_{n,r} = \mathcal{P}_{n,r}(\mathbf{m})$) the set of (r, \mathbf{m}) -compositions (resp. (r, \mathbf{m}) -partitions) of size n. (Note that $\mathcal{P}_{n,r}(\mathbf{m})$ are naturally identified with each other for any \mathbf{m} such that $m_i \geq n$. However, $\widetilde{\mathcal{P}}_{n,r}$ depends on the choice of \mathbf{m} .) Finally, let

$$C^{0}(\Lambda) = \bigcup_{\mu,\nu \in \Lambda, \ \lambda \in \Lambda^{+}} \{ \varphi_{ST} \in C(\Lambda) \mid S \in \mathcal{T}_{0}(\lambda,\mu), \ T \in \mathcal{T}_{0}(\lambda,\nu),$$

$$\mathbf{a}(\lambda) > \mathbf{a}(\mu) \text{ if } \alpha(\mu) \neq \alpha(\nu) \}$$

and we define $S^0(\Lambda)$ as the R-submodule of $S(\Lambda)$ with basis $C^0(\Lambda)$.

- 3. THE STANDARD BASIS FOR $S^0(\Lambda)$
- **3.1.** First, we prepare some notation. Let

$$\Omega = (\Lambda^+ \times \{0,1\}) \setminus \{(\lambda,1) \mid \mathcal{T}_0(\lambda,\mu) = \emptyset \text{ for any } \mu \in \Lambda \text{ such that } \mathbf{a}(\lambda) > \mathbf{a}(\mu)\}$$

and we define a partial order $(\lambda_1, \varepsilon_1) \geq (\lambda_2, \varepsilon_2)$ on Ω by $(\lambda_1, \varepsilon_1) > (\lambda_2, \varepsilon_2)$ if $\lambda_1 \triangleright \lambda_2$, or $\lambda_1 = \lambda_2$ and $\varepsilon_1 > \varepsilon_2$. For a $(\lambda, \varepsilon) \in \Omega$, we define index sets $I(\lambda, \varepsilon)$, $J(\lambda, \varepsilon)$ by

$$I(\lambda,\varepsilon) = \begin{cases} \mathcal{T}_0^+(\lambda) & \text{if } \varepsilon = 0, \\ \bigcup_{\mu \in \Lambda, \ \mathbf{a}(\lambda) > \mathbf{a}(\mu)} \mathcal{T}_0(\lambda,\mu) & \text{if } \varepsilon = 1, \end{cases} J(\lambda,\varepsilon) = \begin{cases} \mathcal{T}_0^+(\lambda) & \text{if } \varepsilon = 0, \\ \mathcal{T}_0(\lambda) & \text{if } \varepsilon = 1, \end{cases}$$

where $\mathcal{T}_0^+(\lambda) = \bigcup_{\mu \in \Lambda} \mathcal{T}_0^+(\lambda, \mu)$. Then $I(\lambda, \varepsilon)$ and $J(\lambda, \varepsilon)$ are not empty for all $(\lambda, \varepsilon) \in \Omega$. Assume that $(\lambda, \varepsilon) \in \Omega$. We define a subset $C^0(\lambda, \varepsilon)$ of $S^0(\Lambda)$ by

$$\mathcal{C}^0(\lambda, \varepsilon) = \{ \varphi_{ST} \mid (S, T) \in I(\lambda, \varepsilon) \times J(\lambda, \varepsilon) \}.$$

It is easy to see that

- the union $\bigcup \mathcal{C}^0(\lambda, \varepsilon)$ is disjoint and is equal to the set $\mathcal{C}^0(\Lambda)$. (3.1)
- **3.2.** For any $(\lambda, \varepsilon) \in \Omega$, we define by $S_0^{\vee(\lambda,\varepsilon)} = S^0(\Lambda)(>(\lambda, \varepsilon))$ the R-submodule of $S^0(\Lambda)$ spanned by φ_{UV} where $(U,V) \in I(\lambda',\varepsilon') \times J(\lambda',\varepsilon')$ for some $(\lambda',\varepsilon') \in \Omega$ with $(\lambda',\varepsilon') > (\lambda,\varepsilon)$. Note that $S^0(\Lambda) \cap S^{\vee\lambda} = S_0^{\vee(\lambda,1)}$ for every $\lambda \in \Lambda^+$. Similarly, we define $S^0(\Lambda)(\geq (\lambda, \varepsilon))$ as the R-submodule spanned by φ_{UV} with $(\lambda', \varepsilon') \geq (\lambda, \varepsilon)$. We can now state.

Theorem 3.1. The subalgebra $S^0(\Lambda)$ is standardly based (in the sense of [DR]) on (Ω, \geq) with standard basis $C^0(\Lambda)$, that is, (i) The union $\bigcup_{(\lambda, \epsilon) \in \Omega} C^0(\lambda, \epsilon) = C^0(\Lambda)$ is disjoint and forms an R-basis for $S^0(\Lambda)$.

- (ii) For any $\varphi \in \mathcal{S}^0(\Lambda)$, $\varphi_{ST} \in \mathcal{C}^0(\lambda, \varepsilon)$, we have

(3.2)
$$\varphi \cdot \varphi_{ST} \equiv \sum_{S' \in I(\lambda, \varepsilon)} f_{S', (\lambda, \varepsilon)}(\varphi, S) \cdot \varphi_{S'T} \mod \mathcal{S}_0^{\vee(\lambda, \varepsilon)}$$
$$\varphi_{ST} \cdot \varphi \equiv \sum_{T' \in J(\lambda, \varepsilon)} f_{(\lambda, \varepsilon), T'}(T, \varphi) \cdot \varphi_{ST'} \mod \mathcal{S}_0^{\vee(\lambda, \varepsilon)},$$

where $\varphi_{S'T}, \varphi_{ST'} \in \mathcal{C}^0(\Lambda)$ and $f_{S',(\lambda,\epsilon)}(\varphi,S), f_{(\lambda,\epsilon),T'}(T,\varphi) \in R$ are independent of T and S, respectively.

Note that the cellular algebra is a special case of the standardly based.

3.3. Next we introduce the Weyl module for $S^0(\Lambda)$. By (3.2) in Theorem 3.1, it is easy to see that R-modules $S^0(\Lambda)(\geq (\lambda, \varepsilon))$ and $S_0^{\vee(\lambda, \varepsilon)} = S^0(\Lambda)(> (\lambda, \varepsilon))$ are two-sided ideals of $S^0(\Lambda)$. Fix a $(\lambda, \varepsilon) \in \Omega$. For $S \in I(\lambda, \varepsilon)$, we define the Weyl module $Z_S^{(\lambda,\varepsilon)}$ for $S^0(\Lambda)$ by the R-submodule of $\{S^0(\Lambda)(\geq (\lambda,\varepsilon))\}/\{S^0(\Lambda)(> (\lambda,\varepsilon))\}$ with basis $\{\varphi_{ST} + \mathcal{S}_0^{\vee(\lambda,\varepsilon)} \mid T \in J(\lambda,\varepsilon)\}$. Moreover, by (3.2), we see that $Z_S^{(\lambda,\varepsilon)}$ is the right $\mathcal{S}^0(\Lambda)$ -module and the action of $\mathcal{S}^0(\Lambda)$ on $Z_S^{(\lambda,\varepsilon)}$ is independent of the choice of S, i.e, $Z_{S_1}^{(\lambda,\varepsilon)} \simeq Z_{S_2}^{(\lambda,\varepsilon)}$ for all $S_1, S_2 \in I(\lambda,\varepsilon)$. However, since T^λ is not an element in $I(\lambda,1)$ for $(\lambda,1) \in \Omega$, one should pay attention that there is no "canonical"-Weyl module for the case $(\lambda,1)$. (That is, we can not define $Z_{T^\lambda}^{(\lambda,1)}$.) For the convenience sake let $Z_{T^\lambda}^{(\lambda,0)} = Z_{T^\lambda}^{(\lambda,0)}$ and put $\varphi_T^0 = \varphi_{T^\lambda T} + \mathcal{S}_0^{\vee(\lambda,\varepsilon)}$ for any $T \in J(\lambda,0) = \mathcal{T}_0^+(\lambda)$.

3.4. Suppose that $S, T \in \mathcal{T}_0^+(\lambda)$. Then there exists an element $r_{ST} \in R$ such that for any $U, V \in \mathcal{T}_0^+(\lambda)$

$$\varphi_{US} \cdot \varphi_{TV} \equiv r_{ST} \cdot \varphi_{UV} \mod \mathcal{S}_0^{\vee(\lambda,0)}.$$

We define a bilinear form $\langle \ , \ \rangle_0: Z^{(\lambda,0)} \times Z^{(\lambda,0)} \to R$ by $\langle \varphi_S^0, \varphi_T^0 \rangle_0 = r_{ST}$. Hence we have

$$(3.3) \qquad \langle \varphi_S^0, \varphi_T^0 \rangle_0 \cdot \varphi_{UV} \equiv \varphi_{US} \cdot \varphi_{TV} \mod S_0^{\vee(\lambda,0)},$$

where U and V are any elements of $\mathcal{T}_0^+(\lambda)$. It is easy to see that

(3.4)
$$\langle \varphi_S^0, \varphi_T^0 \rangle_0 = \langle \varphi_S, \varphi_T \rangle$$
 for every $S, T \in \mathcal{T}_0^+(\lambda)$.

Let $\operatorname{rad} Z^{(\lambda,0)} = \{ x \in Z^{(\lambda,0)} \mid \langle x, y \rangle_0 = 0 \text{ for all } y \in Z^{(\lambda,0)} \}.$

Lemma 3.2. rad $Z^{(\lambda,0)}$ is an $S^0(\Lambda)$ -submodule of $Z^{(\lambda,0)}$.

We put $L_0^{\lambda} = Z^{(\lambda,0)}/\text{rad}Z^{(\lambda,0)}$. Then we have the following.

Proposition 3.3. Suppose that R is a field, and $\lambda \in \Lambda^+$. Then

- (i) $L_0^{\lambda} \neq 0$ and
- (ii) $\operatorname{rad} Z^{(\lambda,0)}$ is the unique maximal submodule of $Z^{(\lambda,0)}$ and L_0^{λ} is absolutely irreducible. Moreover, the Jacobson radical of $Z^{(\lambda,0)}$ is equal to $\operatorname{rad} Z^{(\lambda,0)}$.

4. A relationship between $\mathcal{S}^{\flat}(\mathbf{m},n)$ and $\mathcal{S}^{0}(\Lambda)$

First, we recall the definition of modified Ariki-Koike algebras and their cyclotomic q-Schur algebras ([SawS]).

- **4.1.** From now on, throughout this paper, we consider the following condition on parameters Q_1, \ldots, Q_r in R whenever we consider the modified Ariki-Koike algebras (and their cyclotomic q-Schur algebras).
- (4.1) $Q_i Q_j$ are invertible in R for any $i \neq j$.

Let A be a square matrix of degree r whose i-j entry is given by Q_j^{i-1} for $1 \leq i, j \leq r$. Thus A is the Vandermonde matrix, and $\Delta = \det A = \prod_{i>j} (Q_i - Q_j)$ is invertible by (4.1). We express the inverse of A as $A^{-1} = \Delta^{-1}B$ with $B = (h_{ij})$, and define a polynomial $F_i(X) \in R[X]$, for $1 \leq i \leq r$, by $F_i(X) = \sum_{1 \leq j \leq r} h_{ij} X^{j-1}$.

The modified Ariki-Koike algebra $\mathcal{H}^{\flat} = \mathcal{H}_{n,r}^{\flat}$ is an associative algebra over R with generators T_2, \dots, T_n and ξ_1, \dots, ξ_n and relations (4.2)

$$\begin{aligned} &(T_{i}-q)(T_{i}+q^{-1})=0 & (2 \leq i \leq n), \\ &(\xi_{i}-Q_{1})\cdots(\xi_{i}-Q_{r})=0 & (1 \leq i \leq n), \\ &T_{i}T_{i+1}T_{i}=T_{i+1}T_{i}T_{i+1} & (2 \leq i \leq n), \\ &T_{i}T_{j}=T_{j}T_{i} & (|i-j| \geq 2), \\ &\xi_{i}\xi_{j}=\xi_{j}\xi_{i} & (|i-j| \geq 2), \\ &T_{j}\xi_{j}=\xi_{j-1}T_{j}+\Delta^{-2}\sum_{c_{1}< c_{2}}(Q_{c_{2}}-Q_{c_{1}})(q-q^{-1})F_{c_{1}}(\xi_{j-1})F_{c_{2}}(\xi_{j}), \\ &T_{j}\xi_{j-1}=\xi_{j}T_{j}-\Delta^{-2}\sum_{c_{1}< c_{2}}(Q_{c_{2}}-Q_{c_{1}})(q-q^{-1})F_{c_{1}}(\xi_{j-1})F_{c_{2}}(\xi_{j}), \\ &T_{j}\xi_{k}=\xi_{j}T_{j} & (k \neq j-1,j). \end{aligned}$$

It is known that if $R = \mathbb{Q}(\overline{q}, \overline{Q}_1, \dots, \overline{Q}_r)$, the field of rational functions with variables $\overline{q}, \overline{Q}_1, \dots, \overline{Q}_r$, \mathcal{H}^b is isomorphic to \mathcal{H} , and it gives an alternate presentation of \mathcal{H} apart from 2.1.

The subalgebra $\mathscr{H}^{\flat}(\mathfrak{S}_n)$ of \mathscr{H}^{\flat} generated by T_2, \ldots, T_n is isomorphic to \mathscr{H}_n , hence it can be naturally identified with the corresponding subalgebra $\mathscr{H}(\mathfrak{S}_n)$ of \mathscr{H} . Moreover, it is known by [Sh] that the set $\{\xi_1^{c_1}\cdots\xi_n^{c_n}T_w\mid w\in\mathfrak{S}_n,\ 0\leq c_i< r\ \text{for}\ 1\leq i\leq n\}$ gives rise to a basis of \mathscr{H}^{\flat} .

Let $V = \bigoplus_{i=1}^r V_i$ be a free R-module, with rank $V_i = m_i$. We put $m = \sum m_i$. It is known by [SakS] that we can define a right \mathcal{H} -module structure on $V^{\otimes n}$. We denote this representation by $\rho : \mathcal{H} \to \operatorname{End} V^{\otimes n}$. Note that this construction works without the condition (4.1). Also it is shown in [Sh] that, under the assumption (4.1), a right action of \mathcal{H}^b on $V^{\otimes n}$ can be defined. We denote this representation by $\rho^b : \mathcal{H}^b \to \operatorname{End} V^{\otimes n}$. By [Sh, Lemma 3.5], we know that $\operatorname{Im} \rho \subset \operatorname{Im} \rho^b$.

We consider the condition

$$(4.3) m_i \ge n ext{ for } i = 1, \cdots, r.$$

Lemma 4.2 ([SawS, Lemma 1.5]). Under the conditions (4.1), (4.3), there exists an R-algebra homomorphism $\rho_0 : \mathcal{H} \to \mathcal{H}^{\flat}$ such that ρ_0 induces the identity on \mathcal{H}_n . (Here we regard $\mathcal{H}_n \subset \mathcal{H}$, $\mathcal{H}_n \subset \mathcal{H}^{\flat}$ under the previous identifications.) If $\operatorname{Im} \rho^{\flat} = \operatorname{Im} \rho$ and R is a field, then $\mathcal{H} \simeq \mathcal{H}^{\flat}$.

From now on, throughout the paper, we fix an r-tuple $\mathbf{m} = (m_1, \dots, m_r)$ of non-negative integers and always assume the condition (4.3) whenever we consider \mathcal{H}^b .

Any $\mu \in \widetilde{\mathcal{P}}_{n,r}(\mathbf{m})$ may be regarded as an element in $\mathcal{P}_{n,1}$ (i.e, 1-composition) of n by arranging the entries of $\mu = (\mu_i^{(i)})$ in order

$$\mu_1^{(1)}, \dots, \mu_{m_1}^{(1)}, \mu_1^{(2)}, \dots, \mu_{m_2}^{(2)}, \dots, \mu_1^{(r)}, \dots, \mu_{m_r}^{(r)},$$

which we denote by $\{\mu\}$.

For $\alpha = (n_1, \ldots, n_r) \in \mathbb{Z}_{\geq 0}$ such that $\sum n_i = n$, we define $c(\alpha)$ by

$$c(\alpha) = (\underbrace{r, \dots, r}_{n_1\text{-times}}, \underbrace{r-1, \dots, r-1}_{n_2\text{-times}}, \dots, \underbrace{1, \dots, 1}_{n_r\text{-times}})$$

and let $c(\alpha) = (c_1, \ldots, c_n)$. We define $F_{\alpha} \in \mathcal{H}^{\flat}$ by $F_{\alpha} = \Delta^{-n} F_{c_1}(\xi_1) F_{c_2}(\xi_2) \cdots F_{c_n}(\xi_n)$. For any $\mu \in \widetilde{\mathcal{P}}_{n,r}$, put $m_{\mu}^{\flat} = F_{\alpha(\mu)} \cdot m_{\{\mu\}}$ where $m_{\{\mu\}} = \sum_{w \in \mathfrak{S}_{\{\mu\}}} q^{l(w)} T_w \ (= x_{\mu}) \in \mathscr{H}_n$.

We define an R-linear anti-automorphism $h \to h^*$ on \mathscr{H}^{\flat} by the condition that * fixes the generators T_i $(2 \leq i \leq n)$ and ξ_j $(1 \leq j \leq n)$. As discussed in [SawS, 2.7], this condition induces a well-defined anti-automorphism on \mathscr{H}^{\flat} . Moreover, by Lemma 2.9 in [SawS], we know that $(m_{\mu}^{\flat})^* = m_{\mu}^{\flat}$. For $\mathfrak{s}, \mathfrak{t} \in \mathrm{Std}(\lambda)$ with $\lambda \in \mathcal{P}_{n,r}$, we define an element $m_{\mathfrak{s}\mathfrak{t}}^{\flat} \in \mathscr{H}^{\flat}$ by $m_{\mathfrak{s}\mathfrak{t}}^{\flat} = T_{d(\mathfrak{s})}^* m_{\mu}^{\flat} T_{d(\mathfrak{t})}$. By the above fact, we have $(m_{\mathfrak{s}\mathfrak{t}}^{\flat})^* = m_{\mathfrak{t}\mathfrak{s}}^{\flat}$.

Theorem 4.3 ([SawS, Theorem 2.18]). The modified Ariki-Koike algebra \mathcal{H}^{\flat} is free as an R-module with cellular basis $\{m_{\mathfrak{s}\mathfrak{t}}^{\flat} \mid \mathfrak{s}, \mathfrak{t} \in \operatorname{Std}(\lambda) \text{ for some } \lambda \in \mathcal{P}_{n,r}\}.$

Put $M_{\flat}^{\mu} = m_{\mu}^{\flat} \mathcal{H}^{\flat}$ for $\mu \in \widetilde{\mathcal{P}}_{n,r}$. We define a cyclotomic q-Schur algebra $\mathcal{S}^{\flat}(\mathbf{m}, n)$ as follows.

Definition 4.4. The cyclotomic q-Schur algebra for \mathscr{H}^{\flat} with weight poset $\widetilde{\mathcal{P}}_{n,r}$ is the endomorphism algebra

$$\mathcal{S}^{\flat}(\mathbf{m},n) = \operatorname{End}_{\mathscr{H}^{\flat}}(M^{\flat}(\widetilde{\mathcal{P}}_{n,r})), \qquad \textit{where } M^{\flat}(\widetilde{\mathcal{P}}_{n,r}) = \bigoplus_{\mu \in \widetilde{\mathcal{P}}_{n,r}} M^{\mu}_{\flat}.$$

For an r-tuples $\alpha \in \widetilde{\mathcal{P}}_{n,1}$, let $M^{\alpha}_{\flat} = \bigoplus_{\mu;\alpha(\mu)=\alpha} M^{\mu}_{\flat}$. Then by Proposition 5.2 (i) in [SawS], we have $\mathcal{S}^{\flat}(\mathbf{m}, n) \simeq \bigoplus_{\alpha \in \widetilde{\mathcal{P}}_{n,1}} \operatorname{End}_{\mathscr{H}^{\flat}} M^{\alpha}_{\flat}$ as R-algebras.

Theorem 4.5 ([SawS, Theorem 5.5]). Let $S^{\flat}(\mathbf{m}, n)$ be the cyclotomic q-Schur algebra associated to the modified Ariki-Koike algebra \mathcal{H}^{\flat} and $S(m_i, n_i)$ be the q-Schur algebra associated to the Iwahori-Hecke algebra \mathcal{H}_{n_i} . Then there exists an isomorphism of R-algebras

$$\mathcal{S}^{\flat}(\mathbf{m},n) \simeq \bigoplus_{\substack{(n_1,\ldots,n_r)\\ n=n_1+\cdots+n_r}} \mathcal{S}(m_1,n_1) \otimes \cdots \otimes \mathcal{S}(m_r,n_r).$$

Let $\mu, \nu \in \widetilde{\mathcal{P}}_{n,r}$ and $\lambda \in \mathcal{P}_{n,r}$. We assume that $\alpha(\mu) = \alpha(\nu) = \alpha(\lambda)$. For $S \in \mathcal{T}_0^+(\lambda, \mu)$ and $T \in \mathcal{T}_0^+(\lambda, \nu)$, put

$$m_{ST}^{\flat} = \sum_{\substack{\mathfrak{s},\mathfrak{t} \in \operatorname{Std}(\lambda) \\ \mu(\mathfrak{s}) = S, \ \nu(\mathfrak{t}) = T}} q^{l(d(\mathfrak{s})) + l(d(\mathfrak{t}))} m_{\mathfrak{s}\mathfrak{t}}^{\flat}.$$

Moreover, for $S \in \mathcal{T}_0^+(\lambda, \mu)$ and $T \in \mathcal{T}_0^+(\lambda, \nu)$, one can define $\varphi_{ST}^{\flat} \in \mathcal{S}^{\flat}(\mathbf{m}, n)$ by $\varphi_{ST}^{\flat}(m_{\alpha}^{\flat}h) = \delta_{\alpha\nu}m_{ST}^{\flat}h$, for all $h \in \mathscr{H}^{\flat}$ and all $\alpha \in \widetilde{\mathcal{P}}_{n,r}$.

Theorem 4.6 ([SawS, Theorem 5.9]). The cyclotomic q-Schur algebra $S^{\flat}(\mathbf{m}, n)$ is free as an R-module with cellular basis $C^{\flat}(\mathbf{m}, n) = \{\varphi_{ST}^{\flat} \mid S, T \in \mathcal{T}_0^+(\lambda), \text{ for some } \lambda \in \mathcal{P}_{n,r}\}.$

4.2. Let $S^0(\Lambda)$ be as in Section 3. We describe a relationship between the algebra $S^0(\Lambda)$ and the cyclotomic q-Schur algebra $S^{\flat}(\mathbf{m}, n)$ in the case where $\Lambda = \widetilde{\mathcal{P}}_{n,r}$. But in the moment, we shall consider an arbitrary Λ as in Section 3.

First, let $C^{00}(\Lambda) = \{\varphi_{ST} \mid (S,T) \in I(\lambda,1) \times J(\lambda,1), \lambda \in \Lambda^+\} \subset C^0(\Lambda)$ and $S^{00}(\Lambda)$ be the R-span of $\varphi_{ST} \in C^{00}(\Lambda)$, which is an R-submodule of $S^0(\Lambda)$. We note that, $S^{00}(\Lambda)$ is a two-sided ideal of $S^0(\Lambda)$ by the second and fourth formula in [Sa, Lemma 2.4]. Thus one can define the quotient algebra $\overline{S^0}(\Lambda) = S^0(\Lambda)/S^{00}(\Lambda)$. We write $\overline{x} = x + S^{00}(\Lambda)$ ($x \in S^0(\Lambda)$). It is easy to see that $\overline{S^0}(\Lambda)$ has a free R-basis $\{\overline{\varphi}_{ST} \mid S \in I(\lambda,0), T \in J(\lambda,0), \lambda \in \Lambda^+\}$. Note that the condition $(S,T) \in I(\lambda,0) \times J(\lambda,0)$ is nothing but $S,T \in \mathcal{T}_0^+(\lambda)$. For $\lambda \in \Lambda^+$, let $\overline{S_0}^{\vee \lambda} = \overline{S_0}^{\vee}(\Lambda)^{\lambda}$ be the R-submodule of $\overline{S^0}(\Lambda)$ spanned by $\overline{\varphi}_{ST}$ with $S,T \in \mathcal{T}_0^+(\alpha)$ for various $\alpha \in \Lambda^+$ such that $\alpha \rhd \lambda$. We show the following.

Theorem 4.7. The algebra $\overline{S^0}(\Lambda)$ has a free basis

$$\overline{C^0}(\Lambda) = \{ \overline{\varphi}_{ST} \mid S, T \in \mathcal{T}_0^+(\lambda), \ \lambda \in \Lambda^+ \}$$

satisfying the following properties.

- (i) The R-linear map $*: \overline{S^0}(\Lambda) \to \overline{S^0}(\Lambda)$ determined by $\overline{\varphi}_{ST}^* = \overline{\varphi}_{TS}$, for all $S, T \in \mathcal{T}_0^+(\lambda)$ and all $\lambda \in \Lambda^+$, is an anti-automorphism of $\overline{S^0}(\Lambda)$.
- (ii) Let $T \in \mathcal{T}_0^+(\lambda)$. Then for all $\overline{\varphi} \in \overline{\mathcal{S}^0}(\Lambda)$, and any $V \in \mathcal{T}_0^+(\lambda)$, there exists $r_V \in R$ such that

$$\overline{\varphi}_{ST} \cdot \overline{\varphi} \equiv \sum_{V \in \mathcal{T}_0^+(\lambda)} r_V \overline{\varphi}_{SV} \mod \mathcal{S}_{\overline{0}}^{\vee \lambda}$$

for any $S \in \mathcal{T}_0^+(\lambda)$, where r_V is independent of the choice of T. In particular, $\overline{C^0}(\Lambda)$ is a cellular basis of $\overline{S^0}(\Lambda)$.

In the case where $S^{\flat}(\mathbf{m}, n)$ is defined, $\overline{S^0}(\Lambda)$ can be identified with $S^{\flat}(\mathbf{m}, n)$, i.e, we have the following proposition.

Proposition 4.8. Let $\Lambda = \widetilde{\mathcal{P}}_{n,r}$ and assume that (4.1) and (4.3) holds. Then there exists an algebra isomorphism $\flat : \overline{\mathcal{S}^0}(\Lambda) \to \mathcal{S}^\flat(\mathbf{m},n)$ satisfying the following. For $\overline{\varphi}_{ST} \in \overline{C^0}(\Lambda)$ such that $S, T \in \mathcal{T}_0^+(\lambda)$ and $\lambda \in \Lambda^+$, we have $(\overline{\varphi}_{ST})^\flat = \varphi_{ST}^\flat$.

We now return to the general setting, and consider $\overline{S^0}(\Lambda)$ for arbitrary Λ . The above proposition says that the $\overline{S^0}(\Lambda)$ is a natural "cover" of the $S^b(\mathbf{m}, n)$.

For $\lambda \in \Lambda^+$, $\overline{\varphi}_{\lambda} = \overline{\varphi}_{T^{\lambda}T^{\lambda}}$ is an element in $\overline{\mathcal{S}^0}(\Lambda)$. Hence, by the cellular theory [GL], one can define a Weyl module \overline{Z}^{λ} of $\overline{\mathcal{S}^0}(\Lambda)$ as the right $\overline{\mathcal{S}^0}(\Lambda)$ -submodule of $\overline{\mathcal{S}^0}(\Lambda)/\overline{\mathcal{S}_0}^{\vee \lambda}$ spanned by the image of $\overline{\varphi}_{\lambda}$. We denote by $\overline{\varphi}_T$ the image of $\overline{\varphi}_{T^{\lambda}T}$ in $\overline{\mathcal{S}^0}(\Lambda)/\overline{\mathcal{S}_0}^{\vee \lambda}$. Then the set $\{\overline{\varphi}_T \mid T \in \mathcal{T}_0^+(\lambda)\}$ is a free R-basis of \overline{Z}^{λ} . Define a bilinear form $\langle \ , \ \rangle_{\overline{0}}$ on \overline{Z}^{λ} by requiring that

$$\overline{\varphi}_{T^{\lambda}S}\overline{\varphi}_{TT^{\lambda}} \equiv \langle \overline{\varphi}_{S}, \overline{\varphi}_{T} \rangle_{\overline{0}} \cdot \overline{\varphi}_{\lambda} \mod \overline{S_{0}}^{\vee \lambda}$$

for all $S,T\in \mathcal{T}_0^+(\lambda)$. Let $\overline{L}^\lambda=\overline{Z}^\lambda/\mathrm{rad}\overline{Z}^\lambda$, where $\mathrm{rad}\overline{Z}^\lambda=\{x\in\overline{Z}^\lambda\mid\langle x,y\rangle_{\overline{0}}=0$ for all $y\in\overline{Z}^\lambda\}$. In the case where R is a field, by a general theory of cellular algebras, the set $\{\overline{L}^\lambda\mid\lambda\in\Lambda^+,\ \overline{L}^\lambda\neq0\}$ gives a complete set of non-isomorphic irreducible $\overline{\mathcal{S}^0}(\Lambda)$ -modules. Furthermore, we have the following result.

Proposition 4.9. Suppose that R is a field. Then $\overline{L}^{\lambda} \neq 0$ for any $\lambda \in \Lambda^+$. Hence, $\{\overline{L}^{\lambda} \mid \lambda \in \Lambda^+\}$ is a complete set of non-isomorphic irreducible $\overline{S^0}(\Lambda)$ -modules. Therefore, $\overline{S^0}(\Lambda)$ is quasi-hereditary.

The following result connects the decomposition numbers in \overline{Z}^{λ} and in $Z^{(\lambda,0)}$.

Theorem 4.10. Suppose that R is a field. Then

- (i) $\{L_0^{\alpha} \mid \alpha \in \Lambda^+, \lambda \trianglerighteq \alpha\}$ is a complete set of pairwise inequivalent irreducible $S^0(\Lambda)$ -modules occurring in the composition factors of the $S^0(\Lambda)$ -module $Z^{(\lambda,0)}$.
- (ii) For λ , $\mu \in \Lambda^+$, we have

$$[\overline{Z}^{\lambda}:\overline{L}^{\mu}] = [Z^{(\lambda,0)}:L_0^{\mu}].$$

(iii) For λ , $\mu \in \Lambda^+$ such that $\alpha(\lambda) \neq \alpha(\mu)$, we have

$$[\overline{Z}^{\lambda}:\overline{L}^{\mu}]=0.$$

5. AN ESTIMATE FOR DECOMPOSITION NUMBERS

We are now ready to estimate the decomposition numbers for the cyclotomic q-Schur algebras.

5.1. We keep the notation in Section 4, and consider the general Λ .

Theorem 5.1. Suppose that R is a field. Then, for all $\lambda, \mu \in \Lambda^+$ with $\alpha(\lambda) = \alpha(\mu)$,

$$[\overline{Z}^{\lambda}:\overline{L}^{\mu}]=[Z^{(\lambda,0)}:L_0^{\mu}]=[W^{\lambda}:L^{\mu}].$$

5.8. We return to the setting in 4.1. Let $\Lambda = \widetilde{\mathcal{P}}_{n,r}$ under the condition (4.1) and (4.3). For an r-partition $\lambda \in \mathcal{P}_{n,r}$, we denote by $\mathcal{S}_{\flat}^{\vee \lambda}$ the R-submodule of $\mathcal{S}^{\flat}(\mathbf{m},n)$ spanned by φ_{ST}^{\flat} such that $S, T \in \mathcal{T}_{0}^{+}(\alpha)$ with $\alpha \rhd \lambda$. Moreover, for an r-partition $\lambda \in \mathcal{P}_{n,r}$, $T^{\lambda} \in \mathcal{T}_{0}^{+}(\lambda,\lambda)$, and in fact T^{λ} is the unique semistandard λ -Tableau of type λ . Moreover, $\mathfrak{t} = \mathfrak{t}^{\lambda}$ is the unique element in $\mathrm{Std}(\lambda)$ such that $\lambda(\mathfrak{t}) = T^{\lambda}$. Thus, $m_{T^{\lambda}T^{\lambda}}^{\flat} = m_{\mathfrak{t}^{\lambda}\mathfrak{t}^{\lambda}}^{\flat} = m_{\lambda}^{\flat}$, and $\varphi_{\lambda}^{\flat} = \varphi_{T^{\lambda}T^{\lambda}}^{\flat}$ is the identity map on M_{\flat}^{λ} . We define the Weyl module W_{\flat}^{λ} as the right $\mathcal{S}^{\flat}(\mathbf{m},n)$ -submodule of $\mathcal{S}^{\flat}(\mathbf{m},n)/\mathcal{S}_{\flat}^{\vee \lambda}$ spanned by the image of $\varphi_{\lambda}^{\flat}$. For each $T \in \mathcal{T}_{0}^{+}(\lambda,\mu)$, we denote by φ_{T}^{\flat} the image of $\varphi_{T^{\lambda}T}^{\flat}$ in $\mathcal{S}^{\flat}(\mathbf{m},n)/\mathcal{S}_{\flat}^{\vee \lambda}$. Then we know that the Weyl module W_{\flat}^{λ} is R-free with basis $\{\varphi_{T}^{\flat} \mid T \in \mathcal{T}_{0}^{+}(\lambda)\}$. The Weyl module W_{\flat}^{λ} enjoys an associative symmetric bilinear form, defined by the equation

$$\varphi_{T^{\lambda}S}^{\flat}\varphi_{TT^{\lambda}}^{\flat} \equiv \langle \varphi_{S}^{\flat}, \varphi_{T}^{\flat} \rangle_{\flat} \cdot \varphi_{\lambda}^{\flat} \mod \mathcal{S}_{\flat}^{\vee \lambda}$$

for all $S, T \in \mathcal{T}_0^+(\lambda)$. Let $L_\flat^\lambda = W_\flat/\mathrm{rad}W_\flat^\lambda$, where $\mathrm{rad}W_\flat^\lambda = \{x \in W_\flat^\lambda \mid \langle x, y \rangle_\flat = 0$ for all $y \in W_\flat^\lambda\}$. By [SawS, Proposition 5.11], we know that, for all r-partition $\lambda \in \mathcal{P}_{n,r}, L_\flat^\lambda$ is an absolutely irreducible and $\{L_\flat^\lambda \mid \lambda \in \mathcal{P}_{n,r}\}$ is a complete set of non-isomorphic irreducible $\mathcal{S}^\flat(\mathbf{m},n)$ -modules. Furthermore, for $\lambda,\mu\in\mathcal{P}_{n,r}$, we denote by $[W_\flat^\lambda:L_\flat^\mu]$ the composition multiplicity of L_\flat^μ in W_\flat^λ . Note that the above definition of the Weyl module W_\flat^λ coincides with the definition of the Weyl module \overline{Z}^λ when $\mathcal{S}^\flat(\mathbf{m},n)$ is isomorphic to $\overline{\mathcal{S}^0}(\Lambda)$ under the isomorphism \flat in Proposition 4.8.

Consequently, under the isomorphism \flat , we have $[W_{\flat}^{\lambda}: L_{\flat}^{\mu}] = [\overline{Z}^{\lambda}: \overline{L}^{\mu}]$ for every $\lambda, \mu \in \mathcal{P}_{n,r}$. On the other hand, note that in the case where r = 1, the notation for $S^{\flat}(\mathbf{m}, n)$ coincides with the standard notation for q-Schur algebras discussed as in [Ma, Chapter 4]. So, we use freely such a notation. For $\lambda, \mu \in \mathcal{P}_{n,r}$, we denote by $[W^{\lambda^{(i)}}: L^{\mu^{(i)}}]$ $(1 \leq i \leq r)$ is defined as the composition multiplicity of $L^{\mu^{(i)}}$ in $W^{\lambda^{(i)}}$ for $\lambda = (\lambda^{(1)}, \ldots, \lambda^{(r)})$ and $\mu = (\mu^{(i)}, \ldots, \mu^{(r)})$.

Proposition 5.2 ([SawS, Proposition 5.14]). Let $\Lambda = \widetilde{\mathcal{P}}_{n,r}$. Suppose that R is a field, and that (4.1) and (4.3) are satisfied. Let λ , $\mu \in \mathcal{P}_{n,r}$. Then under the isomorphism in Theorem 4.5, we have

$$[W^{\lambda}:L^{\mu}] = \begin{cases} \prod_{i=1}^{r} [W^{\lambda^{(i)}}:L^{\mu^{(i)}}] & \text{if } \alpha(\lambda) = \alpha(\mu), \\ 0 & \text{otherwise.} \end{cases}$$

Corollary 5.3. Let $\Lambda = \widetilde{\mathcal{P}}_{n,r}$. Suppose that R is a field, and that (4.1) and (4.3) are satisfied. Then, for all $\lambda, \mu \in \mathcal{P}_{n,r}$ with $\alpha(\lambda) = \alpha(\mu)$, we have

$$[W^{\lambda}:L^{\mu}]=\prod_{i=1}^{r}[W^{\lambda^{(i)}}:L^{\mu^{(i)}}].$$

REFERENCES

- [AK] S. Ariki and K. Koike; A Hecke algebra of $(\mathbb{Z}/r\mathbb{Z}) \wr \mathfrak{S}_n$ and construction of its irreducible representations, Adv. Math. 106 (1994), no. 2, 216 243.
- [CPS] E. Cline, B. Parshall, and L. Scott; Finite dimensional algebras and highest weight categories, Math. Ann. **259** (1982), 153 199.
- [DJM] R. Dipper, G. James, and A. Mathas; Cyclotomic q-Schur algebras, Math. Z. 229 (1999), 385 416.
- [DR] J. Du and H. Rui; Borel Type Subalgebras of the q-Schur^m Algebra, J. Algebra **213** (1999), 567 595.
- [GL] J.J. Graham and G.I. Lehrer; Cellular algebras, Invent. Math., 123 (1996), 1 34.
- [Ma] A. Mathas; Iwahori-Hecke algebras and Schur Algebras of the symmetric group, University lecture series, Vol. 15, AMS, Providence, Rhode Island, 1999.
- [Sa] N. Sawada; On decomposition numbers of the cyclotomic q-Schur algebras, J. Algebra 311 (2007), 147 177.
- [Sh] T. Shoji; A Frobenius formula for the characters of Ariki-Koike algebras, J. Algebra 226, (2000), 818 856.
- [SakS] M. Sakamoto and T. Shoji; Schur-Weyl reciprocity for Ariki-Koike algebras, J. Algebra **221** (1999), no. 1, 293 314.
- [SawS] N. Sawada and T. Shoji; Modified Ariki-Koike algebras and cyclotomic q-Schur algebras, Math. Z. 249 (2005), 829 867.