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1. Definition of association schemes. Let $X$ be a set. We write $1_{X}$ to denote
the set of all pairs $(x, x)$ with $x\in X$ . For each subset $r$ of the cartesian product
$X\cross X$ , we define $r^{*}$ to be the set of all pairs $(y, z)$ with $(z, y)\in r$ . Whenever $x$

stands for an element in $X$ and $r$ for a subset of $X\cross X$ , we define $xr$ to be the set
of all elements $y$ in $X$ such that $(x, y)\in r$ .
Let $S$ be a partition of $X\cross X$ with $1_{X}\in S$ , and assume that $s^{*}\in S$ for each
element $s$ in $S$ . The set $S$ is called an association scheme or simply a scheme on
$X$ if, for any three elements $p,$ $q$ , and $r$ in $S$ , there exists a cardinal number $a_{pqr}$

such that, for any two elements $y$ in $X$ and $z$ in $yr,$ $|yp\cap zq^{*}|=a_{pqr}$ . This last
condition is called the regularity condition.
Assume that $X$ is finite, and let $S$ be a scheme on $X$ . For each element $s$ in $S$ , we
set $n_{s}$ $:=a_{ss^{*}1}$ and call this integer the valency of $s$ . The integer $|X|$ is called the
valency of $S$ .
Since the empty set is not element of $S$ , we have $1\leq n_{s}$ for each element $s$ in $S$ .
As a consequence, $|S|\leq|X|$ . The scheme $S$ is called thin if all elements of $S$ have
valency 1. Note that $S$ is thin if and only if $|S|=|X|$ .

2. The scheme ring. Let $X$ be a finite set, let $R$ be a field, and define $RX$ to be
the set of all maps from $X$ to $R$ . Then $RX$ is a right R-module with basis $X$ .
Let $S$ be a scheme on $X$ , and let $s$ be an element in $S$ . We define $\sigma_{s}$ to be the
uniquely determined R-endomorphism of $RX$ which satisfies

$\sigma_{s}(x):=\sum_{\in 1/xs}y$

for each element $x$ in $X$ . The span of the set $\{\sigma_{s}|s\in S\}$ in End$R(RX)$ will be
denoted by $RS$ .
The regularity condition is equivalent to the fact that $RS$ is a ring with respect to
composition. This ring is called the scheme ring of $S$ over $R$ . The right RS-module
$RX$ is called the standard module of $RS$ .
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Now we assume that the characteristic of $R$ does not divide any of the positive inte-
gers $|s|$ with $s\in S$ . By [10; Theorem 9.1.5(iii)], this implies that $RS$ is semisimple.
We shall also assume that $R$ is algebraically closed. If we speak about characters
of $S$ , we mean characters of $RS$ .
By $\chi_{X}$ we denote the character of $S$ afforded by (the standard module) $RX$ . We
call this character the standard character of $S$ . By $\rho$ we denote the regular chamcter
of $S$ , that is the character of $S$ afforded by the right RS-module $RS$ . The linear
map from $RS$ to $R$ that maps each element $\sigma_{s}$ to $n_{s}$ is a ring homomorphism. This
homomorphism will be denoted by $1_{S}$ and is usually called the principal character
of $S$ .
For each irreducible character $\chi$ of $S$ , we define $m_{\chi}$ to be the multiplicity of $\chi$ in
$\chi_{X}$ . Recall that, for each irreducible character $\chi$ of $S,$ $\chi(1)$ is the multiplicity of $\chi$

in $\rho$ ; cf. [10; Corollary 8.6.5].

By definition, we have $1_{S}(1)=1$ , and from [10; Lemma 9.1.8(ii)] we know that
$m_{1_{S}}=1$ . It is also easy to see that, for each element $x$ in $X$ , there exists an
RS-module monomorphism from $RS$ to $RX$ mapping each element $\sigma_{s}$ with $s\in S$

to the sum of the elements in $xs$ . Thus, $\chi(1)\leq rn_{\chi}$ for each irreducible character
$\chi$ of $S$ .
For each irreducible character $\chi$ of $S$ , the rational number

$\frac{m_{\chi}}{\chi(1)}$

will be called the covalency of $\chi$ .
According to what we saw before, the covalency of $1_{S}$ is 1, and, generally, irreducible
characters of $S$ have covalency at least 1. Note also that $S$ is thin if and only if all
irreducible characters of $S$ have covalency 1.

In the following, the set of all irreducible characters of $S$ will be denoted by Irr $(S)$ .

3. A theorem of Muzychuk and Ponomarenko. Let $X$ be a finite set, let $S$

be a scheme on $X$ , and let $R$ be an algebraically closed field the characteristic of
which does not divide $|s|$ for any of the elements $s$ in $S$ .

The scheme $S$ is called pseudocyclic if any two elements in Irr $(S)\backslash \{1_{S}\}$ have the
same covalency; cf. [9].

There are two large classes of pseudocyclic schemes. Firstly, if $S$ thin, we have
$\chi(1)=m_{\chi}$ for each element $\chi$ in Irr $(S)$ , so that all elements in Irr $(S)\backslash \{1_{S}\}$ have
covalency 1. Secondly, one can show that $S$ is pseudocyclic if $S\cong G//H$ for some
Frobenius group $G$ with one-point stabilizer $H^{1}$

In [9; Theorem 2.2], Mikhail Muzychuk and Ilia Ponomarenko proved the following
theorem for which we shall give a slightly different proof here.

Theorem 1 Assume $S$ to be pseudocyclic. Then

$\frac{|X|-1}{|S|-1}=\frac{m_{\chi}}{\chi(1)}=n_{s}=\rho(\sigma_{s})+1=\sum_{r\in S}a_{rsr}+1=\sum_{r\in S}a_{rrs}+1$

for any two elements $s$ in $S\backslash \{1\}$ and $\chi$ in Irr $(S)\backslash \{1_{S}\}$ .

lSee $[$ 10; Section $4.1|$ for the dcfinition of the quotient scheme $G//H$ .
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Proof. For the standard character $\chi x$ of $S$ we have

$\sum_{\chi\in Irr(S)\backslash \{1_{S}\}}m_{\chi}\chi(1)=\chi_{X}(1)-1_{S}(1)=|X|-1$
.

For the regular character $\rho$ of $RS$ we have

$\sum_{\chi\in Irr(S)\backslash \{1_{S}\}}\chi(1)\chi(1)=\rho(1)-1_{S}(1)=|S|-1$
.

Thus,

$\frac{m_{\chi}}{\chi(1)}=\frac{|X|-1}{|S|-1}$

for each non-principal irreducible character $\chi$ of $S$ .

Among the elements in $S\backslash \{1\}$ we fix $s$ such that $n_{s}$ is as small as possible. Then

$\chi\in Irr(S)\backslash \{1\}\sum_{s}m_{\chi}\chi(\sigma_{s})=\chi_{X}(\sigma_{s})-1_{S}(\sigma_{s})=-n_{s}$

and
$\sum_{\chi\in Irr(S)\backslash \{1_{S}\}}\chi(1)\chi(\sigma_{s})=\rho(\sigma_{s})-1_{S}(\sigma_{s})=\rho(\sigma_{s})-n_{s}$

.

Thus,
$\frac{m_{\chi}}{\chi(1)}=\frac{n_{s}}{n_{s}-\rho(\sigma_{s})}$ .

Together this yields

$\frac{|X|-1}{|S|-1}=\frac{n_{s}}{n_{s}-\rho(\sigma_{s})}$ ,

so that
$(|X|-1)(n_{s}-\rho(\sigma_{s}))=(|S|-1)n_{s}$ .

Thus, as $\rho(\sigma_{s})$ is an integer, $|X|-1$ divides $(|S|-1)n_{s}$ . Thus, the minimal choice
of $s$ forces

$|X|-1\leq(|S|-1)n_{s}\leq|X|-1$ .
It follows that each element in $S\backslash \{1\}$ has valency $n_{s}(=\rho(\sigma_{s})+1)$ , and this finishes
the proof of the theorem.

Muzychuk and Ponomarenko also proved the following partial converse of Theorem
1.

Theorem 2 Assume that $n_{p}=n_{q}$ for any two elements $p$ and $q$ in $S\backslash \{1\}$ and
that

$n_{s}= \sum_{r\in S}a_{rrs}+1$

for each element $s$ in $S\backslash \{1\}$ . Then $S$ is pseudocyclic.

4. A theorem of Harvey Blau. Let $X$ be a finite set, let $S$ be a scheme on $X$ ,
and let $R$ be an algebraically closed field the characteristic of which does not divide
$|s|$ for each element $s$ in $S$ .
Set

$\eta:=\sum_{\chi\in Irr(S)\backslash \{1_{S}\}}\chi$
.
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In [1; Theorem 1], Harvey Blau proved the following theorem.2
Theorem 3 Assume that $m_{\phi}=m_{\psi}$ for any two elements $\phi$ and $\psi$ in Irr $(S)\backslash \{1_{S}\}$ .
Then the following hold.

(i) The scheme $S$ is commutative.
(ii) For any two elements $s$ in $S\backslash \{1\}$ and $\chi$ in Irr $(S)\backslash \{1_{S}\}$ , we have $m_{\chi}=n_{s}$ .
(iii) For each element $s$ in $S\backslash \{1\},$ $\eta(\sigma_{s})=-1$ .

PROOF. We are assuming that there exists a positive integer $m$ such that $m_{\chi}=m$

for each $\chi\in$ Irr $(S)\backslash \{1_{S}\}$ . Thus,

$\chi x=1_{S}+m\eta$ .

Thus,
$|X|=\chi_{X}(1)=1+m\eta(1)$

and, for each element $s$ in $S\backslash \{1\}$ ,

$0=\chi_{X}(\sigma_{s})=n_{s}+m\eta(\sigma_{s})$ .

Thus, $|X|-1=m\eta(1)$ and $n_{s}=m(-\eta(\sigma_{s}))$ .
Among the elements in $S\backslash \{1\}$ we fix $s$ such that $n_{s}$ is as small as possible. Then

$m(-\eta(\sigma_{s}))(|S|-1)=n_{s}(|S|-1)\leq|X|-1=m\eta(1)\leq m(|S|-1)$ .

Thus, as $\eta(\sigma_{s})$ is integral, $n_{s}=m$ and $|S|-1=\eta(1)$ . The latter equation means
that $S$ is commutative, and this finishes the proof of the theorem.

It might be worth mentioning that Theorem 3(i) provides a shortcut in the original
proof of the commutativity of schemes of prime valency that was given by Akihide
Hanaki and Katsuhiro Uno in [7; Theorem 3.3].

Corollary Assume that $m_{\phi}=m_{\psi}$ for any two elements $\phi$ and $\psi$ in Irr $(S)\backslash \{1_{S}\}$ .
Then

$\sum_{s\in S}\chi(\sigma_{s}\cdot)\chi(\sigma_{s})=n_{S}-m_{\chi}+1$

for each element $\chi$ in Irr $(S)\backslash \{1_{S}\}$ .

PROOF. Let $\chi$ be an element in Irr $(S)$ . Then $\chi(1)=1$ ; cf. Theorem 3(i). Thus, by
[10; Theorem 9.1.7(ii)],

$\frac{1}{n_{S}}\sum_{s\in S}\frac{1}{n_{s}}\chi(\sigma_{s}\cdot)\chi(\sigma_{s})=\frac{1}{m_{\chi}}$ .

Now recall that, by Theorem 3(ii) $m_{\chi}=n_{s}$ for each element $s$ in $S\backslash \{s\}$ . Thus,

$\frac{1}{n_{S}}+\frac{1}{n_{S}}\sum_{s\in S\backslash \{1\}}\frac{1}{m_{\chi}}\chi(\sigma_{s}\cdot)\chi(\sigma_{s})=\frac{1}{m_{\chi}}$.

Multiplying this equation by $n_{S}m_{\chi}$ we now obtain

$m_{\chi}+ \sum_{s\in S\backslash \{1\}}\chi(\sigma_{s}\cdot)\chi(\sigma_{s})=n_{S}$
.

The claim of the corollary follows immediately from this equation.

$2_{In}$ fact, Blau proved his theorem for a wider class of rings than the class of the scheme rings.
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Muzychuk and Ponomarenko assume that the ratio

$\frac{m_{\chi}}{\chi(1)}$

is the same for each element $\chi$ in Irr $(S)\backslash \{1_{S}\}$ . Blau assumes that $m_{\chi}$ is the same
for each element $\chi$ in Irr $(S)\backslash \{1_{S}\}$ . What if $\chi(1)$ is the same for each element $\chi$ in
Irr $(S)\backslash \{1_{S}\}$ ? This question seems to be interesting but difficult.

5. The curvature of a scheme. Let $X$ be a finite set, and let $S$ be a scheme on
X. We set

$\chi(S):=\frac{1}{|S|-1}\sum_{s\in S\backslash \{1\}}n_{s}$

and call this positive rational number the characteristic of $S$ . Thus, the charac-
teristic of a scheme is defined to be the average of the valencies of its non-trivial
elements.
Note that

$\chi(S)=\frac{|X|-1}{|S|-1}$ .

Thus, $1\leq\chi(S)$ , and $S$ is thin if and only if $\chi(S)=1$ .

Let $R$ be an algebraically closed field the $c\cdot haracterisfic$ of which does not divide $|s|$

for any of the elements $s$ in $S$ . We define

$\chi^{*}(S):=\frac{1}{|Irr(S)|-1}\sum_{\chi\in Irr(S)\backslash \{1_{S}\}}\frac{m_{\chi}}{\chi(1)}$

and call this positive rational number the cocharacteristic of $S$ . Thus, the cocharac-
teristic of a scheme is the average of the covalencies of its non-principal irreducible
characters.
Recall from Section 2 that the covalency of an irreducible character of $S$ is at least
1 and that $S$ is thin if and only if all irreducible characters of $S$ have covalency 1.
Thus, $1\leq\chi^{*}(S)$ , and $S$ is thin if and only if $\chi^{*}(S)=1$ .
If $S$ is commutative, we have Irr$(S)|=|S|$ and $\chi(1)=1$ for each element $\chi$ in
Irr $(S)$ . Thus, we have

$\chi^{*}(S)=\frac{|X|-1}{|S|-1}$

in this case.
We define

$\gamma(S);=\ln(\frac{\chi^{*}(S)}{\chi(S)})$

and call this number the curvature of $S$ .
From what we saw above one obtains that thin schemes and commutative schemes
have curvature $0$ . From Theorem 1 one also obtains that pseudocyclic schemes have
curvature $0$ . (Recall that thin schemes are pseudocyclic.)

Among the pseudocyclic schemes there are examples which are neither thin nor
commutative. This follows from [9; Theorem 2.1]. This theorem that says that
each Frobenius group with non-commutative kernel provides a non-thin and non-
commutative pseudocyclic scheme.
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It would be interesting to know if the class of all pseudocyclic schemes covers the
class of all non-commutative schemes of curvature $0$ . In other words, one would like
to know if non-commutative schemes of curvature $0$ are necessarily pseudocyclic.
If not, is there a different way to characterize the schemes of curvature $0$ ? This
question seems to be interesting but difficult.
Looking at the list [6] of schemes of small valencies one realizes that there is no big
differeiice between the nurnber of schernes of positive valency and the iiumber of
schemes of negative valency.

6. A scheme of negative curvature. Let $S$ be a scheme isomorphic to the
scheme number 176 in the list of schemes of valency 28 in [6], and let $T$ denote the
thin residue of $S^{3}$ Then $|T|=4$ , and all elements of $T$ have valency 1. Moreover,
all elements in $S\backslash T$ have valency 2. It follows that $|S|=16$ . Thus, as $|X|=28$ ,

$\chi(S)=\frac{|X|-1}{|S|-1}=\frac{27}{15}=\frac{9}{5}$ .

From $|X|=28$ and $|T|=4$ we obtain that the quotient scheme $S//T$ , viewed as a
group, is cyclic of order 7. Thus, $S/\prime T$ has six linear characters

$\lambda_{1},$

$\ldots,$
$\lambda_{6}$

different from $1_{S//T}$ . According to [3; Theorem 3.5], these irreducible characters
can be viewed as linear characters of $S$ having kernel $T^{4}$

Assume that $S$ has a non-principal linear character different from $\lambda_{1},$

$\ldots,$
$\lambda_{6}$ . Then

$S$ has either two different irreducible characters of degree 2 or five diflferent non-
principal linear characters different from $\lambda_{1},$

$\ldots,$
$\lambda_{6}$ ; cf. [10; Corollary 8.6.5]. In

both cases, there exists, for each element $\chi$ in Irr $(S)\backslash \{1_{S}, \lambda_{1}, \ldots, \lambda_{6}\}$ , an element
$i$ in $\{$ 1, $\ldots,$

$6\}$ such that $\lambda_{i}\chi=\chi$ ; cf. $[$ 5; Theorem 3.3$]^{}$ Thus, as none of the char-
acters $\lambda_{i},$

$\ldots,$
$\lambda_{6}$ vanishes on $\{\sigma_{s}|s\in S\}$ , all non-principal irreducible characters

of $S$ diffcrent froin $\lambda_{1},$

$\ldots,$
$\lambda_{6}$ vanish on $\{\sigma_{s}|s\in S\backslash T\}$ .

Since $|T|=4$ , each non-principal linear character of $S$ different from $\lambda_{1},$

$\ldots,$
$\lambda_{6}$ has

a kernel of order 2. Thus, $S$ cannot, have five different linear characters vanishing
on $S\backslash T$ . It follows that $S$ has two differenl irreducible characters of degree 2.

Let $\phi$ be an irreducible character of $S$ which has degree 2 and vanishes on $\{\sigma_{s}|s\in$

$S\backslash T\}$ . Then applying the orthogonality relations [10; Theorem 9.1.7(ii)] to $\phi$

one obtains $m_{\phi}=7$ . Thus, as we are assuming that $S$ has at least eight linear
characters, $S$ cannot have two different irreducible character of degree 2.
What we have seen so far is that $\lambda_{1}$ , . . . , $\lambda_{6}$ are the only non-principal linear
characters of $S$ . Thus, by [10; Corollary 8.6.5], $S$ possesses an irreducible character
$\phi$ of degree 3 such that

Irr $(S)=\{1_{S}, \lambda_{1}, \ldots, \lambda_{6}, \phi\}$ .

$3_{See}$ [ $10$ ; Section 3.2] for the definition of the thin residue of a scheme.
$4_{Sce}$ [ $4$ ; Section 3] for thc definition of the kerncl of a sclienie character.
$5_{Scc}$ [ $5_{7}$ Theorem 3.3] for the definition of products of linear scheme characters with irreducible

scheme characters.
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Now recall from [3; Theorem 4.1] that $m_{\lambda_{i}}=1$ for each element $i$ in {1, $\ldots$ , 6}.
Thus, $m_{\phi}=7$ , and we obtain

$\chi^{*}(S)=\frac{1}{7}(6+\frac{7}{3})=\frac{25}{21}$ .

It follows that
$\gamma(S):=\ln(\frac{\chi^{*}(S)}{\chi(S)})=\ln(\frac{125}{189})<0$ ,

and that means that $S$ has negative curvature.6
7. Schemes of positive curvature. Let $S$ be a scheme, and let $h$ and $k$ be
involutions of $S$ such that $S$ is a Coxeter scheme over $\{h, k\}^{7}$

In the following, we assume that $n_{h}\neq 1$ and $n_{k}\neq 1$ . Then, by a theorem of Walter
Feit and Graham Higman,

$|S|\in\{4,6,8,12,16\}$ ;

cf. [2; Theorem 1]. If $|S|=4,$ $S$ is commutative by [8; (4.1)]. Thus, we have
$\gamma(S)=0$ in this case. In the remainder of this section, we compute the curvature
of $S$ in the cases where $|S|=6$ and $|S|=8$ .

Assume that $|S|=6$ . In this case, one easily obtains $n_{h}=n_{k}$ . We set $n;=n_{h}$ .
Then, by [10; Theorem $12.5.1(i)$ ], $n_{S}=(n^{2}+n+1)(n+1)$ . Thus,

$\chi(S)=\frac{n(n^{2}+2n+2)}{5}$ .

Let $R$ be an algebraically closed field the characteristic of which does not divide
$|s|$ for each element $s$ in $S$ . Then, by [10; Lemma 12.4.1(ii), (iii)], $RS$ possesses
a non-principal linear character $st$ and an irreducible character $\phi$ of degree 2 such
that

Irr $(S)=\{1_{S}, st, \phi\}$ .

From [10; Lemma 12.5.1(ii)] we also know that $m_{st}=n^{3}$ and from [10; Lemma
12.5.1(iii) $]$ that $m_{\phi}=n(n+1)$ . Thus,

$\chi^{*}(S)=\frac{1}{2}(n^{3}+\frac{n(n+1)}{2})=\frac{n(2n^{2}+n+1)}{4}$ .

It follows that
$\gamma(S)=\ln(\frac{5(2n^{2}+n+1)}{4(n^{2}+2n+2)})$ .

In particular, $S$ has positive curvature.

If $n=2$ , we have
$\gamma(S)=\ln(\frac{11}{8})$ .

In general, we have $\gamma(S)arrow\ln(2.5)$ as $narrow\infty$ .

Now let $|S|=8$ . Then, by [10; Lemma $12.5.2(i)$ ],

$n_{S}=(n_{h}+1)(n_{k}+1)(n_{h}n_{k}+1)$ .

$6_{The}$ values and multiplicities of the characters of $S$ in this section could have been taken from
[6]. I owe the above reference to [5; Theorem 3.3] to Mikhail Muzychuk.

$7_{See}$ [ $10$ ; Section 12.3] for the definition of Coxeter schemes.
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Thus,

$\chi(S)=\frac{n_{h}^{2}n_{k}^{2}+n_{h}^{2}n_{k}+n_{h}n_{k}^{2}+2n_{h}n_{k}+n_{h}+n_{k}}{7}$ .

From [10; Lemma 12.4.1(ii), (iii)] Theorem 12.5.2(ii) $]$ we know that $S$ has three
non-principal linear characters $st,$ $\lambda_{h},$ $\lambda_{k}$ and an irreducible character $\phi$ of degree
2 such that

Irr $(S)=\{1_{S}, st, \lambda_{h}, \lambda_{k}, \phi\}$ ,
$m_{st}=n_{h}^{2}n_{k}^{2}$ , and

$m_{\lambda_{l\iota}}= \frac{n_{k}^{2}(n_{h}nk+1)}{n_{h}+n_{k}}$ , $m_{\lambda_{k}}= \frac{n_{h}^{2}(n_{k}n_{h}+1)}{n_{k}+n_{h}}$ , $m_{\phi}= \frac{nhn_{k}(n_{h}+1)(n_{k}+1)}{n_{h}+n_{k}}$ .

Thus,

$\chi^{*}(S)=\frac{1}{4}(\frac{n_{h}^{2}n_{k}^{2}}{1}+\frac{n_{k}^{2}(nhn_{k}+1)}{n_{h}+n_{k}}+\frac{n_{h}^{2}(n_{h}n_{k}+1)}{nh+n_{k}}+\frac{n_{h}n_{k}(n_{h}+1)(n_{k}+1)}{2(nh+n_{k})})$.

If $n_{h}=2$ and $n_{k}=2$ ,
$\gamma(S)=\ln(\frac{427}{352})$ .

In general, $\gamma(S)arrow\ln(1.75)$ as $n_{h}arrow\infty$ and $n_{k}arrow\infty$ .
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