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ABSTRACT. Let $f$ be a diffeomorphism of a manifold preserving a hy-
perbolic Borel probability measure $\mu$ having transversal intersections for
almost every pairs of stable and unstable manifolds. Then we obtain a
lower bound for the large deviation rate.

1. INTRODUCTION

The theory of large deviations for dynamical systems is an object of in-
tense study. See [1, 3, 6, 7, 10, 13, 15]. Here we obtain a lower large
deviation bounds for dynamical systems preserving a hyperbolic measure
satisfying the weak transversality condition.

We consider a $C^{1+\alpha}(\alpha>0)$ diffeomorphism $f:Marrow M$ of a compact
smooth Riemannian manifold $M$ preserving a hyperbolic Borel probability
measure $\mu$ , i.e., all the Lyapunov exponents are non-zero at $\mu$-almost every
point. We impose an additional hypothesis that for $\mu\otimes\mu$-almost every pair
$(x, y)\in M\cross M$ there exist integers $p,$ $q\in \mathbb{Z}$ and a point $z\in \mathcal{W}^{u}(f^{p}(x))\cap$

$\mathcal{W}^{s}(f^{q}(y))$ such that
$T_{z}\mathcal{W}^{u}(f^{p}(x))\oplus T_{z}\mathcal{W}^{s}(f^{q}(y))=T_{z}M$.

Here $\mathcal{W}^{s}(z)$ and $\mathcal{W}^{u}(z)$ are stable and unstable manifolds at $z$ , respectively
(see the definition in \S 3). Such a measure is said to satisfy the weak transver-
sality condition (WTC for short).

We denote by $\mathcal{M}$ the collection of all probability measures on $M$ and
by $\mathcal{M}_{f}$ the collection of all $f$-invariant probability measures on $M$ . It is
well known that $\mathcal{M}$ is compact convex metrizable with respect to the weak*
topology and $\mathcal{M}_{f}$ is a non-empty compact convex subset of $\mathcal{M}$ . Denote by
$m$ the Riemannian volume on $M$ .

It follows from Birkhoff’s ergodic theorem that we have the following limit
for $\mu$-almost every $x\in M$ :

(1.1) $\chi^{+}(x)=\lim_{narrow\infty}\frac{1}{n}\log|\det(D_{x}f^{n}|T_{x}\mathcal{W}^{u}(x))|$ .

And this coincides with the sum of all the positive Lyapunov exponents at
$x$ , counted with multiplicity (see \S 3).
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Theorem 1.1. Let $f:Marrow M$ be a $C^{1+\alpha}$ diffeomorphism of a compact
smooth Riemannian manifold $M$ preserving a hyperbolic Borel probability
measure $\mu$ . Suppose that $\mu$ satisfies the $WTC$. Then for any open neighbor-
hood $\mathcal{G}\subset \mathcal{M}$ of $\mu$ ,

$\lim_{narrow}\inf_{\infty}\frac{1}{n}\log m(\{x\in M:\delta_{n}(x)\in \mathcal{G}\})\geq h_{\mu}(f)-\int\chi^{+}(x)d\mu(x)$ ,

where $\delta(y)$ is the Dirac measure at $y$ and $\delta_{n}(x)=\sum_{i=0}^{n-1}\delta(f^{i}(x))/n$ .

This theorem is known in the ergodic case ([13], [15]) or for some topo-
logical dynamics with (a weaker form of) the specification property ([10]).

Let us remark that the weak transversality condition can be checked in
the following cases:

$\bullet$ ergodic hyperbolic probability measures (as an immediate conse-
quence of Propositions 2.4 and 2.5 in [4] $)$ ;

$\bullet$ invariant probability measures on basic sets of Axiom A diffeomor-
phisms ([5, Proposition 18.3.10]);

$\bullet$ hyperbolic probability measures which are invariant under partially
hyperbolic diffeomorphisms admitting minimal strong stable folia-
tions, and whose stable manifolds coincide with the strong stable
leaves almost everywhere.

A foliation is said to be minimal provided every leaf of this foliation is dense
in $M$ . Recently, Pujals and Sambarino ([11]) gave a sufficient condition
(called Property $SH$) for the strong stable foliation to remain minimal under
$C^{1}$ perturbations, and presented several examples of partially hyperbolic
(but non-hyperbolic) diffeomorphisms satisfying this property. Furthermore,
it is easy to check that the Property SH also guarantees the existence of the
hyperbolic invariant measures in the third case above.

The specification property enables us to obtain a lower bound for the
large deviation rate around non-ergodic measures ([10], [15]), but does not
hold for generic non-hyperbolic systems ([12]). So, the WTC is likely to be
available for studying a large class of non-hyperbolic systems.

2. UPPER BOUNDS FOR LARGE DEVIATIONS

We remark that the WTC is not sufficient to obtain nontrivial upper
bounds for the large deviation estimate. Indeed, consider a diffeomor-
phism $f$ on a two-sphere $S^{2}$ with a hyperbolic fixed point $p$ of saddle type
such that the stable manifold of $p$ coincides with its unstable manifold and
$|\det D_{p}f|<1$ (see [4, 14]). Since the stable and unstable manifolds of $p$

intersect transversally at $p$ itself, the point mass $\delta(p)$ satisfies the WTC.
And it is known that every point $x$ sufficiently close to the stable manifold
of $p$ satisfies $\lim_{narrow\infty}\delta_{n}(x)=\delta(p)$ ([14]), which implies that

$\bullet$ $\lim_{narrow\infty}\frac{1}{n}\log m(\{x\in S^{2}:\delta_{n}(x)\in \mathcal{F}\})=0$
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for each neighborhood $\mathcal{F}\subset \mathcal{M}$ of $\delta(p)$ . We note here that $0$ is a trivial
upper bound (independent of the choice of measures) for the large deviation
estimate. On the other hand, the lower estimate in Theorems 1.1 is strictly
less than the true values for $\delta(p)$ as follows:

$\bullet h_{\delta(p)}(f)-\int\chi^{+}d\delta(p)=-\chi_{1}(p)(<0)$ .

It is known ([1]) that if $f$ is a $C^{2}$ diffeomorphism exhibiting a partially hy-
perbolic non-uniformly expanding attracting set, we can obtain a nontrivial
upper large deviation bounds for $f$ .

3. DEFINITIONS

Let $M$ be a compact smooth Riemannian manifold with a norm $\Vert\cdot\Vert$ ,
$f:Marrow M$ a $C^{1+\alpha}(\alpha>0)$ diffeomorphism of $M$ preserving a Borel prob-
ability measure $\mu$ and $Df$ : $TMarrow TM$ the derivative of $f$ . As always, we
let $d$ be the distance on $M$ induced by the Riemannian metric.

A point $x\in M$ is said to be Lyapunov regular if there exist real numbers
$\chi_{1}(x)>\chi_{2}(x)>\cdots>\chi_{r(x)}(x)$ and a $D_{x}f$-invariant decomposition $T_{x}M=$

$E_{1}(x)\oplus E_{2}(x)\oplus\cdots\oplus E_{r(x)}(x)$ such that for each $i=1,2,$ $\ldots,$
$r(x)$

$\lim_{narrow\pm\infty}\frac{1}{n}\log\Vert D_{x}f^{n}(v)\Vert=\chi_{i}(x)$ $(v\in E_{i}(x)\backslash \{0\})$

exists, and

$\lim_{narrow\pm\infty}\frac{1}{n}\log|\det(D_{x}f^{n})|=\sum_{i=1}^{r(x)}\chi_{i}(x)\dim E_{i}(x)$.

We denote by $\Gamma=\Gamma^{\mu}$ the set of Lyapunov regular points. By the multi-
plicative ergodic theorem ([8]) $\Gamma$ has full $\mu$-measure. The numbers $\chi_{i}(x)$ are
called the Lyapunov exponents of $f$ at the point $x$ . The functions $x\mapsto\chi_{i}(x)$ ,
$r(x)$ and $\dim E_{i}(x)$ are Borel measurable and $f$-invariant. If the invari-
ant measure is supposed to be ergodic, then we denote the constants by
$\chi_{1},$ $\chi_{2},$ $\ldots,$ $\chi_{r}$ and $\dim E_{i}$ .

We call the measure $\mu$ hyperbolic if none of the Lyapunov exponents for $\mu$

vanish and there exist Lyapunov exponents with different signs for $\mu$-almost
everywhere. In what follows we always assume that $\mu$ is hyperbolic, and
we will denote $u(x)= \max\{i:\chi_{i}(x)>0\}$ and $s(x)= \min\{i:\chi_{i}(x)<0\}$

for $\mu$-almost every $x\in M$ . Note that $s(x)=u(x)+1$ . The associated
decomposition is represented as $T_{x}M=E^{u}(x)\oplus E^{s}(x)$ , where $E^{u}(x)=$

$\oplus_{i=1}^{u(x)}E_{i}(x),$ $E^{s}(x)=\oplus_{i=s(x)}^{r(x)}E_{i}(x)$ for $\mu$-almost every $x\in M$ . For $x\in\Gamma$ ,
we define the unstable and stable manifolds at $x$ as

$\mathcal{W}^{u}(x)=\{y\in M:\lim_{narrow}\sup_{\infty}\frac{1}{n}\log d(f^{-n}(x), f^{-n}(y))<0\}$ ,

$\mathcal{W}^{s}(x)=\{y\in M:\lim_{narrow}\sup_{\infty}\frac{1}{n}\log d(f^{n}(x), f^{n}(y))<0\}$ .
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Then $\mathcal{W}^{u}(x)$ and $\mathcal{W}^{s}(x)$ are injectively immersed manifolds satisfying

$T_{x}\mathcal{W}^{u}(x)=E^{u}(x)$ and $T_{x}\mathcal{W}^{s}(x)=E^{s}(x)$ ,

respectively. See [2, 9]. Note that

$\chi^{+}(x)=\lim_{narrow\infty}\frac{1}{n}\log|\det(D_{x}f^{n}|T_{x}\mathcal{W}^{u}(x))|$

$= \lim_{narrow\infty}\frac{1}{n}\log|\det(D_{x}f^{n}|E^{u}(x))|$

$= \sum_{i=1}^{u(x)}\chi_{i}(x)\dim E_{i}(x)$ .
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