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Abstract

We shall consider BVP to a 3-dimensional radially symmetric lin-
ear wave equation with a small time-periodic potential

$\partial_{t}^{2}u-\triangle u+rau+\epsilon f(x, \omega t)u=0,$ $(x, t)\in D\cross R_{t}^{1}$ ,

where $D$ is the 3-ball, $f(x, \theta)$ is $2\pi$-periodic in $\theta$ and smooth in $(x, \theta)$ ,
$ra$ is a positive constant, $\epsilon$ is a small parameter and $\omega$ is a positive
constant depending on $\epsilon$ . We shall show that BVP has families of
periodic solutions with periods $2\pi’\omega(\epsilon)$ for $\epsilon\in\Lambda$ , where $\Lambda$ is contained
in a neighborhood of $0$ , and is uncountable and has Lebesgue measure
zero. The solutions bifurcate from each normal mode of $\partial_{t}^{2}u-\triangle u+$

$rau=0$ .

1 Introduction
Let $D$ be a 3-ball with radius $a$ and center at the origin and $\partial D$ be its

boundary. Let $\Omega=D\cross R^{1}$ and $\partial\Omega$ be the boundary of $\Omega$ . Let $\triangle$ be the
3-dimensional Laplacian. Let all functions with space variable $x$ be radially
symmetric in the space variable $x\in D$ .

Consider a time-periodic BVP for a 3-dimensional linear wave equation
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with a small time-periodic potential

$\{\begin{array}{l}(\partial_{t}^{2}-\triangle+m)u+\epsilon f(x, \omega t)u=0, (x, t)\in\Omega,u(x, t)=0, (x, t)\in\partial\Omega,u(x, t+2\pi/\omega)=u(x, t), (x, t)\in\Omega,\end{array}$ (P)

where $\epsilon$ is a small parameter and $\omega>0$ is a constant depending on $\epsilon$ deter-
mined later. Here we assume that $m$ is a positive constant i. e., we deal with
the nondegenerate case $(m\neq 0)$ .

Yamaguchi [Yal] treated the degenerate case $(m=0),$ $D$ is a bounded
interval $(0, \pi)$ and $f$ is a sufficiently smooth function of only $\theta,$ $i.e$ . $f=f(\omega t)$ ,
and showed that for any small $\epsilon$ every solution of IBVP (BVP (P) with initial
condition) is almost periodic in $t$ , provided that the eigenvalues of $-\triangle$ and
the periods of $f$ satisfy some Diophantine condition. Note that in this case
the frequencies $\omega$ are independent of $\epsilon$ , while the frequencies except $\omega$ of
the almost periodic solutions are the smooth functions of $\epsilon$ perturbed from
the eigenvalues $\mu_{l}^{2}$ of $-\triangle$ . This statement holds for almost all frequencies
$\omega>0$ , since the above Diophantine condition holds for almost all $\omega\in R^{1}$ .
This is proved by using the reduction theory of one-dimensional Schr\"odinger
equations with a quasiperiodic potential based on KAM method (Parashuk
[Pa] $)$ . However this effective method is not able to be applied to the case
where $f$ depends on $x$ as well as $t$ . Moreover it is pointed out ([Yal]) that
even in case $f$ depends on only $t$ , there exist $\omega$ such that every nontrivial
solution in some family of solutions of IBVP ((P) with IC) is unbounded
(hence not periodic) in $t\in R^{1}$ . Hence there exist no periodic solutions.

Consider the eigenvalue problem to $-\triangle+m$

$\{\begin{array}{ll}(-\triangle+m)\phi(x)=\mu^{2}\phi(x), x\in D,\phi(x)=0, x\in\partial D. \end{array}$ (EP)

Let $\{\mu_{l}^{2}\}$ and $\{\phi_{l}(x)\}$ be the sequences of the eigenvalues and the correspond-
ing eigenfunctions of (EP). It is well-known that $\{\mu_{l}\}$ is written in the form
$\mu_{l}=\sqrt{(l\pi}/a)^{2}+m$. $\{\phi_{l}(x)\}$ is taken as a CONS in $L_{rad}^{2}(D)$ and then it
also turns out to be a complete and orthogonal system in $H_{0,rad}^{1}(D)$ . Here
$L_{rad}^{2}(D)$ and $H_{0,rad}^{1}(D)$ are the subspaces of the usual Lebesgue and Sobolev
spaces $L^{2}(D)$ and $H_{0}^{1}(D)$ respectively whose elements are radially symmetric
in $D$ . In this paper we set $a=\pi$ for simplicity. Then $\mu_{l}$ is of the form
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$\sqrt{l^{2}+m}$ . Later we study number-theoretic property of $\mu_{l}$ that is essentially
important in the existence of periodic solutions.

Consider the case where Eq. has no potential i. e., $\epsilon=0$ . In this case
BVP (P) has infinitely many normal modes

$\cos\mu_{l}t\phi_{l}(x)$ , $l=1,2,$ $\cdots$

with the period $2\pi/\mu_{l}$ . The purpose of this paper is to show that for each
normal mode there exists a family of periodic solutions of $BVP(P)$ that
bifurcates from the normal mode. It is shown that each family of the periodic
solutions and the correspondind periods $\omega$ are parametrized by $\epsilon$ contained in
a suitable uncountable and Lebesgue measure zero set in a neighborhood of $0$ .
The solution and its period tend to the normal mode of the form $\cos\mu_{j}t\phi_{j}(x)$

and the period $2\pi\mu_{j}$ of the normal mode respectively as $\epsilonarrow 0$ .

Assumptions on $f(x, \theta)$ and $m$

We assume the following condition on the time-periodic potential $f(x, \theta)$ .
Let $s$ be a positive integer.

(A) $f(x, \theta)$ is nonnegative and of $C^{s}$-class in $(x, \theta)\in D\cross R^{1}$ , and $2\pi$-periodic
and even in $\theta\in R^{1}$ .

From now on without loss of generality we assume that $f(x, \theta)$ is not
identically zero.

Next we assume a number-theoretic condition on $m$ in the same way as
in [Ya3].

Remark 1.1 As is seen below, the condition $m\neq 0$ (the nondegeneracy) is
essential in our argument from number-theoretic point of view.

Let $V$ be the set of the continued fractions $[0;c_{1}, c_{2}, \cdots]$ which satisfy

$c_{1} \geq\max_{i\geq 2}c_{i}+3$ . (1.1)

$V$ is contained in some right neighborhood $[0, \gamma)$ of $0$ and uncountable, and
has the Lebesgue measure zero in $R^{1}$ (Khinchin [Kh]). $0$ is an accumulating
point of $V$ from right. Let $j\in N$ . Define $W_{j}$ and $W$ by

$W_{j}=\{2jc+c^{2};c\in V\}$ , $W= \bigcup_{j=1}^{\infty}W_{j}$ . (1.2)
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$W_{j}$ and $W$ are uncountable and have an accumulating point $0$ from right.
For more properties of $W_{j}$ and $W$ , see [Ya3].

We assume the following number-theoretic condition on $m$ .

(M) $m$ belongs to $W$ .

From (M) there exists $j\in N$ such that $m$ belongs to $W_{j}$ . Note that if
$m\in W_{j}$ , then there exists $[0;c_{1}, c_{2}, \cdots]\in$ Vsuch that

$\mu_{j}=j+[0;c_{1}, c_{2}, \cdots]=[j;c_{1}, c_{2}, \cdots]$ .

Remark 1.2 The nonnegativity of $f(x, \theta)$ in (A) can be weakened to the
condition

$\int_{D\cross(0,2\pi)}f(x, \theta)(\cos\theta\phi_{j}(x))^{2}d\theta dx\neq 0$

for the above $j\in N$ (see the proof of Proposition 2.4).

Notation and Definitions

Let $O$ be any open set in $R^{n}$ . Let $L^{2}(O)$ and $H^{s}(O),$ $H_{0}^{1}(O)$ be the usual
Lebesgue and Sobolev spaces respectively. We denote the inner products of
$L^{2}(O)$ and $H^{s}(O)$ by $(\cdot,$ $\cdot)$ and $(\cdot,$ $\cdot)_{H^{s}(O)}$ respectively.

Let $\Gamma=D\cross(O, 2\pi)$ . Let $H_{rad}^{s}(\Gamma)$ be the subspace of $H^{s}(\Gamma)$ whose elements
are radially symmetric in the space variable. Let $\tilde{H}_{0,rad}^{1}(\Gamma)$ be the subspace
of $H_{rad}^{1}(\Gamma)$ whose elements vanish at $\partial D\cross(O, 2\pi)$ almost everywhere. In this
paper we take the following spaces as the basic function spaces

$X^{s}=\{h\in H_{rad}^{s}(\Gamma)\cap\tilde{H}_{0,rad}^{1}(\Gamma);h(x, \theta+2\pi)=h(x, \theta)=h(x, -\theta)\}$ ,

$X^{0}=\{h\in L_{rad}^{2}(\Gamma);h(x, \theta+2\pi)=h(x, \theta)=h(x, -\theta)\}$

for $s\in N$ . We define norm . $|_{s}$ of $X^{s}$ by . $|_{H^{s}(\Gamma)}$ for $s\in Z_{+}$ .

Main Theorem

In order to study the problem, we shall transform BVP (P) to the follow-
ing periodic BVP by changing the variable $t$ to $\theta$ by $\theta=\omega t$

$\{\begin{array}{ll}(\omega^{2}\partial_{\theta}^{2}-\triangle+m)u+\epsilon f(x, \theta)u=0, (x, \theta)\in\Omega,u(x, \theta)=0, (x, \theta)\in\partial\Omega, u(x, \theta+2\pi)=u(x, \theta), (x, \theta)\in\Omega, \end{array}$ (TP)
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where $\omega>0$ is regarded as a parameter depending on $\epsilon$ . The solution of
(TP) corresponds to $2\pi/\omega$-periodic solution of (P).

When $\epsilon=0$ , BVP (TP) has normal modes $\cos k\theta\phi_{j}(x)$ for any fixed
$(j, k)\in N\cross N$ , provided that $k\omega=\mu_{j}$ holds. We shall look for a fam-
ily of $2\pi$-periodic solutions of (TP) that bifurcates from each normal mode
$\cos k\theta\phi_{j}(x),$ $(j, k)\in N\cross N$ . In this paper, for simplicity we shall treat only
the normal mode $\cos\theta\phi_{j}(x)$ , i. e., $k=1$ . We shall be able to deal with other
normal modes in the same way.

In order to show the existence of solutions of BVP (TP), we shall apply
the Lyapunov-Schmidt decomposition to BVP (TP). We decompose BVP
(TP) into the normal mode direction and its orthogonal direction in the
above space $X^{0}$ , and we solve those two systems.

We formulate our theorem. From now on throughout this paper, we fix
$j\in N$ . We denote by $X_{j}$ one-dimensional linear space spanned by the normal
mode $\cos\theta\phi_{j}(x)$ in $X^{0}$ and by $X_{j}^{\perp}$ its orthogonal complement in $X^{0}$ We
denot\’e the projectors of $X^{0}$ to $X_{j}$ and $X_{j}^{\perp}$ by $P$ and $P^{\perp}$ respectively. We
set $v(x, \theta)=\cos\theta\phi_{j}(x)$ for brevity.

We have the following main theorem.

Theorem 1.1 Assume (A) and (M). Then there exist $\epsilon_{0}>0$ , a set $\Lambda\subset$

$[0, \epsilon_{0})$ and a monotone increasing function $\omega(\epsilon)$ defined on $\Lambda$ such that for any
$\epsilon\in\Lambda$ BVP (TP) has a family of $2\pi$ -periodic solutions in $X^{s}$ . The solutions
are of the form $\cos\theta\phi_{j}(x)+\epsilon w$ , where $w\in X^{s}\cap X_{j}^{\perp}$ . $\Lambda$ is uncountable,
accumulates to $0$ and has the Lebesgue measure zero. $\omega(\epsilon)$ is represented by
an asymptotic formula

$\omega(\epsilon)^{2}=\mu_{j}^{2}+\epsilon\int_{\Gamma}f(x, \theta)v(x, \theta)^{2}d\theta dx+o(\epsilon)$ $(\epsilonarrow 0)$ . (1.3)

Remark 1.3 The regularity of the solutions coincides with the differentia-
bility of the potential $f(x, \theta)$ .

Remark 1.4 If $s\geq 4$ , the solutions are of $C^{2}$-class in $D\cross R^{1}$ by the Sobolev
Lemma.

From this theorem we obtain one-parameter family of periodic solutions
of BVP (P).

Corollary 1.1 Let $s\geq 4$ . Under (A) and (M) $BVP(P)$ has a periodic
solution with the period $2\pi\omega(\epsilon)$ of $C^{2}$ for every $\epsilon\in\Lambda$ .
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2 Proof of Main Theorem

Consider BVP (TP) and apply the Lyapunov-Schmidt decomposition. We
decompose BVP (TP) into BVPs for a system of linear wave equations as
follows. We look for the solution $u$ in the form

$u=v+\epsilon w\equiv Pu+\epsilon P^{\perp}u$ , (2.1)

where $w\in X_{j}^{\perp}$ . We operate $P$ and $P^{\perp}$ to BVP (TP). Then $\omega,$
$\epsilon$ and $w$

satisfy the following

$A_{\omega}v+\epsilon P(f(x, \theta)v)=P(-\epsilon^{2}f(x, \theta)w)$ , $(x, \theta)\in\Omega$ , (2.2)

$\{\begin{array}{ll}A_{\omega}w=P^{\perp}(-\epsilon f(x, \theta)w-f(x, \theta)v), (x, \theta)\in\Omega,w(x, \theta)=0, (x, \theta)\in\partial\Omega, w(x, \theta+2\pi)=w(x, \theta), (x, \theta)\in\Omega. \end{array}$ (2.3)

Here $A_{\omega}=\omega^{2}\partial_{\theta}^{2}-\triangle+m$ . We solve (2.2) and (2.3) for unknowns $(w, \omega, \epsilon)$

so that Theorem 1.1 follows.

First we deal with BVP (2.3). We fix $\omega$ so as to satisfy the Diophantine
condition (see (N) below). Then we show the existence of periodic solutions
of BVP (2.3) with small $\epsilon$ . We apply the contraction mapping principle to
BVP (2.3). To this end we basically need to solve the following BVP to a
linear wave equation in $X_{j}^{\perp}$

$\{\begin{array}{l}A_{\omega}w=h(x, \theta), (x, \theta)\in\Omega,w(x, \theta)=0, (x, \theta)\in\partial\Omega,w(x, \theta+2\pi)=w(x, \theta), (x, \theta)\in\Omega,\end{array}$ (2.4)

where $h(x, \theta)\in X_{j}^{\perp},$ $i.e$ . $h(x, \theta)$ is $2\pi$-periodic and even in $\theta$ and orthogonal
to the normal mode $v$ .

For evolution equations $d^{2}u(t)/dt^{2}+Au=f(t, u)$ (A is an elliptic opera-
tor) like wave equations, beam equations and so on with time periodic terms
$f(t, u)$ , the Diophantine conditions on the eigenvalues of $A$ and the periods
$2\pi/\omega$ play an essential role in the existence of periodic solutions. In this
paper we assume the following Diophantine conditions of the weak Poincar\’e

type.
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(N) $\{\mu_{l}\}$ and $\omega$ satisfy the following Diophantine inequality: There exists
a constant $C>0$ dependent on $\omega$ such that

$| \mu_{l}-k\omega|\geq\frac{C}{k}$ (2.5)

for all $(l, k)\in(N\backslash \{j\})\cross N$ .

Let $S$ be a set of $\omega$ in $R_{+}^{1}$ . The following condition is called a uniform
Diophantine condition for the set $S$ .

(NU) $\{\mu_{l}\}$ and any $\omega\in S$ satisfy the Diophantine inequality: There exists
a constant $C>0$ independent of $\omega$ such that

$| \mu_{l}-k\omega|\geq\frac{C}{k}$ (2.6)

for all $(l, k)\in(N\backslash \{j\})\cross N$ . We say that $S$ satisfies (NU).

The following proposition will be used to construct the set of $\omega$ satisfying
(NU) so that we may construct $\Lambda$ of $\epsilon$ in Theorem 1.1.

Proposition 2.1 Assume (M). Let $j\in N$ be fixed so as to satisfy $m\in$

$W_{j}$ . Then there exists a set $B_{\mu_{j}}$ of $\omega$ in a right neighborhood $\Xi_{j}$ of $\mu_{j}$ that
satisfies (NU). $B_{\mu_{j}}$ is uncountable and has the Lebesgue measure zero, and
accumulates to $\mu_{j}$ from right.

Proof. From (M) $\mu_{j}$ has the continued fraction with bounded elements.
Therefore applying Proposition 5.1 in [Ya3] to $\mu_{j}$ , we construct the uncount-
able set $B_{\mu_{j}}$ of $\omega$ contained in a right neighbourhood of $\mu_{j}$ that satisfies (NU),
has the Lebessgue measure $0$ and accumulates to $\mu_{j}$ from right.

We show the existence of periodic solutions of the linear BVP (2.4) in the
following proposition.

Proposition 2.2 Let $s\in Z_{+}$ . Assume that $h$ belongs to $X^{s}\cap X_{j}^{\perp}and$ (N)
holds. Then BVP (2.4) has a solution $w$ unique in $X^{s}\cap X_{j}^{\perp}$ . $w$ satisfies

$|w|_{s} \leq C_{s}\frac{a^{2}}{C}|h|_{s}$ , (2.7)

where $C_{s}>0$ is a constant dependent on $s$ , and $C$ is the same constant in
(N).

If $\omega\in B_{\mu_{j}}$ , the constant $C$ is taken uniformly with respect to $\omega\in B_{\mu_{j}}$ ,
where $B_{\mu_{j}}$ is seen in Proposition 2.1.
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The proposition is proved in the same way as the proof of Proposition 4.1
in [Ya2], showing the existence of the weal periodic solutions by the Fourier
expansion method and then obtaining the regularity of the weak solutions
by the elliptic regulality technique together with the bootstrap method.

Now we are in position to solve BVP (2.3). We shall show the following
proposition.

Proposition 2.3 Assume that (A) and (M) hold and $\omega\in B_{\mu_{j}}$ . Then there
exists $\epsilon_{1}>0$ dependent on $\max_{\alpha+|\beta|\leq s}\sup_{x,\theta}|\partial_{\theta}^{\alpha}\partial_{x}^{\beta}f(x, \theta)|$ and $C$ in (NU)
and independent of $\omega$ such that for any $\epsilon,$ $|\epsilon|\leq\epsilon_{1}BVP(2.3)$ has a solution
$w$ in $X^{s}\cap X_{j}^{\perp}$ . $w$ satisfies

$|w|_{s}\leq c_{1}$ , $| \frac{\partial w}{\partial\epsilon}|_{s}\leq c_{2}$ , (2.8)

where $c_{i}>0$ depend on $\epsilon_{1}$ and are independent of $\epsilon$ and $\omega$ .

Proof. Since $B_{\mu_{j}}$ satisfies (NU) by Proposition 2.1, it follows from Propo-
sition 2.2 that $A_{\omega}$ has the inverse $A_{\omega}^{-}1$ in $X^{s}\cap X_{j}^{\perp}$ . Define an integral operator
$F_{\epsilon}$ related to BVP (2.3) by

$F_{\epsilon}(w)=A_{\omega}^{-1}\circ(P^{\perp}(-\epsilon f(x, \theta)w-f(x, \theta)v))$ .

Let $R>0$ be a constant $\geq 2|fv|_{s}$ and set $B(R)=\{w\in X_{s};|w|_{s}\leq R\}$ . We
apply the contraction mapping principle in $X^{s}\cap X_{j}^{\perp}$ to $F_{\epsilon}$ . By using (A)
and the estimate (2.7) in Proposition 2.2, it follows that there exists $\overline{\epsilon}>0$

independent of $\omega\in B_{\mu_{j}}$ such that for any $\epsilon,$
$|\epsilon|\leq\overline{\epsilon}$

$F_{\epsilon}(w)\in B(R)$ ,
$|F_{\epsilon}(w_{1})-F_{\epsilon}(w_{2})|_{s}\leq\hat{c}|w_{1}-w_{2}|_{s}$

for $w,$ $w_{i}\in B(R)$ , where $\hat{c}$ is a positive constant less than 1. Hence $F_{\epsilon}$ has
a fixed point $w\in B(R)\subset X_{s}\cap X_{j}^{\perp}$ , whence BVP (2.3) has a solution $w$

satisfying the first estimate of (2.8) for any $\epsilon,$
$|\epsilon|\leq\overline{\epsilon}$ .

We show that $w$ is differentiable with respect to $\epsilon$ and derive the second
estimate of (2.8). Consider the following BVP obtained by differentiating
BVP (2.3) formally with respect to $\epsilon$

$\{\begin{array}{ll}A_{\omega}w_{\epsilon}=P^{\perp}(-\epsilon f(x, \theta)w_{\epsilon}-f(x, \theta)w), (x, \theta)\in\Omega,w_{\epsilon}(x, \theta)=0, (x, \theta)\in\partial\Omega, w_{\epsilon}(x, \theta+2\pi)=w_{\epsilon}(x, \theta), (x, \theta)\in\Omega. \end{array}$ (2.9)
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Then we can show in the same way as in the above proof that there exists
$\hat{\epsilon}>0$ such that for any $\epsilon,$

$|\epsilon|\leq\hat{\epsilon}$ BVP (2.9) has a solution $w_{\epsilon}$ in $X^{s}\cap X_{j}^{\perp}$

satisfying $|w_{\epsilon}|_{s}\leq c_{2}$ . $w_{\epsilon}$ is unique in the ball. We write the solution $w(x, \theta)$

as $w(x, \theta;\epsilon)$ , briefly $w(\epsilon)$ as a function of $\epsilon$ . Also we set $\overline{w}(\epsilon;h)=(w(\epsilon+$

$h)-w(\epsilon))/h-w_{\epsilon}$ . Then from (2.3) $\overline{w}(\epsilon;h)$ satisfies the following BVP

$\{\begin{array}{l}A_{\omega}\overline{w}(\epsilon;h)=-P^{\perp}f(x, \theta)\{(\epsilon+h)\overline{w}(\epsilon;h)+hw_{\epsilon}\}\overline{w}(\epsilon;h)=0, (x, \theta)\in\partial D\cross R^{1},\overline{w}(x, \theta+2\pi;\epsilon;h)=\overline{w}(x, \theta;\epsilon;h), (x, \theta)\in\Omega.\end{array}$ (2.10)

By applying Propoosition 2.2 to (2.10), it follows that

$|\overline{w}(\epsilon;h)|_{s}\leq c|h||w_{\epsilon}|_{s}$ .

The right hand side tends to $0$ as $harrow 0$ . This means that $w(\epsilon)$ is dif-
$\partial w$

ferentiable in $\epsilon$ in $X^{s}$ and
$\overline{\partial\epsilon}=w_{\epsilon}$

holds. From the above argument we
obtain the second estimate of (2.8) for any $\epsilon,$

$|\epsilon|\leq\hat{\epsilon}$ . In order to obtain the
conclusion, we have only to take $\epsilon_{1}=\min(\overline{\epsilon},\hat{\epsilon})$ .

As the second step we solve the problem (2.2) regarding as the equation
with respect to $\omega$ and $\epsilon$ for given solutions $w(\epsilon, \omega)$ of BVP (2.3). We have
the following proposition.

Proposition 2.4 Assume (A) and (M). There exist $\epsilon_{2}>0$ with $\epsilon_{2}\leq\epsilon_{1},$ $a$

set $\Lambda\subset[0, \epsilon_{2})$ and a monotone increasing function $\omega(\epsilon)$ defined in $\Lambda$ such
that $(\omega(\epsilon), \epsilon)$ solve (2.2). Here $\epsilon_{1}$ is the same constant in Proposition 2.3. $\Lambda$

is uncountable, has the Lebesgue measure $0$ and accumulates to $0$ .

Proof. Let $\epsilon_{1}$ be the same constant as in Proposition 2.3 and let $\epsilon\in$

$[0, \epsilon_{1})$ . Then BVP (2.3) has the solution $w(\epsilon, \omega)$ for $\epsilon$ with $|\epsilon|\leq\epsilon_{1}$ . Taking
inner product of (2.2) with $v$ , we obtain

$\omega^{2}=\mu_{j}^{2}+\epsilon(f(x, \theta)v, v)+\epsilon^{2}(f(x, \theta)w(\epsilon, \omega), v)$ . (2.11)

This is an equation with respect to $\omega$ and $\epsilon$ . It follows from (A) and (2.8)
in Proposition 2.3 that $(f(x, \theta)v, v)>0$ , and also $|(f(x, \theta)w, v)|\leq\tilde{c}$ and
$|(f(x, \theta)w_{\epsilon}, v)|\leq\tilde{c}$ hold, where $\tilde{c}$ is independent of $\epsilon$ and $\omega$ . Hence applying
the implicit function theorem to (2.11), we can take $\epsilon_{2}>0,$ $\epsilon_{2}\leq\epsilon_{1}$ such
that for any fixed $\omega\in B_{\mu_{j}}$ there exists a unique solution $\epsilon\in[0, \epsilon_{2})$ of (2.11).
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$\epsilon=\epsilon(\omega)$ is monotone increasing as a function of $\omega\in B_{\mu_{j}}$ . Therefore there
exists the inverse monotone increasing function $\omega(\epsilon)$ defined in $\epsilon(B_{\mu_{j}})\cap[0, \epsilon_{2})$ .

It is clear from Proporsitions 2.3 and 2.4 that the conclusions of Theorem
1.1 follows.
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