LITTLEWOOD-RICHARDSON COEFFICIENTS AND EXTREMAL WEIGHT CRYSTALS

JAE-HOON KWON

ABSTRACT. We describe the tensor product of two extremal weight crystals of type $A_{+\infty}$ by constructing an explicit bijection between the connected components in the tensor product and a set of quadruples of Littlewood-Richardson tableaux.

1. INTRODUCTION

Let $\mathfrak{gl}_{>0}$ be the infinite rank affine Lie algebra of type $A_{+\infty}$ and $U_q(\mathfrak{gl}_{>0})$ its quantized enveloping algebra. For an integral weight Λ , there exists an integrable $U_q(\mathfrak{gl}_{>0})$ -module called the *extremal weight module with extremal weight* Λ . The notion of extremal weight modules introduced by Kashiwara [5] is a generalization of integrable highest weight and lowest weight modules. An extremal weight module has a crystal base, which we call an *extremal weight crystal* for short, and two extremal weight crystals are isomorphic if their extremal weights are in the same Weyl group orbit.

Let \mathscr{P} be the set of partitions. The Weyl group orbit of Λ is naturally in one-toone correspondence with a pair of partitions $(\mu, \nu) \in \mathscr{P}^2$, where (μ, \emptyset) (resp. (\emptyset, ν)) corresponds to a dominant (resp. anti-dominant) weight. Let us denote by $\mathcal{B}_{\mu,\nu}$ the extremal weight crystal with extremal weight corresponding to $(\mu, \nu) \in \mathscr{P}^2$.

In [9], it is shown that the tensor product of two extremal weight crystals is isomorphic to a finite disjoint union of extremal weight crystals and the Grothendieck ring associated with the category of $\mathfrak{gl}_{>0}$ -crystals whose object is a finite union of extremal weight crystals, is isomorphic to the Weyl algebra of infinite rank. Using this characterization, it is shown that the multiplicity of $\mathcal{B}_{\zeta,\eta}$ in $\mathcal{B}_{\mu,\nu} \otimes \mathcal{B}_{\sigma,\tau}$ for $(\mu,\nu), (\sigma,\tau), (\zeta,\eta) \in \mathscr{P}^2$ is

(1.1)
$$\sum_{\alpha,\beta,\gamma\in\mathscr{P}} c^{\zeta}_{\sigma\,\alpha} c^{\mu}_{\alpha\,\beta} c^{\tau}_{\beta\,\gamma} c^{\eta}_{\gamma\,\nu},$$

which is a sum of products of four Littlewood-Richardson coefficients.

The main purpose of this note is to construct an explicit crystal isomorphism

(1.2)
$$\mathcal{B}_{\mu,\nu} \otimes \mathcal{B}_{\sigma,\tau} \xrightarrow{\sim} \bigsqcup_{(\zeta,\eta) \in \mathscr{P}^2} \bigsqcup_{\alpha,\beta,\gamma \in \mathscr{P}} \mathcal{B}_{\zeta,\eta} \times \mathbf{LR}^{\zeta}_{\sigma\,\alpha} \times \mathbf{LR}^{\mu}_{\alpha\,\beta} \times \mathbf{LR}^{\tau}_{\beta\,\gamma} \times \mathbf{LR}^{\eta}_{\gamma\,\nu},$$

which gives a bijective proof of (1.1). Here $\mathbf{LR}^{\lambda}_{\mu\nu}$ denotes the set of Littlewood-Richardson tableaux of shape λ/μ with content ν for $\lambda, \mu, \nu \in \mathscr{P}$. We remark that the decomposition of $\mathcal{B}_{\mu,\nu} \otimes \mathcal{B}_{\sigma,\tau}$ is given in [9] by generalizing the insertion algorithm of Stembridge's rational

This work was supported by KRF Grant 2008-314-C00004.

tableaux [13, 14] for \mathfrak{gl}_n , but the associated recording tableaux which parameterize the connected components in $\mathcal{B}_{\mu,\nu} \otimes \mathcal{B}_{\sigma,\tau}$ do not imply (1.1) directly.

The multiplicity (1.1) has another representation theoretical interpretation, that is, it coincides with a generalization of Littlewood-Richardson coefficients introduced in [2], whose positivity is equivalent to the existence of a long exact sequence of 6 finite abelian *p*-groups with types $\sigma, \zeta, \mu, \tau, \eta, \nu$. The author would like to thank Alexander Yong for pointing out this connection.

This note is organized as follows. In Section 2, we recall briefly the notion of crystals and a combinatorial realization of $\mathcal{B}_{\mu,\nu}$. In Section 3, we review some combinatorics of Littlewood-Richardson tableaux and an insertion algorithm for $\mathcal{B}_{\mu,\nu}$. Finally, in Section 4, we construct the isomorphism (1.2).

2. Extremal weight crystals

2.1. Let $\mathfrak{gl}_{>0}$ denote the Lie algebra of complex matrices $(a_{ij})_{i,j\in\mathbb{N}}$ with finitely many non-zero entries. Let E_{ij} be the elementary matrix with 1 at the *i*-th row and the *j*-th column and zero elsewhere. Then $\{E_{ij} \mid i, j \geq 1\}$ is a linear basis of $\mathfrak{gl}_{>0}$.

Let $\mathfrak{h} = \bigoplus_{i \ge 1} \mathbb{C} E_{ii}$ be the Cartan subalgebra of $\mathfrak{gl}_{>0}$ and $\langle \cdot, \cdot \rangle$ the natural pairing on $\mathfrak{h}^* \times \mathfrak{h}$. Let $\Pi^{\vee} = \{h_i = E_{ii} - E_{i+1,i+1} | i \ge 1\}$ be the set of simple coroots and $\Pi = \{\alpha_i = \epsilon_i - \epsilon_{i+1} | i \ge 1\}$ the set of simple roots of $\mathfrak{gl}_{>0}$, where $\epsilon_i \in \mathfrak{h}^*$ is determined by $\langle \epsilon_i, E_{jj} \rangle = \delta_{ij}$.

Let $P = \bigoplus_{i \ge 1} \mathbb{Z}\epsilon_i$ be the weight lattice of $\mathfrak{gl}_{>0}$ and $P_+ = \{\Lambda \in P \mid \langle \Lambda, h_i \rangle \ge 0 \ (i \ge 1) \}$ the set of dominant integral weights. The map $\lambda = (\lambda_i)_{i \ge 1} \mapsto \omega_{\lambda} = \sum_{i \ge 1} \lambda_i \epsilon_i$ gives a bijection between \mathscr{P} and P_+ , where \mathscr{P} denotes the set of partitions.

For $i \geq 1$, let r_i be the simple reflection given by $r_i(\Lambda) = \Lambda - \langle \Lambda, h_i \rangle \alpha_i$ for $\Lambda \in \mathfrak{h}^*$. Let W be the Weyl group of $\mathfrak{gl}_{>0}$, that is, the subgroup of $GL(\mathfrak{h}^*)$ generated by r_i for $i \geq 1$. Let P/W be the set of W-orbits in P. For $\Lambda = \sum_{i\geq 1} \Lambda_i \epsilon_i \in P$, let μ and ν be the partitions determined by $\{\Lambda_i | \Lambda_i > 0\}$ and $\{-\Lambda_i | \Lambda_i < 0\}$, respectively. Then the map $W\Lambda \mapsto (\mu, \nu)$ is a bijection from P/W to \mathscr{P}^2 .

2.2. Let us recall briefly the notion of crystals based on [6]. A $\mathfrak{gl}_{>0}$ -crystal is a set B together with the maps wt : $B \to P$, $\varepsilon_i, \varphi_i : B \to \mathbb{Z} \cup \{-\infty\}$ and $\tilde{e}_i, \tilde{f}_i : B \to B \cup \{0\}$ $(i \in \mathbb{N})$ such that for $b \in B$

(1) $\varphi_i(b) = \langle \operatorname{wt}(b), h_i \rangle + \varepsilon_i(b),$

(2) $\varepsilon_i(\widetilde{e}_i b) = \varepsilon_i(b) - 1, \ \varphi_i(\widetilde{e}_i b) = \varphi_i(b) + 1, \ \operatorname{wt}(\widetilde{e}_i b) = \operatorname{wt}(b) + \alpha_i \quad \text{if } \widetilde{e}_i b \neq \mathbf{0},$

(3) $\varepsilon_i(\widetilde{f}_i b) = \varepsilon_i(b) + 1$, $\varphi_i(\widetilde{f}_i b) = \varphi_i(b) - 1$, $\operatorname{wt}(\widetilde{f}_i b) = \operatorname{wt}(b) - \alpha_i$ if $\widetilde{f}_i b \neq \mathbf{0}$,

- (4) $f_i b = b'$ if and only if $b = \tilde{e}_i b'$ for $b, b' \in B$,
- (5) $\widetilde{e}_i b = \widetilde{f}_i b = \mathbf{0}$ if $\varphi_i(b) = -\infty$,

where **0** is a formal symbol and $-\infty$ is the smallest element in $\mathbb{Z} \cup \{-\infty\}$ such that $-\infty + n = -\infty$ for all $n \in \mathbb{Z}$.

A crystal B is an N-colored oriented graph where $b \xrightarrow{i} b'$ if and only if $b' = \tilde{f}_i b$ for $b, b' \in B$ and $i \ge 1$. We say that B is connected if it is connected as a graph and regular if $\varepsilon_i(b) = \max\{k \mid \tilde{e}_i^k b \neq \mathbf{0}\}$ and $\varphi_i(b) = \max\{k \mid \tilde{f}_i^k b \neq \mathbf{0}\}$ for $b \in B$ and $i \ge 1$.

The dual crystal B^{\vee} of B is defined to be the set $\{ b^{\vee} | b \in B \}$ with

$$wt(b^{\vee}) = -wt(b),$$

$$\varepsilon_i(b^{\vee}) = \varphi_i(b), \quad \varphi_i(b^{\vee}) = \varepsilon_i(b),$$

$$\widetilde{e}_i(b^{\vee}) = \left(\widetilde{f}_i b\right)^{\vee}, \quad \widetilde{f}_i(b^{\vee}) = (\widetilde{e}_i b)^{\vee},$$

for $b \in B$ and $i \ge 1$. Here we assume that $\mathbf{0}^{\vee} = \mathbf{0}$.

Let B_1 and B_2 be crystals. The tensor product of B_1 and B_2 is defined to be the set $B_1 \otimes B_2 = \{ b_1 \otimes b_2 | b_i \in B_i \ (i = 1, 2) \}$ with

$$\begin{aligned} \operatorname{wt}(b_1 \otimes b_2) &= \operatorname{wt}(b_1) + \operatorname{wt}(b_2), \\ \varepsilon_i(b_1 \otimes b_2) &= \max\{\varepsilon_i(b_1), \varepsilon_i(b_2) - \langle \operatorname{wt}(b_1), h_i \rangle\}, \\ \varphi_i(b_1 \otimes b_2) &= \max\{\varphi_i(b_1) + \langle \operatorname{wt}(b_2), h_i \rangle, \varphi_i(b_2)\} \\ \widetilde{e}_i(b_1 \otimes b_2) &= \begin{cases} \widetilde{e}_i b_1 \otimes b_2, & \text{if } \varphi_i(b_1) \ge \varepsilon_i(b_2), \\ b_1 \otimes \widetilde{e}_i b_2, & \text{if } \varphi_i(b_1) < \varepsilon_i(b_2), \end{cases} \\ \widetilde{f}_i(b_1 \otimes b_2) &= \begin{cases} \widetilde{f}_i b_1 \otimes b_2, & \text{if } \varphi_i(b_1) < \varepsilon_i(b_2), \\ b_1 \otimes \widetilde{e}_i b_2, & \text{if } \varphi_i(b_1) > \varepsilon_i(b_2), \end{cases} \\ \widetilde{f}_i(b_1 \otimes b_2) &= \begin{cases} \widetilde{f}_i b_1 \otimes b_2, & \text{if } \varphi_i(b_1) > \varepsilon_i(b_2), \\ b_1 \otimes \widetilde{f}_i b_2, & \text{if } \varphi_i(b_1) > \varepsilon_i(b_2), \end{cases} \end{aligned}$$

for $b_1 \otimes b_2 \in B_1 \otimes B_2$ and $i \ge 1$, where we assume that $\mathbf{0} \otimes b_2 = b_1 \otimes \mathbf{0} = \mathbf{0}$. Then $B_1 \otimes B_2$ is also a crystal.

A map $\psi: B_1 \to B_2$ is called an *isomorphism of crystals* if it is a bijection, preserves wt, ε_i and φ_i and commutes with \tilde{e}_i , \tilde{f}_i $(i \ge 1)$, where we assume that $\psi(\mathbf{0}) = \mathbf{0}$. In this case, we say that B_1 is isomorphic to B_2 and write $B_1 \simeq B_2$. For example, $(B_1 \otimes B_2)^{\vee} \simeq B_2^{\vee} \otimes B_1^{\vee}$, where $(b_1 \otimes b_2)^{\vee}$ is mapped to $b_2^{\vee} \otimes b_1^{\vee}$.

For $b_i \in B_i$ (i = 1, 2), we say that b_1 is equivalent to b_2 , and write $b_1 \equiv b_2$ if there exists an isomorphism of crystals $C(b_1) \to C(b_2)$ sending b_1 to b_2 , where $C(b_i)$ denotes the connected component of B_i including b_i (i = 1, 2).

2.3. We identify a partition with a Young diagram as usual (see [11]), where we enumerate rows and columns from the top and the left, respectively. Let \mathcal{A} be a linearly ordered set. A tableau T obtained by filling a skew Young diagram λ/μ with entries in \mathcal{A} is called a *semistandard tableau of shape* λ/μ if the entries in each row are weakly increasing from left to right, and the entries in each column are strictly increasing from top to bottom. We denote by $SST_{\mathcal{A}}(\lambda/\mu)$ the set of all semistandard tableaux of shape λ/μ with entries in \mathcal{A} (cf.[3, 11]).

For $T \in SST_{\mathcal{A}}(\lambda/\mu)$, let $w(T)_{col}$ (resp. $w(T)_{row}$) denote the word obtained by reading the entries of T column by column (resp. row by row) from right to left (resp. top to bottom), and in each column (resp. row) from top to bottom (resp. right to left). For $a \in \mathcal{A}$, we denote by $(a \to T)$ (resp. $(T \leftarrow a)$) the tableau obtained by the Schensted column (resp. row) insertion (see for example [3, Appendix A.2]). For a finite word $w = w_1 \dots w_r$ with letters in \mathcal{A} , we let $(w \to T) = (w_r \to (\dots (w_1 \to T) \dots))$ and $(T \leftarrow w) = ((\dots (T \leftarrow w_1) \dots) \leftarrow w_r)$. For semistandard tableaux S and T, we define $(T \to S)$ (resp. $(S \leftarrow T)$) to be $(w(T)_{col} \to S)$ (resp. $S \leftarrow (w(T)_{row})^{rev}$) where w^{rev} is the reverse word of w.

We denote by T^{\vee} the tableau obtained from T by 180°-rotation and replacing each entry t with t^{\vee} . Then T^{\vee} is a semistandard tableau with entries in \mathcal{A}^{\vee} , where $\mathcal{A}^{\vee} = \{a^{\vee} | a \in \mathcal{A}\}$ and $a^{\vee} < b^{\vee}$ if and only if b < a for $a, b \in \mathcal{A}$. Here we use the convention $(t^{\vee})^{\vee} = t$ and hence $(T^{\vee})^{\vee} = T$.

Let \mathcal{A} be either \mathbb{N} or \mathbb{N}^{\vee} with the following regular crystal structures

$$1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \cdots,$$

$$\cdots \xrightarrow{3} 3^{\vee} \xrightarrow{2} 2^{\vee} \xrightarrow{1} 1^{\vee}.$$

where wt(k) = ϵ_k and wt(k^{\vee}) = $-\epsilon_k$ for $k \geq 1$. Then the set of all finite words with letters in \mathcal{A} is a regular crystal, where we identify each word of length r with an element in $\mathcal{A}^{\otimes r} = \mathcal{A} \otimes \cdots \otimes \mathcal{A}$ (r times). Now, the injective image of $SST_{\mathcal{A}}(\lambda/\mu)$ in the set of finite words under the map $T \mapsto w(T)_{col}$ (or $w(T)_{row}$) together with $\{\mathbf{0}\}$ is invariant under \tilde{e}_i, \tilde{f}_i . Hence $SST_{\mathcal{A}}(\lambda/\mu)$ is a regular crystal [8]. Also, the row or column insertion is compatible with the crystal structure on tableaux in the following sense [10];

$$(a \to T) \equiv T \otimes a, \quad (T \leftarrow a) \equiv a \otimes T,$$

for $a \in \mathcal{A}$ and $T \in SST_{\mathcal{A}}(\lambda)$, and hence $(T \to S) \equiv S \otimes T$, $(S \leftarrow T) \equiv T \otimes S$ for $S \in SST_{\mathcal{A}}(\mu)$.

2.4. For $\Lambda \in P$, let $\mathbf{B}(\Lambda)$ be the crystal base of the extremal weight $U_q(\mathfrak{gl}_{>0})$ -module with extremal weight Λ . Then $\mathbf{B}(\Lambda)$ is a regular crystal, and $\mathbf{B}(\Lambda) \simeq \mathbf{B}(w\Lambda)$ for $w \in W$. Moreover, if $\Lambda \in P_+$ (resp. $-\Lambda \in P_+$), then $\mathbf{B}(\Lambda)$ is isomorphic to the crystal base of the irreducible highest (resp. lowest) weight $U_q(\mathfrak{gl}_{>0})$ -module with highest (resp. lowest) weight Λ (see [5, 7] for detailed exposition of extremal weight modules and their crystal bases).

Recall that for $\lambda \in \mathscr{P}$

$$\mathbf{B}(\omega_{\lambda}) \simeq SST_{\mathbb{N}}(\lambda), \quad \mathbf{B}(-\omega_{\lambda}) \simeq \mathbf{B}(\omega_{\lambda})^{\vee} \simeq SST_{\mathbb{N}^{\vee}}(\lambda^{\vee}),$$

where λ^{\vee} is the skew Young diagram obtained from $\lambda \in \mathscr{P}$ by 180°-rotation, and $SST_{\mathbb{N}}(\lambda)$ is connected with a unique highest weight element H_{λ} , where each *i*-th row is filled with *i* for $i \geq 1$ [8].

Now, for $\mu, \nu \in \mathscr{P}$, we define $\mathcal{B}_{\mu,\nu}$ to be the set of bitableaux (S,T) such that (E1) $S \in SST_{\mathbb{N}}(\mu)$ and $T \in SST_{\mathbb{N}^{\vee}}(\nu^{\vee})$, (E2) for each $k \geq 1$

(E2) for each $k \ge 1$,

$$s(k) + t(k) \le k$$

where s(k) is the number of entries in the left-most column of S no more than k, and t(k) is the number of entries in the right-most column of T no less than k^{\vee} .

Since $\mathcal{B}_{\mu,\nu} \subset SST_{\mathbb{N}}(\mu) \otimes SST_{\mathbb{N}^{\vee}}(\nu^{\vee})$, we can apply $\tilde{e}_i, \tilde{f}_i \ (i \ge 1)$ on $\mathcal{B}_{\mu,\nu}$. Then $\mathcal{B}_{\mu,\nu} \cup \{\mathbf{0}\}$ is stable under $\tilde{e}_i, \tilde{f}_i \ (i \ge 1)$ and hence a regular crystal. Moreover, we have the following [9, Theorem 3.5].

Theorem 2.1. For $\mu, \nu \in \mathscr{P}$,

- (1) $\mathfrak{B}_{\mu,\nu}$ is connected,
- (2) $\mathfrak{B}_{\mu,\nu} \simeq \mathbf{B}(\Lambda)$, where $W\Lambda \in P/W$ corresponds to $(\mu,\nu) \in \mathscr{P}^2$.

3. INSERTION ALGORITHM

3.1. For $\lambda, \mu, \nu \in \mathscr{P}$, let $\mathbf{LR}^{\lambda}_{\mu\nu}$ be the set of tableaux U in $SST_{\mathbb{N}}(\lambda/\mu)$ such that for $i \geq 1$

- (LR1) the number of *i*'s in U is ν_i ,
- (LR2) the number of *i*'s in $w_1 \dots w_k$ is no less than that of i+1's in $w_1 \dots w_k$ for $1 \le k \le r$, where $w(U)_{col} = w_1 \dots w_r$.

We call $\mathbf{LR}^{\lambda}_{\mu\nu}$ the set of *Littlewood-Richardson tableaux of shape* λ/μ with content ν and put $c^{\lambda}_{\mu\nu} = |\mathbf{LR}^{\lambda}_{\mu\nu}|$ [11].

Suppose that \mathcal{A} is a linearly ordered set. For $S \in SST_{\mathcal{A}}(\mu)$ and $T \in SST_{\mathcal{A}}(\nu)$, let λ be the shape of $(T \to S)$ and $w(T)_{col} = w_1 \cdots w_r$. If w_i is in the kth row of T and inserted into $(w_{i-1} \to (\cdots (w_1 \to T)))$ to create a node in λ/μ , then let us fill the node with k. We denote the resulting tableau in $SST_{\mathbb{N}}(\lambda/\mu)$ by $(T \to S)_R$ and call it the *recording tableau* of $(T \to S)$. Then we have a bijection

(3.1)
$$SST_{\mathcal{A}}(\mu) \times SST_{\mathcal{A}}(\nu) \xleftarrow{1-1} \bigsqcup_{\lambda \in \mathscr{P}} SST_{\mathcal{A}}(\lambda) \times \mathbf{LR}^{\lambda}_{\mu\nu},$$

where (S,T) corresponds to $((T \to S), (T \to S)_R)$ [15]. Moreover, if we assume that \mathcal{A} is either \mathbb{N} or \mathbb{N}^{\vee} , then the above bijection commutes with \tilde{e}_i and \tilde{f}_i $(i \ge 1)$ (cf.[4, 10]), where \tilde{e}_i and \tilde{f}_i act on the first component of $SST_{\mathcal{A}}(\lambda) \times \mathbf{LR}^{\lambda}_{\mu\nu}$. Summarizing, we have

Proposition 3.1. Let $\mu, \nu \in \mathscr{P}$ be given.

(1) The map sending $S \otimes T$ to $((T \to S), (T \to S)_R)$ is an isomorphism of crystals

$$SST_{\mathbb{N}}(\mu) \otimes SST_{\mathbb{N}}(\nu) \xrightarrow{\sim} \bigsqcup_{\lambda \in \mathscr{P}} SST_{\mathbb{N}}(\lambda) \times \mathbf{LR}^{\lambda}_{\mu\nu}$$

(2) The map sending $S \otimes T$ to $((S^{\vee} \to T^{\vee})^{\vee}, (S^{\vee} \to T^{\vee})_R)$ is an isomorphism of crystals

$$SST_{\mathbb{N}^{\vee}}(\mu^{\vee}) \otimes SST_{\mathbb{N}^{\vee}}(\nu^{\vee}) \xrightarrow{\sim} \bigsqcup_{\lambda \in \mathscr{P}} SST_{\mathbb{N}^{\vee}}(\lambda^{\vee}) \times \mathbf{LR}^{\lambda}_{\nu \mu}$$

Remark 3.2. (1) Let $U \in SST_{\mathbb{N}}(\lambda/\mu)$ be given. Then as a crystal element, $U \in \mathbf{LR}^{\lambda}_{\mu\nu}$ if and only if $U \equiv H_{\nu}$.

(2) For $U \in \mathbf{LR}^{\lambda}_{\mu\nu}$, one may identify U with a unique $T \in SST_{\mathbb{N}}(\nu)$, say $\iota(U)$, such that the number of k's in the *i*-th row of T is equal to the number of *i*'s in the *k*-th row of λ/μ for $i, k \geq 1$. Equivalently, $H_{\mu} \otimes \iota(U) \equiv H_{\lambda}$ [12].

3.2. Suppose that \mathcal{A} and \mathcal{B} are two linearly ordered sets. Let U be a tableau of shape λ/μ with entries in $\mathcal{A} \sqcup \mathcal{B}$, satisfying the following conditions;

- (S1) if $u, u' \in \mathcal{X}$ are entries of U and u is northwest of u', then $u \leq u'$,
- (S2) in each column of U, entries in \mathfrak{X} increase strictly from top to bottom,

where $\mathcal{X} = \mathcal{A}$ or \mathcal{B} , and we say that u is northwest of u' provided the row and column indices of u are no more than those of u'. Suppose that $a \in \mathcal{A}$ and $b \in \mathcal{B}$ are two adjacent entries in U such that a is placed above or to the left of b. Interchanging a and b is called a *switching* if the resulting tableau still satisfies the conditions (S1) and (S2).

For $S \in SST_{\mathcal{A}}(\mu)$ and $T \in SST_{\mathcal{B}}(\lambda/\mu)$, we denote by S * T be the tableau in $SST_{\mathcal{A}\sqcup\mathcal{B}}(\lambda)$ obtained by gluing S and T. Let U be a tableau obtained from S * T by applying switching procedures as far as possible. Then it is shown in [1, Theorems 2.2 and 3.1] that

- (1) U = T' * S', where $T' \in SST_{\mathcal{B}}(\nu)$ and $S' \in SST_{\mathcal{A}}(\lambda/\nu)$ for some ν ,
- (2) U is uniquely determined by S and T,
- (3) when $\mathcal{A} = \mathbb{N}, S' \in \mathbf{LR}^{\lambda}_{\nu\mu}$ if and only if $S = H_{\mu}$.

Suppose that $\mathcal{A} = \mathbb{N}$ and $S = H_{\mu}$. Put

$$j(T) = T', \qquad j(T)_R = S'.$$

Then the map $T \mapsto (j(T), j(T)_R)$ gives a bijection [1]

(3.2)
$$SST_{\mathcal{B}}(\lambda/\mu) \stackrel{1-1}{\longleftrightarrow} \bigsqcup_{\nu \in \mathscr{P}} SST_{\mathcal{B}}(\nu) \times \mathbf{LR}^{\lambda}_{\nu\,\mu}.$$

If $\mathcal{B} = \mathbb{N}$, then the map $Q \mapsto j(Q)_R$ restricts to a bijection from $\mathbf{LR}^{\lambda}_{\mu\nu}$ to $\mathbf{LR}^{\lambda}_{\nu\mu}$. Moreover, if \mathcal{B} is either \mathbb{N} or \mathbb{N}^{\vee} , then we can check that $T \equiv j(T)$ and $j(T)_R$ is invariant under \tilde{e}_i and \tilde{f}_i $(i \geq 1)$. Hence we have the following.

Proposition 3.3. Suppose that \mathcal{B} is either \mathbb{N} or \mathbb{N}^{\vee} . For a skew Young diagram λ/μ , we have an isomorphism of crystals

$$SST_{\mathcal{B}}(\lambda/\mu) \xrightarrow{\sim} \bigsqcup_{\nu \in \mathscr{P}} SST_{\mathcal{B}}(\nu) \times \mathbf{LR}^{\lambda}_{\nu\mu}$$

where T is mapped to $(j(T), j(T)_R)$.

3.3. Let us review an insertion algorithm for extremal weight crystal elements [9].

3.3.1. Let $\mu, \nu \in \mathscr{P}$ be given. For $a \in \mathbb{N}$ and $(S,T) \in \mathcal{B}_{\mu,\nu}$, we define $(a \to (S,T))$ in the following way;

Suppose that S is empty and T is a single column tableau. Let (T', a') be the pair obtained by the following process;

- If T contains a[∨], (a + 1)[∨],..., (b − 1)[∨] but not b[∨], then T' is the tableau obtained from T by replacing a[∨], (a + 1)[∨],..., (b − 1)[∨] with (a + 1)[∨], (a + 2)[∨],..., b[∨], and put a' = b.
- (2) If T does not contain a^{\vee} , then leave T unchanged and put a' = a.

Now, we suppose that S and T are arbitrary.

- (1) Apply the above process to the leftmost column of T with a.
- (2) Repeat (1) with a' and the next column to the right.
- (3) Continue this process to the right-most column of T to get a tableau T' and a''.
- (4) Define

$$(a \rightarrow (S,T)) = ((a'' \rightarrow S), T').$$

Then $(a \to (S, T)) \in \mathcal{B}_{\sigma,\nu}$ for some $\sigma \in \mathscr{P}$ with $|\sigma/\mu| = 1$. For a finite word $w = w_1 \dots w_r$ with letters in \mathbb{N} , we let $(w \to (S, T)) = (w_r \to (\dots (w_1 \to (S, T)) \dots))$.

3.3.2. For $a \in \mathbb{N}$ and $(S,T) \in \mathcal{B}_{\mu,\nu}$, we define $((S,T) \leftarrow a^{\vee})$ to be the pair (S',T') obtained in the following way;

- (1) If the pair $(S, (T^{\vee} \leftarrow a)^{\vee})$ satisfies the condition (E2) in Section 2.4, then put S' = S and $T' = (T^{\vee} \leftarrow a)^{\vee}$.
- (2) Otherwise, choose the smallest k such that a_k is bumped out of the k-th row in the row insertion of a into T^{\vee} and the insertion of a_k into the (k + 1)-th row violates the condition (E2) in Section 2.4.
- (2-a) Stop the row insertion of a into T^{\vee} when a_k is bumped out and let T' be the resulting tableau after taking \vee .
- (2-b) Remove a_k in the left-most column of S, which necessarily exists, and then apply the *jeu de taquin* (see for example [3, Section 1.2]) to obtain a tableau S'.

In this case, $((S,T) \leftarrow a^{\vee}) \in \mathcal{B}_{\sigma,\tau}$, where either (1) $|\mu/\sigma| = 1$ and $\tau = \nu$, or (2) $\sigma = \mu$ and $|\tau/\nu| = 1$. For a finite word $w = w_1 \dots w_r$ with letters in \mathbb{N}^{\vee} , we let $((S,T) \leftarrow w) = ((\dots ((S,T) \leftarrow w_1) \dots) \leftarrow w_r)$.

3.3.3. Let $\mu, \nu, \sigma, \tau \in \mathscr{P}$ be given. For $(S,T) \in \mathcal{B}_{\mu,\nu}$ and $(S',T') \in \mathcal{B}_{\sigma,\tau}$, we define

$$((S',T') \to (S,T)) = ((w(S')_{\text{col}} \to (S,T)) \leftarrow w(T')_{\text{col}}).$$

Then $((S', T') \to (S, T)) \in \mathcal{B}_{\zeta,\eta}$ for some $(\zeta, \eta) \in \mathscr{P}^2$. Assume that $w(S')_{col} = w_1 \dots w_s$ and $w(T')_{col} = w_{s+1} \dots w_{s+t}$. For $1 \leq i \leq s+t$, let

$$(S^{i}, T^{i}) = \begin{cases} w_{i} \to (\cdots (w_{1} \to (S, T))), & \text{if } 1 \leq i \leq s, \\ (((S^{s}, T^{s}) \leftarrow w_{s+1}) \cdots) \leftarrow w_{i}, & \text{if } s+1 \leq i \leq s+t, \end{cases}$$

and $(S^0, T^0) = (S, T)$. We define

$$((S',T') \to (S,T))_R = (U,V),$$

where (U, V) is the pair of tableaux with entries in $\mathbb{Z}^{\times} = \mathbb{Z} \setminus \{0\}$ determined by the following process;

- (1) U is of shape σ and V is of shape τ .
- (2) Let 1 ≤ i ≤ s. If w_i is inserted into (Sⁱ⁻¹, Tⁱ⁻¹) to create a dot (or box) in the k-th row of the shape of Sⁱ⁻¹, then we fill the dot in σ corresponding to w_i with k.
- (3) Let $s + 1 \le i \le s + t$. If w_i is inserted into (S^{i-1}, T^{i-1}) to create a dot in the k-th row (from the bottom) of the shape of T^{i-1} , then we fill the dot in τ corresponding to w_i with -k. If w_i is inserted into (S^{i-1}, T^{i-1}) to remove a dot in the k-th row of the shape of S^{i-1} , then we fill the corresponding dot in τ with k.

We call $((S', T') \to (S, T))_R$ the recording tableau of $((S', T') \to (S, T))$. By [9, Theorem 4.10], we have the following.

Proposition 3.4. Under the above hypothesis, we have

- $(1) \ ((S',T') \to (S,T)) \equiv (S,T) \otimes (S',T'),$
- (2) $((S',T') \to (S,T))_R \in SST_{\mathbb{N}}(\sigma) \times SST_{\mathbb{Z}^{\times}}(\tau),$
- (3) the recording tableaux are constant on the connected component of $\mathcal{B}_{\mu,\nu} \otimes \mathcal{B}_{\sigma,\tau}$ including $(S,T) \otimes (S',T')$,

where the linear ordering on \mathbb{Z}^{\times} is given by $1 \prec 2 \prec 3 \prec \cdots \prec -3 \prec -2 \prec -1$.

Example 3.5. Consider

$$(S,T) = \begin{pmatrix} 2 & 3 & 4 & 5^{\vee} & 5^{\vee} \\ 3 & 5 & , & 3^{\vee} & 2^{\vee} \end{pmatrix}, \quad (S',T') = \begin{pmatrix} 3 & 3 & 4^{\vee} \\ 5 & , & 3^{\vee} & 1^{\vee} \end{pmatrix}.$$

Since $w(S')_{col} = 335$ and $w(T')_{col} = 4^{\vee} 1^{\vee} 3^{\vee}$, we have

$$(w(S')_{\text{col}} \rightarrow (S,T)) = \begin{pmatrix} 2 & 3 & 3 & 4 & \\ 3 & 5 & & \\ 4 & & & 6^{\vee} & 5^{\vee} \\ 6 & & & 4^{\vee} & 2^{\vee} \end{pmatrix}$$

and

$$((w(S')_{col} \to (S,T)) \leftarrow w(T')_{col}) = \begin{pmatrix} 2 & 3 & 3 & 4 & 5^{\vee} \\ 3 & 5 & , & 6^{\vee} & 4^{\vee} \\ 4 & & 4^{\vee} & 3^{\vee} & 1^{\vee} \end{pmatrix}.$$

Hence,

$$((S',T') \to (S,T)) = \begin{pmatrix} 3 & 3 & 3 & 4 & 5^{\vee} \\ 4 & 5 & , & 6^{\vee} & 4^{\vee} \\ 6 & & 4^{\vee} & 3^{\vee} & 1^{\vee} \end{pmatrix},$$
$$((S',T') \to (S,T))_R = \begin{pmatrix} 1 & 3 & 4 & -3 \\ 4 & , & -1 & \end{pmatrix}.$$

Remark 3.6. For $(U, V) \in SST_{\mathbb{N}}(\sigma) \times SST_{\mathbb{Z}^{\times}}(\tau)$, an equivalent condition for (U, V) to be a recording tableau, that is, $(U, V) = ((S', T') \to (S, T))_R$ for some $(S, T) \in \mathcal{B}_{\mu,\nu}$ and $(S', T') \in \mathcal{B}_{\sigma,\tau}$, can be found in [9, Section 4.3].

4. MAIN THEOREM

To prove our main theorem, let us first describe the decompositions of $SST_{\mathbb{N}^{\vee}}(\nu^{\vee}) \otimes SST_{\mathbb{N}}(\mu)$ and $SST_{\mathbb{N}}(\mu) \otimes SST_{\mathbb{N}^{\vee}}(\nu^{\vee})$ for $\mu, \nu \in \mathscr{P}$.

Proposition 4.1. For $\mu, \nu \in \mathcal{P}$, we have an isomorphism of crystals

 $SST_{\mathbb{N}^{\vee}}(\nu^{\vee}) \otimes SST_{\mathbb{N}}(\mu) \xrightarrow{\sim} \mathcal{B}_{\mu,\nu},$

where $T \otimes S$ is mapped to $((S, \emptyset) \to (\emptyset, T))$.

Proof. For $T \otimes S \in SST_{\mathbb{N}^{\vee}}(\nu^{\vee}) \otimes SST_{\mathbb{N}}(\mu)$, it follows from Proposition 3.4 (2) that

(1) $((S, \emptyset) \to (\emptyset, T)) \in \mathcal{B}_{\mu,\nu},$ (2) $((S, \emptyset) \to (\emptyset, T))_R = (H_\mu, \emptyset).$

Therefore, we have a map

$$SST_{\mathbb{N}^{\vee}}(\nu^{\vee}) \otimes SST_{\mathbb{N}}(\mu) \longrightarrow \mathcal{B}_{\mu,\nu} \times \{ (H_{\mu}, \emptyset) \}$$

sending $T \otimes S$ to $(((S, \emptyset) \to (\emptyset, T)), ((S, \emptyset) \to (\emptyset, T))_R)$. Since the insertion algorithm is reversible [9, Proposition 4.9], the above map is indeed a bijection and hence an isomorphism of crystals by Proposition 3.4 (1).

Next, suppose that $S \otimes T \in SST_{\mathbb{N}}(\mu) \otimes SST_{\mathbb{N}^{\vee}}(\nu^{\vee})$ is given. Let $U^{>0}$ (resp. $U^{<0}$) be the subtableau in $((\emptyset, T) \to (S, \emptyset))_R$ consisting of positive (resp. negative) entries. We define

$$\theta(S \otimes T) = (\iota^{-1}(U^{>0}), j(j(U^{<0})_R)_R)$$

(see Remark 3.2 (2) and Section 3.2 (3.2)).

Proposition 4.2. For $\mu, \nu \in \mathscr{P}$, we have an isomorphism of crystals

$$SST_{\mathbb{N}}(\mu) \otimes SST_{\mathbb{N}^{\vee}}(\nu^{\vee}) \xrightarrow{\sim} \bigsqcup_{\lambda,\sigma,\tau \in \mathscr{P}} \mathcal{B}_{\sigma,\tau} \times \mathbf{LR}^{\mu}_{\sigma\lambda} \times \mathbf{LR}^{\nu}_{\lambda\tau},$$

where $S \otimes T$ is mapped to $(((\emptyset, T) \to (S, \emptyset)), \theta(S \otimes T)).$

Proof. For $S \otimes T \in SST_{\mathbb{N}}(\mu) \otimes SST_{\mathbb{N}^{\vee}}(\nu^{\vee})$, suppose that $((\emptyset, T) \to (S, \emptyset)) \in \mathcal{B}_{\sigma,\tau}$ for some $\sigma, \tau \in \mathscr{P}$.

First, note that $U^{>0} \in SST_{\mathbb{N}}(\lambda)$ for some $\lambda \subset \nu$. Then it is not difficult to check that $\iota^{-1}(U^{>0}) \in \mathbf{LR}^{\mu}_{\sigma\lambda}$ (see Remark 3.2). Next, consider $U^{<0} \in SST_{\mathbb{Z}_{<0}}(\nu/\lambda)$. Then $(w(U^{<0})_{col})^{rev}$ satisfies (LR1) with respect to τ and (LR2), ignoring – sign in each letter. Let L_{τ} be the tableau in $SST_{\mathbb{Z}_{<0}}(\tau)$, where the *i*-th entry from the bottom in each column is -i. Considering the Knuth equivalence on the set of words with letters in $\mathbb{Z}_{<0}$ (cf.[3]), we have $j(U^{<0}) = L_{\tau}$ and $j(U^{<0})_R \in \mathbf{LR}^{\nu}_{\tau\lambda}$ by (3.2). So,we get $j(j(U^{<0})_R)_R \in \mathbf{LR}^{\nu}_{\lambda\tau}$.

Now, we have a map

$$SST_{\mathbb{N}}(\mu) \otimes SST_{\mathbb{N}^{\vee}}(\nu^{\vee}) \longrightarrow \bigsqcup_{\lambda, \sigma, \tau \in \mathscr{P}} \mathcal{B}_{\sigma, \tau} \times \mathbf{LR}^{\mu}_{\sigma\lambda} \times \mathbf{LR}^{\nu}_{\lambda\tau},$$

sending $S \otimes T$ to $(((\emptyset, T) \to (S, \emptyset)), \theta(S \otimes T))$. Since the insertion algorithm is reversible [9, Proposition 4.9], the above map is a bijection and therefore an isomorphism of crystals by Proposition 3.4 (1) and (3).

Now, we are in a position to state our main result in this note.

Theorem 4.3. For $(\mu, \nu), (\sigma, \tau) \in \mathscr{P}^2$, we have an isomorphism of crystals

$$\mathcal{B}_{\mu,
u}\otimes\mathcal{B}_{\sigma, au}\simeq \bigsqcup_{(\zeta,\eta)\in\mathscr{P}^2}\bigsqcup_{lpha,eta,\gamma\in\mathscr{P}}\mathcal{B}_{\zeta,\eta} imes\mathbf{LR}^{\zeta}_{\sigma\,lpha} imes\mathbf{LR}^{\mu}_{lphaeta} imes\mathbf{LR}^{ au}_{eta\,\gamma} imes\mathbf{LR}^{ au}_{\gamma\,
u}.$$

Proof. Note that $\mathcal{B}_{\mu,\emptyset} = SST_{\mathbb{N}}(\mu)$ and $\mathcal{B}_{\emptyset,\nu} = SST_{\mathbb{N}^{\vee}}(\nu^{\vee})$. Then as a crystal, we have

Corollary 4.4. The multiplicity of $\mathcal{B}_{\zeta,\eta}$ in $\mathcal{B}_{\mu,\nu} \otimes \mathcal{B}_{\sigma,\tau}$ is given by

$$\sum_{\alpha,\beta,\gamma\in\mathscr{P}} c^{\zeta}_{\sigma\,\alpha} c^{\mu}_{\alpha\,\beta} c^{\tau}_{\beta\,\gamma} c^{\eta}_{\gamma\,\nu}.$$

References

- G. Benkart, F. Sottile, J. Stroomer, Tableau switching: algorithms and applications, J. Combin. Theory Ser. A 76 (1996) 11-43.
- [2] C. Chindris, Quivers, long exact sequences and Horn type inequalities, J. Algebra 320 (2008), 128-157.
- [3] W. Fulton, Young tableaux, London Mathematical Society Student Texts, 35. Cambridge University Press, Cambridge, 1997.
- [4] S.-J. Kang, J.-H. Kwon, Tensor product of crystal bases for $U_q(\mathfrak{gl}(m,n))$ -modules, Comm. Math. Phys. **224** (2001) 705-732.
- [5] M. Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), 383-413.
- [6] M. Kashiwara, On crystal bases, Representations of groups, CMS Conf. Proc., 16, Amer. Math. Soc., Providence, RI, (1995), 155–197.
- [7] M. Kashiwara, On level-zero representations of quantized affine algebras, Duke Math. J. 112 (2002), 117-175.
- [8] M. Kashiwara, T. Nakashima, Crystal graphs for representations of the q-analogue of classical Lie algebras, J. Algebra 165 (1994), 295-345.
- [9] J.-H. Kwon, Differential operators and crystals of extremal weight modules, Adv. Math. 222 (2009), 1339-1369.
- [10] B. Leclerc, J.-Y. Thibon, The Robinson-Schensted correspondence, crystal bases, and the quantum straightening at q = 0, Electron. J. Combin. 3 (1996) (electronic).
- [11] I. G. Macdonald, Symmetric functuins and Hall polynomials, Oxford University Press, 2nd ed., 1995.
- [12] T. Nakashima, Crystal base and a generalization of the Littlewood-Richardson rule for the classical Lie algebras, Comm. Math. Phys. 154 (1993), no. 2, 215-243.
- [13] J. R. Stembridge, Rational tableaux and the tensor algebra of \mathfrak{gl}_n , J. Combin. Theory Ser. A 46 (1987) 79-120.
- [14] J. Stroomer, Insertion and the multiplication of rational Schur functions, J. Combin. Theory Ser. A 65 (1994) 79-116.
- [15] G. P. Thomas, On Schensted's construction and the multiplication of Schur functions, Adv. Math. 30 (1978), 8-32.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SEOUL, SEOUL 130-743, KOREA E-mail address: jhkwon@uos.ac.kr