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A remark on hyperfocal subalgebras of blocks of finite groups

REARAZ K2R E RIS (822 %R) 87 2 (Atumi WATANABE)
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1 The hyperfocal subalgebra of a block

Let G be a finite group and P be a Sylow p-subgroup of G. Moreover set Q = OP (G)NP,
which is called the hyperfocal subgroup in [12]. We have

Q = ([0"(Nc(U)), U |U < P)

( see [1], Lemma 2.2 for a proof). I thank Koshitani who informed me of [1]. In particular
Q = 1 if and only if G is p-nilpotent. If P is abelian, then Q = [Ng(P), P].

Let (K, O, k) be a sufficiently large p-modular system such that k is algebraically closed.
Let G be a finite group and b be a block of OG and let P, be a defect pointed group of
a pointed group G on OG, that is, P, is a maximal local pointed group contained in
G{b}- Let

Q = ( [O"(Na(Us)), U] | Us € Sc(Py) ).

where Sz (P,) is the set of local pointed groups on OG contained in P,. Following [12],
Q is called the hyperfocal subgroup of Py. Let j € v and let B = jOGj. B is a source
algebra of b and j is called a source idempotent of b. By [12],Theorem 1.8, [13], §13 and
§14, there exists a unique P-stable unitary subalgebra D of B, up to (BF)*-conjugation,
which satisfies
DNPj=Qj and B= P Du=D®oq OP,
ueP/Q

where (BF)* is the group of invertible elements of BP. D is called a hyperfocal subalgebra
of b. D becomes an interior Q-algebra with a group homomorphism ¢ € @ — ¢qj € D*.
By [12] or [13], Corollary 13.13, @ = 1 if and only if { b is nilpotent, and in that case D is
O-simple, that is, D is isomorphic to a full matrix algebra over O

We set R = @ or k. Let A be an R-algebra and B be an interior A-algebra, that is,
B is an R-algebra which is an A-bimodule satisfying (za)y = z(ay) for a € A, z,y € B.
Let ug : B ®a B — B denote the map of B-bimodules satisfying u(z ® y) = zy for
z,y € B. Following [6], we say B is a separable interior A-algebra if up splits as a map
of B-bimodules. By [6], Lemma 4, B is a separable interior O P-algebra.

Theorem 1 ([18], Theorem 1) D is a separable interior OQ-algebra.

Corollary 1 ([18], Corollary 1) Let N be a finitely generated (left) D-module. Then N
is a direct summand of D ®og N as a D-module. In particular D = D ®o k is of finite
representation type if Q@ is cyclic.

We recall that if P is abelian and @ is cyclic, then the number of isomorphism classes
of irreducible D-modules is equal to |Ng(P,)/Cc(P)| by Theorem in [17}.
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2 Fan’s question

Assume that P is abelian. Then we have Q = [P, Ng(P,)] ((18]). Let L = Cp(Ng(Py)).
Then we have
P=QxL

as is well known. For z € OG and X C OG, we denote by Z and X the images in kG by
the canonical homomorphism from OG onto kG. Now G4 is Q-locally controlled by P,
in the sense of Fan [2].

Question 1 (Fan [2], p. 789) As interior P-algebras
B=D ®»n0OL
for some interior P-algebra D’'.

This question is true if P is normal in G, or G is p-solvable (see Remark 1 below). Also
Okuyama showed that the question is true for B = B ®¢ k.

Theorem 2 ([18], Theorem 2) With the above notations, there is a group homomorphism
p: P — D* such that p(q) = qj for any q¢ € Q and that d* = d?™) for any d € D and
u € L. Moreover, then, there is an interior P-algebra isomorphism B = D ®; kL mapping
du on dp(u) ® u for any d € D and w € L where D is regarded as an interior P-algebra
with p as structural map.

(See also [16].) We will show that if Q is normal in G, then Fan’s question is true.

3 The case where () is normal in G

Assume that P, is associated with the maximal b-Brauer pair (P,bp). We have
Ng(P,bp) = Ng(P,). Set by = (bp)N6(F). Then by is a Brauer correspoadent of b.
Let B be a source algebra of b defined in the above and let By be a source algebra of bg.
Let E = N/Cg(P) be a p-complement of Ng(P,)/Cg(P) and we denote by |E] a set of
representatives for the Cg(P)-cosets in N. For a € (OG)F, we set ' = Brp(a). Recall
that ga'g™' = (gag™')' (9 € Ng(P)).

Proposition 1 With the above notations, assume that there exists a normal p-subgroup
Q of G such that Q C Z(P) and (bp)°c(Q) is nilpotent.

(i) B =2 S ®p By as intertor P-algebras, where S is a (primitive) (interior) Dade
P-algebra.

(ii) If P is abelian, then B = D®o OL as interior P-algebras, where L = Cp(Ng(Py)).

(iii) b and by are basic Morita equivalent (See [11] for the definition of basic Morita
equivalence ).

Remark 1 If G is p-solvable and P is abelian, then the above theorem holds without the
assumption by Remark 3.6 in [3].

Remark 2 From the proof of the proposition, if b is a principal block of G, then B = By.

For a p-subgroup X of G, we denote by LPrg(X) the set of local point of X on RG.
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Lemma 1 Let Q be a normal p-subgroup of G and set C = Cg(Q). Let X be a p-
subgroup of G containing Q. Then any € € LPrc(X) is contained a uniquely determined
€ € LPrc(X). Moreover the map € € LPrc(X) — € € LPrg(X) is a bijection.

Proof. Since there is a natural bijection between LPpg(X) and LPre(X), we may
assume R = k. Let € € LPrc(X) and let ¢ € e. Suppose that

1 =17 + 1y, i19g =213 =0

for some idempotents i;,ip in (kG)¥X. Since Q < X, we have i = BrQ(il) + BI‘Q(ig).
Since Brg(i1), Brg(i2) € (kC)X and since i is primitive in (kC)X, we may assume that
i = Brg(i1) and Brg(iz) = 0. So iz € Ker(Brg) = ZY<Q(kG)8. Since Q is a normal
p-subgroup of G, Ker(BrQ) is contained in the radical of kG. Therefore i, = 0. This
implies i is primitive in (kG)X. Since Cc(X) = Cg(X) and since there is a canonical
bijection between LPrc(X) and the set of points of kCg (X ), the lemma easily follows. So
the proof is complete. B

Proof of Proposition 1
(1) Set
bq = (bp)°¢ @ and C = Cs(Q).

Then b is a unique block of G which covers bq and (P,bp) is a maximal bqg-Brauer
pair. In order to prove (i), we may assume bq is G-invariant. By the Frattini argument
G = CNg(P,bp) = CN. Since bq is nilpotent, C " N = Cg(P). Let Ps be a defect
pointed group of C(pqy on OC. By Lemma 1, we also may assume 6 C . Let i € § and
set Bq = t{OC'4, a source algebra of bqg. Note that we may assume B = iOGi. Let S be a
hyperfocal subalgebra of bq contained in Bq and set Cg(S) = {z € B|zs = sz (Vs € S)}.
Then Cp(S) is P-stable because S is P-stable. We will observe that Cg(S) is a crossed
product of Cp, (S) over E, then Cp(S) = By as interior P-algebras.

By [10], Theorem 1.6, S is a (primitive) Dade P-algebra. Moreover by {10], 1.8, there
is a unique group homomorphism ¢ : P — S§* lifting the action of P on S such that
det(t(u)) = 1 for any u € P. Set z, = t(u"u = w(u™?). We have 2,2, = z4, and
zy € (Chq (ST (u € Z(P)). Hence Cg(S) becomes an interior P-algebra. Moreover

Bq=@5’u=@52u,

ueP u€P

Since S is O-simple,
CBq(S) = @ Oz, = OP.

u€eP

Let g € N. Since Pjs is N-invariant, there is z, € ((OC)F)* such that gig™! = xgixgl.
Set ag = (xg_lg)i = i(xg_lg) € BN OCyg. Then (g7 'z4)i = i(¢g~'zy) is the inverse of aq4 in

B (cf. [15], (44.2)). It is easy to see that
(1) %y = agu(ag) ! = (gug™')i (Vu € P).

Here we note we can take z.;, = czy and hence a,, = a4 for any c‘e Cg(P). From
(1), %S is a hyperfocal subaglgebra of bq. By [12], 13.3, S is unique up to ((Bg)¥)*-
conjugation, and hence we may assume that S = %S by replacing 4 by z4(ys + (1 — 7))
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where y, € ((Bq)¥)*. On the other hand, since S is O-simple, there exists t, € S* such
that

g =ls (Vs € S)

by a theorem of Skolem-Noether. We may assume t, = t, for any ¢ € C;(P). Since
t(ud)se((u9)™) = uIs(u9)~ !, we can see

Sou(u)s(* (((u) ™)) = usu™".
Note det(?9¢(u)) = det(tse(u)) = 1. Hence, by the uniqueness of ¢, we have
(2) t(uf) = u(u)? = o(u)’s.
Now we can see

(3) B= P Bqa, = (BN OCy).

g€(E] g€(E]

Set ¢g = tg7'ag € Cp(S) N OCyg. We may assume ¢ = ¢ for any ¢ € Cg(P).
Moreover (ag)~'t, is the inverse of ¢, in B. From (1) and (2) we can see

(4) 20 = 2oy, 92y = 244 (g E N, ue P).

Moreover

Cgch(cgh)_1 € (CBq(S))X :

B = @ @Szucg,

E}ueP

Since we have

(5) Cg(S) = EB Ozy,cq.

gE[E),ueP

Thus Cp(S) is a crossed product of E over Cpq, (S). From (4) and [4], Lemma M, Cg(5)
is a twisted group algebra of P x E over O (see [7] and [5]). In fact, by replacing ¢, by
cg€q for some €4 € i 4 J(Z(OP)) C (OC)F if necessary, where P = {z, | u € P}, we have
for some 2-cocycle o« € Z2(E, 0*)

(6) cgch = alg, h)cgn (g, h € N).

Hence by replacing z, by 4 := osg(ag(egl) + 1 — 1), we may assume (6) holds. Then note
that we have S = (35 '9)ig.
Since S is O-simple,
B = S®0Cg(S)

as interior P-algebras. In order to complete the proof of (i), by [10], Lemma 7.8, it suffices
to show Cp(S) = By as interior P-algebras assuming R = k:

Set Ng(P) ={te€ S* |t.P =t(P)=(P)t =Pt }. By (9], (e) and [10], Theorem 1.6,
there is a group homomorphism f : Ngx (P) — S(P)* = k>7 which extends Brp|gr)x.
Since ty; € Ngx from (2) we set

f(tg) =847 (g€ N, 6g € k).
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1 1

Now since gig™" = z4iz," we have

g = Je—1 -1
gi'g™! =l bgi'o
We set
ag = (8§, 'z g)i =76, wy g) € (kNG (Py)i')*.
We may assume ay = acg for any ¢ € Cg(P). Moreover we have
(7) 3 (ui') =9ui’ (g€ N, u € P).

From (6) we have

: _ _ 1 -1 7
a(g,h)z'=Brp(cghlcgch)= (gh) " 'Brp(zgntgntg 1:ngl(gth zylg1))gh

- . — -1 — -1 —
= (gh 1:L'fqhzl&ghfsg 11‘; (gon 1:C,h g 1)gh"_—agh. lagah;v

and hence
(8) agan = alg, h)ags (9,h € N).

Since B = 1'kNG(Py)i' = @ ye(p) Duep k(ui')ag, from (4), (6), (7) and (8), Bo = Cp(S5)
as interior P-algebras. This proves (i).

(ii) Since Q is NG (Py)-invariant, from (1), D = @ ¢ (5 Dueg Suag = D) Duco Szuty
is P-stable, and we see D is a hyperfocal subalgebra of b. On the other hand @, c; Oz,

is contained in the center Z(B) and B = @, ; Dz,. This implies (ii).

(iii). Let e be a primitive idempotent of S and set V = Se. Then V becomes an
endo-permutation OP-module with p/ rankpV by [10], Theorem 1.6. Now from (i) and
[8], Theorem 3.4, the (OGb, ONg(P)bp)-bimodule

M = OGi®px~sey B, (V ®o Bo) @B, ONG(P)
and the (ONg(P)by, OGb)-bimodule
N = ONg(P)®pB,(Bo ®0 V*) ®Byees=p 1OG

induce a Morita equivalence between b and by. We notice that N = M*. In fact N =
Homy4 (M, A) = M* because A is symmetric, where A = OGb ) (Auslander-Fuller, 22.1).
We can see

M | OGi®op(V ®0 Bo)®opONg(P), V ®o By | oPMorp

because B and By are, respectively, separable interior OP-algebras. Since By is a per-
mutation O(P x P)- module and V is an endo-permutation OP-module, V ®p By is
an endo-permutation O(P x P)-module. This implies b and by are basic Morita equiva-
lent. Recall that any indecomposable component of By is isomorphic to Indg:P (O) for

some = € G, where P, denotes the subgroup {(u,* 'u) € P x P | u € PNZ*P}. Since
|P| || ranko(V ®p Bp), we can see AP = {(u,u)|u € P} is a vertex of M. B

In the above proposition assume that P is abelian and Cg(Q) N Ng(Py) = Ca(Q) N
Ng(P,bp) = Cg(P). Then bq is nilpotent.
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Corollary 2 Assume that P is abelian and let Q be a normal p-subgroup of Ng(Py) such
that C(Q) N Ng(Py) = Cg(P). Then (bp)Ne(Q) and by are basic Morita equivalent.

Proof. Set
c = (bP)NG(Q), d= (bP)NG(Q)nNG(P)‘

By the above theorem c and d are basic Morita equivalent. On the other hand dONg(P)
realizes a (splendid) Morita equivalent between d and by. This implies that ¢ and by are
basic Morita equivalent. B

Ne(Q) ¢
T basic Morita eq.

Ng(Q)N Ng(P) d
T
Cc(P) bp

Corollary 3 Assume that P is abelian. Then BQ = (bp)NG(Q) and by are basic Morita

equivalent. In particular, b and by are derived equivalent if and only if b and BQ are derived
equivalent.

Corollary 4 (see [14]) Assume that P is abelian and suppose that Q is cyclic, and let Q;
be a non-trivial subgroup of Q. Then (bp)Ve(R1) and by are basic Morita equivalent.
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