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Abstract

An initial-boudary value problem for the system of equations governing
the flow of inhomogeneous incompressible fluid-like bodies is studied. The
boundary conditions assigned here are called the generalized Navier’s slip
conditions which represent the slip phenomena at the boundary. Rewriting
this problem by Lagrangian coordinates, we prove its solvability and con-
vergence results concerning slip-rate etc. in anisotropic Sobolev-Slobodetskif
spaces.

1 Introduction

In this study we are concerned with motion of inhomogeneous incompressible fluid-
like bodies (IIFB). This model arises from the study of incompressible flows of
granular materials. Granular materials are some sorts of materials which consist
of grains. In certain situations granular matter behaves in fluid-like manner, for
example, quicksand, avalanches, and so on. Even it flows, however, the profile of
the flow is completely different from that of usual liquids.

Granular materials are substantially compressible due to existence of the in-
terstices between the particles and are inhomogeneous since they are composed of
a mixture of several types of particles. However, in some special conditions, the
compressibility which influences the motion can be neglected. Here, we restrict the
subject of our investigation to the granular bodies satisfying such incompressible
conditions.

Malek and Rajagopal [9] derived the constitutive equations for inhomogeneous
incompressible fluid-like bodies whose free energy depends on the density and the
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gradient of the density, taking into account the conservation law of energy, the
second law of thermomechanics and the concept of maximization of the entropy
production. We call the body under consideration is of Korteweg type, since such
a material was firstly considered by Korteweg [6]. It is the consequece of the
inhomogeneity of the body.

We should remark on the slip phenomena of the granular body at the boundary.
Unlike the adhering behaviour of Newtonian fluids at the boundary, non-Newtonian
fluids including granular materials may in general slip at the surface of solid wall
in contact with the continuum. Moreover, this slip effect may cause the significant
consequence for motion. Here, taking into account this slip phenomena, we analyse
the motion of inhomogenous incompressible fluid-like bodies.

2 Mathematical Issues and Main Results

2.1 Initial-boundary value problem for IITFB models

In this study we are concerned with the following initial-boundary value problem
for the motion of inhomogeneous incompressible fluid-like bodies:

D

B{f:o’ V.v=0 inQr=Q x(0,7T),

o (2.1)
g—[—)?:V-’IIW—Qb in Qr,

T=—-pl+2v(o)D(v) -3 (Vg@ Vo— %|Vg|2ll) in Qr, (2.2)

{ (Qv v)lt:(): (QO: VO) in €2,

. (2.3)
v-n=0, v+ KITn=0 on Gr =T x (0,7),

where Q(C R?) is a domain where a material occupies; I' the boundary of Q; o
the density of the body; v the velocity vector field; T)Qi the Lagrangian derivative;
b the external body forces; T the Cauchy stress represented by the constitutive
equations (2.2); p the pressure; D(v) = 2(Vv + [Vv]|T) the symmetric part of the
velocity gradient; v the viscosity; 3 a positive constant; n the unit outward normal
vector on I'; K > 0 the slip rate; IIf = f — (f - n)n the projection to the tangential
plane.

Here, we assign so-called the generalized Navier’s slip boundary condition (2.3)3
with slip rate K. If K = 0, the condition immediately becomes the usual adherence
condition v = 0. When K > 0, the condition is refered to the slip at the boundary.
Moreover, if K = oo (of course, taking the limit after dividing the condition by
K), then it becomes IITn = 0 which represents the perfect-slip condition. Hence,
the slip boundary condition (2.3); connects the no-slip case to the perfect-slip case.
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The condition (2.3)3 is the generalized form of the slip condition which was first
derived by Navier [13].

This problem arised from a study of some flows of granular materials. In certain
situations granular matter behaves in fluid-like manner, however, the profile of the
flow is completely different from that of usual liquids. Rajagopal and Massoudi
[15] proposed the constitutive equations of granular materials as complex continua.
In their work they paid attention to the quantity Vo ® V. Thereafter Malek and
Rajagopal [9] derived the constitutive equation (2.2) for T. Vo® Vo however cause
some mathematical difficulties. In the conservation law of linear momentum, for
example, a non-linear term div(Vp ® V) appears and it is definitely one of the
principal terms of the system, which may degenerate. Thus we need to remove
such difficulties to investigate the problem.

The initial-boundary value problem (2.1)-(2.3) is represented in the Eulerian
coordinates X. Now, we rewrite it in Lagrangian coordinates z. Let u(z,t) and
g(z,t) be the velocity vector field and pressure, respectively, expressed as functions
of the Lagrangian coordinates. The relationship between Lagrangian and Eulerian
coordinates is given by

X = x+/0 u(z, 7)dr = Xu(z,t), u(z,t) =v(Xu(z,t),t).

From (2.1); it is easy to derive

-aa—tgu(x, t)=0

for pu(z,t) := o(Xu(z,t),t), thus we have gu(z,t) = go(z). This means the density
function of isochoric motion expressed in Lagrangian coordinates does not vary
in time. Moreover, we denote the Jacobian matrix of the transformation X, by
A = (aij)ij=123 with elements a;;(z,t) = d;; + ft Ou; (a: 7)dr and its adjugate
matrix by A = (A;;)ij=123 = detA - A~ Ju(z, t) det A(z,t) satisfies the
equality

%f’t) — Z Ba,]A — Z Aﬂ Z AJ’Z Ov, (X (z,t),t)ak;

1,5=1 1,j=1 1,j=1

= Ju(z,t)(V - v)(Xu(z,t),t) =0

according to (2.1),. Since Ju(z,0) = 1, we have Ju(z,t) = 1, namely A~! = A.
Using this .4, we have

VxF(X,t) = A TV, Fy(z,t) = ATV, Fu(z,t) = VuFu(z,t)

for Fy(z,t) := F(Xu(z,t),1).
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Thus the problem (2.1)-(2.3) becomes

0
goa—‘::vu-iruwobu, Ve-u=0 inQr,

ul,_,=ve in§, (2.4)
u-n, =0, u+ K JI ,Tyn,=0 on Gr.

Here, Ty = —q1+ 2v(0o)Dy(u) — B(Vqu ® Vuoo — 3/Vauool ]I) ;
Dy(w) = 2(Vuw + [Vuw]T), byu(z,t) = b(Xu(z,t),t), nu(z,t) = n(Xau(z,t)),
Ku(z,t) = K(Xu(z,t),t), I, f =f — (f - ny)n,,
I, Tuny = 2v(00)[IyDy(u)n, — Bllu(Vugo ® Vuoo)ny.

In this study we proved the theorem on the time-local solvability for the quasi-linear
problem (2.4) in Sobolev-Slobodetskil spaces.

2.2 Function spaces

In this subsection we introduce the function spaces used in this paper. Let G be a
domain in R® (n = 1,2,3,...) and v a non-negative number. By W, (G) we denote
the space of functions equipped with the standard norm

el = D ID%ul|Z,6) + 1ullfyz gy

o<y
where
”unw‘r(g) Z “DQU”Lz(g) if v is an integer,
loe|=y
D%y Du(y)|? . .
|u||W~/(g) Z // | Py y|n+2{1}(y)l dzdy if v is not an integer.
lee|=[]

Here [y] and {y} are the integral and the fractional parts of -y, respectively.
1£lp@) = (|7 (@)Pdz) and ||fl|su() = esssup.cglf(z)| are the norms in
L,(G) for 1 < p < +o00 and Lo (G), respectively. D*f = olel f/0z{10x52 ... Oxon
is the generalized derivative of the function f in the distribution sense of order

la| = a1 +az + ...+ ap with a = (a1,a2,...,a,) € Z7 being a multi-index.
Similarly, the norm in W5/2(0,T) is deﬁned by
v/2 2
2 :
”u“W,}/"’(o ) Z dtJ o for integral /2,
[7/2] 2
diu
2 —
“u”WW(O T) Z dt/ L2(0,T)
d["/zlu(t) dv/2yt —7)|°  dr :
/ dt/ o7 11072 3073 for non-integral /2.
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The anisotropic space W5""/?(&4) on a cylindrical domain &1 = G x (0,T) is
defined by Ly (0, T; Wy (G)) N Ly(G; W5/*(0, T))), whose norm is introduced by the
formula

A S Sy 2

= [ullfgomesy + 1ulliyor/2e,y:

where W5 °(&1) = Ly(0,T; W3 (G)) and W"?(&1) = Ly(G; W3/%(0,T)). Other
equivalent norms in these spaces can be introduced. For any [ € (0,1) and T €
(0, +00) we set

1/2
)& = )2 L u2
&1 - wht/?(e) Tl L2(®7) ’
and
“u||(2+z A+1/2) |lu”$}V22+m+l/2(® | (Hu ”(zz/z))

1/2

o 1(Li/2) 9
+ ( D ) + sup ||u ,

|§:2 | Dz ull s Sop, ||W21+t(g)

which are equivalent to the norms in the spaces Wi/?(&4) and W2HH/2 (&,),
respectively. Also let

1/2
lal &2 = {jull?, bl
0, 1/2(®T) Tl Lg(QﬁT) .

Finally, we denote by H,Z’A’/ (&), h > 0 the space of functions u(z,t) with a
finite form

1l 2oy = Neloom + 1500720,

T
Hu”i[”‘l/ro(@q,) = A _2ht”ul|w“/(g) dt,
T
e A T P

[ [P ) o et 2
0 0

o th/2] o th/2l L2(0)
if 7v/2 is not a integer. Here, ug(z,t) = u(x,t) for t > 0, up(z,t) = 0 for ¢ < 0.

dr
T1+2{~/2}’
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Remark 2.1 For T < oo, the space H,zﬁ/z(@rp) can be identified with the subspace
of W;”/Q(@T) consisting of functions u(z,t) that can be cxtended by zero into the
domain {t < 0} without loss of regularity. In the case v > 1 this implies that

o' 1
U\ 0 i=0,1,..., |11,
ati|,_, 2

If G is a smooth manifold (in this paper the boundary of a domain in R3? may
play this role), then the norm in W3 (G) is defined by means of local charts, each
of which is mapped into a domain of Euclidean space where the norms of wy
are defined by formula above. After this the spaces Wy /2 (&) are introduced as
indicated above.

The same symbols Wy (G), Wy"/?(®1) are used for the spaces of vector fields.
Their norms are introduced in standard form; for example, for f = (f1, f2, .- ., fn)

||f||12zvg(g) = Z ||fi||2v)v;(g)-
i=1

2.3 Main results

Let us now describe the results obtained in this study.

Theorem 2.1 Let Q be a bounded domain in R®, T € W27/2+l, l € (1/2,1), vo €
WIHQ), 0o € W2H(Q), oo(z) > Ro > 0, v € C?*(Ry), v > 0, 0 < T < +oo,
b € Wi*(Qr). Assume that b(z,t) has continuous derivatives with respect to
z and b, by, satisfy the Lipschitz condition in x and the Holder condition with
exponent 1/2 int, that K(X,t) has continuous derivatives up to order 2 with respect
to X and D3 K (|a| < 2) satisfy the Holder condition with exponent 1/2 in x and
1/4 in t, and suppose either condition for K such as

(i) K(X,t)=k>0: constant,
or (2.5)
(i) inf K(X,t) > 0.

In addition, asuume the following compatibility conditions
V-vo=0mnQ, vg-n=0o0nl,
vo + K (-, 0)II {2v(00)D(vo)n — B(Vgo ® Vgo)n} =0 on I,

Then problem (2.4) has a unique solution (u,Vq) € W20 1) x WH(Q)
on some interval (0,T) (0 < T' < T), whose magnitude T' depends on the data.
Moreover, when K(X,t) = k constant, T' can be taken uniformly in k.

Investigating the proof in detail again, we can prove that the dependence of the
solution on the slip-rate. We point out the following theorem.
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Theorem 2.2 Let 2, I', I, 0o, vo, v, 8, T, T', b be the same as in Theorem 2.1,
and assume that K(x,t) = k > 0 : constant. We denote the solution of problem
(2.4) with K(z,t) = k by (u®,Vq*). Then the sequence of the solutions of
Navier’s slip problem {(u®) Vg )}, converges to the solution of the adherence
problem (u® Vq®) as k — 0.

According to this result, not only the system of slip problems converges to that of
the no-slip problem formally, but also the solutions of slip problems also converge
to that of the no-slip problem (in strong topology). Thus the generalized Navier’s
slip conditions are regular and meaningful boundary conditions. We also remark
that the time-local existence of (u®), Vq(®) is already obtained by Nakano and
Tani [11, 12] for each k. But we need to prove the uniform estimates in k, therefore
we shall show the proof of convergence result in this paper. Theorem 2.2 is proved
in §4.

The bodies under consideration in this study are so-called fluid-like bodies. If
B = 0 in the Cauchy stress T, the governing equation becomes completely same as
that of incompressible Navier-Stokes fluids. The terms related to 8 are originally
derived from the Helmholtz free energy of the body. In the case 3 = 0, the free
energy of the body under consideration doe not depend on V. Thus 3 represents
the magnitude of the influence of material inhomogeneity on the motion. We
can assure the relation between fluid-like bodies and Navier-Stokes fluids by the
following theorem.

Theorem 2.3 Let Q, ', I, oo, Vo, v, B, T, T', b, K be the same as in Theorem
2.1. We denote the solution of problem (2.4) with 8 by (u), Vqg))-

Then the sequence of the solutions {(u), Vq))}s>0 converges to the solution
of the Navier-Stokes equation (3 = 0 in problem (2.4)) (U,VQ) as 8 — 0.

The time-local solvability of the Navier-Stokes equation with Navier’s slip condition
is already obtained by Tani et al. [22]. Theorem 2.3 can be proved easily if one
precisely investigate the proof of the existence of the solution of (2.4) [11, 12|, thus
we omit the proof in this paper.

3 Linearized problem

3.1 Key lemmata

In this section we consider the linearized problems of (2.4) such as

ou® k k (k) -
o0 5 = —Vg® + v (2)Au® + gof, V-u® =g in Qr,

u(’“)lt:O: vy in Q,

u® 4+ 20 (2)kKIID(u®)n = b + kd on Gr.

(3.1)
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where v1(z) is a given positive function defined in 2, f and g given functions
defined in @, and b and d given functions defined on G satisfyingd -n = 0. We
shall show the convergence result for the solutions of the problems, thus we should
express the dependence of the solution on slip constant &k, namely (u®*), ¢®)). For
this problem we have the following key lemmata.

Lemma 3.1 Let 2 be a bounded domain in R® with a boundary I' € W5/ 2+l
1€ (1/2,1),0 < T < 400, vo =0, go € W2 (Q), 0o(x) > Ry > 0, 1y € sz“(ﬂ),
infv1(z) > 0 and k is a non-negative constant. For arbitrary f € H,ll’l/ (Qr),
g€ Hi+l'1/2+l/2(QT), g=V.G, G ¢ H’2l+l,1+l/2(QT), b e H’::/2+1,3/4+1(GT), b —
Glr, d € H,11/2+l’1/4+l (Gr), and d - n = 0, problem (3.1) has a unique solution
u) e H,2L+l’1+l/2(QT), Vq® € H'?(Qr), provided h is sufficiently large. And this
solution satisfies the following estimate:

[0 asnrsrz g, + 199 grarn gy < & (1€ gy + lgllgrrarasa gy,
G g2y + Bl gransscnrngyy + 1l granarenng,y) . (3.2)
where c is independent of k. Moreover, it also holds that
u®, Vg®) — (0@, Vg®) ask 0 in HTM2(Qr) x HY2(Qr). (3.3)
For a non-zero initial data vg we obtain the similar result to Lemma 3.1.

Lemma 3.2 Let Q, I', T, I, g9, Rp, v1 and k be the same as in Lemma 3.1.
For arbitrary v, € W, (Q), f € wWi(Qr), g € W20 g = V - G,
G e W22+l’1+l/2(QT), d e W;/2+l’3/4+l/2 and d € W;/Hl’l/ﬂm (Gr) satisfying the
compatibility conditions

Vvo=V-G(-,00in 2, b=G|r, d-n=0,
vo + kKIID(vo)n = b(,0) + kd(-,0) on T,
problem (3.1) has a unique solution (u, Vq) in W. with 1+I/Z(Q ) X Wy /2(QT) and
Il G2 1 9 ql§22 < o) (IENS™ + Ngllyaesaea gpy + [Vollwpsica)
HIGISH + by aanamsa gy + lAllyarzssieg,, ) (34)

where ¢(T') is a non-decreasing function of T independent of k. Moreover, it also
holds that

(u®,Vg®) — (u®,Vg®) aski0 i WyTAQr) x Wy(Qr). (3.5)
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3.2 Half space problem for homogeneous systems

In order to prove Lemma 3.1 we first consider the half space problem with constant

coeflicients.
( ou® (k) (k) (¥) - 3
57 —1Au” + Vg™ =0, V.-u®¥ =0 inD.r =R} x(0,7),
! w9 =0 inR}, uf|, =0 onDr=R®>x(0,T), (3.6)

_—“bj—kdj on DT (J:1,2),

x3=0

dul® (k)
u® — ok I 4+ Ouy
\ J 8.’173 8a:j

where 1 is a positive constant, k non-negative constant, b; € H,
and d; € H1/2+l 1/4+l/2(D ) (j=1,2) with I € (1/2,1).

Before considering problem (3.6), we extend b; and d; from Dr to Dy, such that
by € HY*HH3/4H2(D ) and d; € HY/* 1/4“/2(1)00) (denoted by the same symbol)

and

3/2-+1,3/4+1/2 (Dr)

|| bj |[H2/2+z,3/4+z/2(Doo) < C|| bj |lH:/2+l,3/4+l/2 (D1’ (3.7)

“d_, ”H,ll/2+l’1/4+l/2(Doc) < C“dj IIH’11/2+1,1/4+1/2(DT), (38)

where c is independent of h and T (see [19], §2).

Next, we extend u® = (u{® u{® u{), ¢®) b = (b),b,) and d’ = (dy, d>) to
the half-space t < 0 by 0 and make the Fourier transformation with respect to
' = (z1,z2) and the Laplace transformation with respect to t:

f(é',a:;;, s) = / e st dt /2 e = f(2' x3,t)da’.
0 R

Then we have the following system of ordinary differential equations:

4 d2
vo ("2 - 3‘—2) 0 +ig;gP =0 (5 =1,2),
T3

d? dg® da”
2 ~ (k) " _ 0. i&al® i al® 3 _
- — =0, + + =0
Vo ('r dx%) Uz’ + 4z, ISUA €21y s , (3.9)

(k) (k) daf” NG
ﬁ3 |x3=0: 0, Aj - I/()k dl‘ 7'6_7 U

L (@%®,g®) — (0,0) (z3 — +00),

N

- i)j - k(ij,

r3=0

where 5 -
r2 — e + €3, 1€ =€ +&2, argre (—Z’Z) )
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This problem is easily solved by the same way as in [11, 19], whose solution is given
explicitly by

(. b, — kd; i&ivok 3°2 il (b — kd,y)
(k) 3“0 m=1
87 = Tk )+ T vk ok £ D)+ 1700
_7’6] Zm 1 zé'm( kdm) .
< okt + e Ty o) G=12) .10
,&(k) — an:l i'gm(am - kdm)e (.’L‘ )
3 vok(r +1&)+1 7
k) _ —vo(r+1€]) > et m(bm — kdm)
. Clok(r + D +1 2
where
e~ TT3 _ e—|€'|-‘ﬂa ,
eo(z3) = €773, e1(zs3) = ex(x3) = e l€les,

Vi ?
r—|¢|
In estimating this solution, it is convinient to introduce the new norms

+oo
. = [ o [ 1FE R i) dto

and

L2(Ry4)

1F 130,04 = Z/ d¢’ /+OOH (dx) £,,h—|—z£o)‘
+/de£’/_:o |7+ igo)|]

W3 (R+)

d&o

for v > 0, which are equivalent to the norms in HZ’W/ 2(D°o) and HZ”/ 2(D+c,o),
respectively (see [19]). Moreover, for the functions e;(z3), j = 0,1,2, we have

Lemma 3.3 ([19]) Let s = h + i, h > 0, j be a non-negative integer and
o € (0,1). Then there exists a positve constant ¢ independent of r and |£’| such
that

+00 d J
(2) / |(&;—) x;,)} dzs < c|r|¥1,

+o0 +oo J d ) 2 dzs dz .
6 [ 1 () otes 2= () e S < arfo,

+o0 d J 2 |T|2j—1 + |£/|2j—1
(312) /0 I (E) 61(273)' dzs <c = ,
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2 dzsdz

Z1+2oz

o [ 1Yot ()

I,’,.|2(j+a)—1 + lgll2(j+a)—1

- 2

for all ¢’ € R2.

The formula (3.10) and Lemma 3.3 yield that for A > 0 the solution (u®), ¢*)) of
the problem (3.6) with T' = oo satisfies the estimate

2 2
k
16PN, + IV DR, < (Hb’llimuww + 2 (D ) ) ’
j=1

(3.11)
where c is a constant independent of A and k, and

N = ( [ [ -

If f € H"/*(Dy), it holds

z/ok:r
1+ vokr

1/2
' |F(&' b+ i&)? Irlz”dﬁ) :

’ I/()k’f'

2
m' FE€ o+ i) PIrl™ < If(E b+ i6o) PIr™” € Li(RE x Rey)

According to Lebesgue’s dominant convergence theorem, for any ko > 0 it holds
. k k
Im (N5 b = Db (3.12)
Moreover, (( f)) 3 h.D,, 15 monotonically increasing in k, namely for £ > 0

0= <<f>>'(yol)1Doo < <(f>>( Jh,Doo — <<f>>(,hD “f“'y,h,Doc- (3.13)

From (3.11) and (3.13) we obtain the uniform estimate in k as follows:

¢ (”bl'lg/z—kl,h,Doo + ”d,”%/z-{-l,h,Dw) if k> 07

c16l13/2.44,n,000 if k=0.

(3.14)

Consequently, taking into account (3.7), (3.8), (3.14) and the equivalence of the
norms and restricting the domain of u and ¢, we have

“u(k) ”§+l,h,D+x + HV‘I(k) “lz,h,D+go <
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Lemma 3.4 Let h > 0 and [ € (1/2,1). Then the solution (u,q) of the problem
(3.6) satisfies the estimate

[0 zesssiaeo gy + IV loro,

<c (”b’”H:/2+t,3/4+1/2(DT) + <<&,)>§’;)2+l,h,D,o) (3.15)

c (”b,”H,"i/2+l’3/4+1/2(DT) + ”d’“H’ll/2+”1/4+l/2(DT)) itk >0, (3,16)

c |Ib,”H2/2+"3/4“/2(DT) if k=0,

where ¢ is a constant independent of A and k, and d’ is the expansion of d’ into
D.

Moreover, we can prove the convergence theorem for problem (3.6). Let U%) =
u® — u® and Q® = ¢*) — ¢(®. Then (U® Q") (k > 0) satisfies the following
relation:

( su®
majt —AU® 1 vQ® =0, V-U® =0 in D,r,
! U¥| =0 inR}, U”|, =0 on Dy, (3.17)
ou;® (&)
U™ — vok i 9Us = —kd; onDr (j=1,2),
L 61,‘3 6$j 25=0
where

oul®  5,@
d; :dj——l/o ( 6;3 + 8111

We should remark that d; € H;/2+l’1/4+l/2(DT) since ul® e H§+l’1+l/2(D+T), and
d;- is also independent of k. We extend d;f from Dy to D, again.
Applying (3.11) to (3.17), we obtain

x3=0

2
2
% k
U1 01 + VRPN poe < €D ((d) Prippnr)
=1

where c is a constant independent of h and k. Using (3.12) and (3.13), we therefore
obtain

lim (”U( )”2 2LIH/2( + ”VQ(k)HZ't;l/z(DW))

k10

2
. * k
< clim (UM 3,00, +IVQ® IR p,.) <c E :(hm«d )5/)2+,,h,D,o)

k.0 kL0
= 0.

Thus we have the following result.
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Lemma 3.5 Let h > 0 and [ € (1/2,1). Solutions of problem (3.6) (u®), g*))
(k > 0) hold

(u®,vg®) — (u,V¢?) ask L0 in Hy (Do) x B(Dr).

3.3 Inhomogeneous systems in the half and whole space

Next we consider the non-homogeneous problem in the half space with constant
coefficients.

[ Hu®
—la—l—i— —vpAu® + Vg =f V.u® =g in D,yp,
4 u(k)ltzoz 0 inR3, “:(ik)lz;,:o: bs on Dr, (3.18)
oul® (k)
ul® — vok ( T 66“’; =b; —kd; on Dr (j =1,2).
\ : J r3=0

For (3.18) we have a uniform estimate and a convergence result similar to Lemmata
3.4 and 3.5.

Lemma 3.6 Let v, k, I, b; (j = 1,2) and d; (j = 1,2) are the same as in
(3.6). In addition suppose f € Hy"?*(D,r), g € H,11+l’1/2+l/2(D+T), g =V -G,
G € HY'"*(D,1), b € HY*Y*M2(Dr) and [, Gada! = [, bsda'.

Then problem (3.18) has a unique solution u®®) € Hz+l’1+l/ 2(Dyr), Vg €
H ,ll’l/ 2(D,r) for k > 0 satisfying a uniform estimate

1Ol gzsnssirapy + IVE oo,

<c (”f||H:;l/2(D+T) + ”g||H’1l+z,1/2+z/2(D+T) + |IG”H,?’1+I/2(D+T)

k
Bl gy + (@)

(¢ (||f|;HL,,/2(D+T) + gl ez g + 1GH gorsway,

n bl goraenasasis ) + ||d'||H;ml,l/wmwﬂ) if k > 0,
c (||f||H;;,/2(D+T) + gl grearziragp,py + 1GH gossay )
+bll /241271172 (DT)) if k=0,
(3.19)

where c is a positive constant independent of h and k. Moreover, it also holds

u®, vg®) — u®,vg®) ask 0 in H"'%(D,p) x HY*(Dr). (3.20)
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Proof. According to [22], the solution of (3.18) can be expressed in the form
(u(k)’ q(k)) = (W + v¢ + W(k)) W(k) - (bt + Vogl)'

Here w is a solution of the Dirichlet problem for the heat equation:

ow

— —ypgAw =f in D p,

BT, 0 +T (3.21)
w|,_,=0 in]Ri, w|_._o=0 on Dr.

While ¢ is a solution of the Neumann problem:

0
Ap=g—-V -wl)=g inR3, 9% = b3 on R (3.22)
(9.'1)3 r3=0

And then (W®) 7(%)) is a solution of the problem similar to (3.6):

[ OW (k)
0 51 WAW® L vk =0, V. W® =0 in D,r,
! WH|_,=0 inR}, W3 0= bs on Dr, (3.23)
oW W _
(k) 3 _ :
Wj - Vok < (9.’;3 + a.’,Ej . = bj - de on DT (j = 1, 2),
\ 3=

where b; = bj—% (j=1,2)and d; = d;j— vy (gw; + 6—"’1 + 23231.28‘1;3) raco (j =1,2).

Obviously, problems (3.21) and (3.22) are 1ndependent of k, thus we have the
following uniform estimates [22]

|IW||H:+1,1+1/2(D r) = C“f”Ht t/2(D )’ (324)
|IV¢HH:+"1+’/2(D+T) <c (||g||H'11+z.1/2+z/2(D+T) + ”G“H,‘:'”’”(DH-)

+/||b3 ||H2/2+"3/4+‘/2(DT)) , (3.25)

where c is independent of h and k.
Because of w, V¢ € H:+l’1+l/2(D+T), it follows b; € H,::/2+l’3/4+l/2(DT) and
d; € H,ll/2+l’1/4+l/2(DT) (j = 1,2). Hence, applying Lemma 3.4 to (3.23), it holds

1,172

‘lW(k)lle+l'l+l/2(D+T) + HV?T

”H (D41)

T k
<e (||b'||H2,2+,,3,4+,,2(DT) + (AN

Wl s,y + ||v¢||H:+,,l+,/2(D+T)) (3.26)

where c is independent of h and k. Consequently, the estimate (3.19) follows from
(3.13), (3.24), (3.25) and (3.26).
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Again let U® = u® — u©® and Q® = ¢® — 4O Then (UF Q®) (k > 0)
satisfies the exactly same relation as (3.17):
( pu®)
ot
4 UM =0 on RY, U‘(k)lm;, =0~

UP — ok | =2
| (8353 * ou,

— 1, AUR 1 yv® =0, Vv.U® =0 in D,q,

0 in DT,

= -—‘k}d; on DT (_] = 1,2),

x3=0

thus (3.20) immediately follows from Lemma 3.5.
Furthermore, we also obtain a result for the whole-space problem.

a—VZ—VOAw+V7r—f V-w=g inR}=R3x(0,7),
ot (3.27)

w|,_,=0 inR%
For this problem we have the following result.

Lemma 3.7 Let vy and [ are the same as in (3.6). Suppose f € H’ Lt/ *(R3), g €
HPWPH2(RSY g = V.G and G € HY 1*/2(R3). Then problem (3.27) has a
unique solution w € H2 W H/2(R3) vr e H} H2(R3) satisfying

”W”HZ—H A+/2(Ra + || V7| HA/?(R3)

S C (Hf“H:;t/Z(R%) + “g||H;1L+l’1/2+l/2(R%..) + “G“Hg,lu/z(k%)) y (3.28)

where c is a positive constant independent of h.

3.4 Proof of Lemma 3.1

We present some preliminaries. Because of the condition of 2 and I', in the neigh-
bourhood of an arbitrary point £ € T, the surface I' is represented by the equation

=o@), ¥V=W,y)eKs (Ka={y:ly|<d})

in a Cartesian local coordinate system (yi,y2,y3) with the origin at £ and with
ys-axis directed along —n(¢), n(€) being the unit outward normal vector to I' at
€. The function ¢ may be considered to be defined on R? such that its support is
included in a disc K34 and ¢(0) = 0, V'p(0) = 0 (V' is the gradient with respect
to y’') and ]|g0||W25/z+z(R2) < M (M > 0) hold. It is to be noted that the constants
d and M are taken indepenently of €. Furthermore, ¢ can be extended into R3
(see [19, 21]) so that it belongs to W3t (R3), and ¢(0) = 0, Vp(0) = 0 and
sup < (@) + [Ve(y)]) < cMA. Then the transformation y = Y (2) :

Y1 = 21, Yo = 22, Y3 = 23 + ©(2) (3.29)
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is invertible if |¢,,] < 1 and maps R3 onto the domain {y3 > ¢(y)}.

Considering the neighbourhood of £ € I", we assume for the sake of simplicity
that £ = 0 and that the coordinates {y;} coincide with {z,}. Let (x(z) = {(z/))
where ¢ € C°(R?), ¢(z) = 1 for |z| < 1/2, ¢(z) = 0 for || > 1. Then (ul®,¢¥) =

(Cxu® | ¢,qg®)) satisfies the following relation

(o)
O _ nl®) £ *) +—v ®) _ o f — Fy,
ot (k) __ QO(x) ( ) (k)
V-ou’'=0Gg—F; in QT, u,|,_e=0 inQ,

u® + 20, (2)kIID(U)n = &b + k(¢(d — F3)  on Gr,

(3.30)

.

where

F, = —GAu® + AP + ¢, vg® — vgl),
F2 = C,\V . u(k) -V llf\k),
F3 = 2v,(z)kII (C,\D(u(k)) - D(ug‘k))) n

We consider (3.30) in local coordinates {z} : z =Y ~1(z), then we have

’

auf\k) 2 (0)

_ Lol 1
R O R SRR
V g\k)(z t) = Fy(z,t) in Dy 47,

V.3 (2,t) = Fi(z,t) in Dy,

4-@utmo=olnY*mn (3:31)
0% (z,t) + 201 (0)kIID, (2 (2, £) )02y —0
\ = ((\b)(Y(2),t) + kF3(z,t)|zs=o on D, r,
where u,\ )(z t) = u(k)(Y(z) t) 3 (z,t) = k)(Y(z) t), Dy,r = _1(Q>‘) (0, T),
Tof = (fl,fa,O) ( 2)"TV., A = v v,
_ ) f) — A 4 - 40 al v1(Y (2)) al
= (W)Y (2),t) — F1(Y( ),t) (O)A (2,t) + P (Y(Z))A (2,t)
L 9i®(z,1) + — V.4 (2, 1),

IO (m
Py = (G9)(Y(2),1) — Fa(Y(2),8) = V -0} (2,8) + V, - P (2, 1),
= (Gd)(Y(2),1) — F3(Y (2),1)
— 20, (Y (2))ID (@) + 204 (0)IIoD, (Gl (2, ) o,

n(z) = n(Y (2)), I[If = f — (f - i)n and D(f) = 1(VF + [VF]T).
Since supp ug‘ ), supp qg ), supp F1, supp F» C Y~1(Q,) and supp ((Lb)(Y (1), 1),
suppF3 € Y~!(I')), we can extend these functions by zero into the outside of
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their supports. Extending gy and v; into R*, we can consider (3.31) as the initial-
boundary value problem in R3. Applying (3.19) to (3.31), we obtain

_(k = (k
||11/\ )||H,2L+l’1+l/2(D+T) -+ ||Vq§‘ )HIIL’l/z(D+T)
<c (”FIHH;ILJ/Z(D+T) + ||F2”H’11+z,1/2+z/2(D+T) -+ |IF4”H,?’1+’/2(D+T)

+||(C)\b) (Y(.)’ .)|]H2/2+l,3/4+l/2(DT) + <<F§>>§.’;)2+l,h,l)oc) 5 (3-32)

where F4 is the gradient of the Newtonian potential of Fy, namely

F, = jv/ Bwt) g,
dr  Jre |z —w|

F the expansion of F3 into Do, and ¢ is a positive constant independent of h and
k. In the same way as in [21] we can prove that

—(k = (k
1530 zssasira g,y + 1Y@ | rareg

s¢ { ” (Q\f)(Y(), ')||H;l£l/2(D2>\,+T)
+”(CAG)(Y(), ')“H’(:,1+1/2

+ ” (C)\g) (Y()a ) ||H’1l+l’1/2+l/2

+ IG(Y(-), ')”Hg,t/z

(Dax,+1)

(Da2x,+T) (D2x,+71)

HIDYY (), M garanamenrag, o+ CEN b
— k k
+()\1/2 + h l/2) (”ug‘ )||H:+¢,1+1/2(Q2A,+T) + ”ng )||H:1’l/2(Q2A,+T))} , (3.33)

<c { DX C) Mgy, zy + IO () M gresrevira gy, o
+”(C)\G)(Y()7 ')||H2’1+’/2(D2>‘,+T) + G (), .)”H;(:’Z/Z(Dz)\,-rT)

+|[(Gb)(Y (4, -)”H:/2+z,3/4+z/2(D2)"T) + [(GA)(Y (), .)”H’11/2+z,1/4+1/2(02)\’T)

- k k
+(A2 4 h712) (“u(* Mazrnrs gy, g +1V8 gt 2(Q2A,+T))}  (3.34)

We remark that the similar inequalities hold in neighbourhoods of any point on I’
or in the interior of 2. In the latter case b and d’ do not enter into the estimates.

When we cover 2 by a finite number of such neighbourhoods and make the
summation of (3.34) over all the neighbourhoods, we obtain

19 gzeeasaraigpy + V4l iaraga,

< C{“f“H:;l/z(QT) + “g||H'1l+t,1/2+l/z(QT) + “G”H’(:,1+I/Z(QT) + ”b”HZ/2+l’3/4+l/2(GT)

+”d”H,1/2+l’1/4+l/2(GT) + ()‘1/2 + h_l/z) (“u(k)IIH:“’”'ﬂ(QT) + ”vq(k)”HL’l/z(QT))} ’
(3.35)
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where ¢ is independent of h and k. Taking sufficiently small A and large h, we
obtain the uniform estimate (3.2).

Moreover, let U®) = u® —u© and Q*) = ¢*) —¢(® . Then (UK Q®) (k > 0)
satisfies the following relation similar to (3.1):

( ou® (*) (k) (k) :
% ~57 — 1 (2)AUW + VW =0, V-UW =0 inQr,
w0 inQ, (3.36)
\ U® 4+ 20 (2)k[ID(U®)n = kd  on Gr.

Taking into account (3.33) in this case, in the neighbourhood of 0 € I' we have
(K = ~(k Fvyy (K
IOP N assasizgp, g + 1V gz, < {CEN Priip

_ k k
F(AV2 4 pmU?) (||U<A )||Hi+,,1+l/2(Q2A’+T) +|vVQS >||H;,,,2(Q2A,+T))} .

When we make the summation over all the converings again we have

= k
“u(k)||H:+l’1+l/2(QT) + ||Vq('°) ”H:;l/z(QT) <c {Z((Fj,3>>§/)2+[,h,l)oc
J

+ ()\1/2 + h_l/2) (“u(k) “H:H’l'H/z(QT) + ”Vq(k)“H:l,l/z(QT))} ) (337)

where F} 5 denotes the Fj for the neighbourhood of §; € I' which is the center of
the covering of 2. Taking sufficiently small A and large h, we immediately arrive

at (3.3).

4 Proof of Theorem 2.2

Finally, we shall prove Theorem 2.2.

Because of Lemma 3.2 and the proof of the existence of the time-local solution
of (2.4) [12], we can easily see that the magnitude of time interval 7" where solution
exists can be taken uniformly in k. Thus we omit the proof of Theorem 2.1.

We consider the following condition for u®*) and ¢

241,14+1/2 L,l/2
T2(JUR | EH 11w Q®GiP) < 6.

Let U® = u® —u© and Q® = ¢®) — ¢ Then (UK, QM) (k > 0) satisfies the
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following equation similar to (2.4):

( ou )

u®
00—~ — Y(e)AU® + vQ® — 1i*(U®), Q®)

ll(k) u(o)
_+(g (1@, ¢@) — qumgqmg)
+20'(00) (Dyw (0*)V i 00 — Dyoy (0 )V 0y 20)
B i
{((VE,()k) (k) QO)V (k)00 — (vu(o) (0) QO)VU(O) QO}
\ —5 (Au® 00V 400 — Ay 00V 4w 00) + 00(byty — byo) in Qrv,
VU = #U®) 4 (1 O) - @) in Qp, UM|,_y=0in 0,

(k) u(k) u(©®
u® -n|p= l:(,u )(U(k)) + (l:(3 )(u(o)) — l:(, )(u(o))) |r on Grv,

U+ 20(00)kID(UM )mfy-= £ (UO) + & (11 () - 10 ()
. ‘*‘ﬁk {Hu(k)(vu(k) Qo®vu(k) Qo)nu(k) *Hu(O)(Vu(o) Qo®vu(o) Qo)nu(o)} |F+kd on GT/,

where

(Vu= (O, VO, VD), Au=V. V,,

I (w, s) = v(00)(Au — A)w — (Vi — V)s,

BY(w) = (V= V) w=V-L(w), §(w)=w-(n-n,),

[ 157 (w) = 20(0) (IID(w)n — M, Dy (w)ny,),

and
d = Hu(o) (vu(o) QO ® vu(o) QO)nu(o) . (4.1)

Obviously, d is independent of k.
The lemmata in §4 of [12] yield

(,/2)

DWW, QM) 7 < e (DI 4 [vQWghe),

(Lt/2)
QT'

< o (JUB G2 4 v w442

u(®) (0
105 (@ gy _ yuw%qmg“

(,1/2)
“]D) (k)(u( ))vu(k)QO - u(o) (u( ))vu( 0) 00 “

1/2—1/2 2+1,1+1/2)
< CI|Qo||W22+l(Q) (1 + T G “V0||W21(Q)) TI/ZHU(k)”é)T, / )

v v v — (VO v v (A2
( alk) u(k)QO) u(k) 00 ( u(® u(O)QO) u(® Qo
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,1/z+T,1/2 1/2) '1/2||U ” 2+1 1+1/2)

)

S C”QO”:‘Z/V2+1(Q) (T

IA L 00V w100 — Ay 00V 40 Qo||( e

< cllgo||W2+z(Q)(T/1/2 s 1/2)T,1/2“U(k)”(2+z L4/2)

by — bu(o)”ggw < CT11/2“U(k)”(2+l 1+z/2)

u(k) 241,14+1/2
”lé )(U(k))|IW2‘+”1/2+‘/2(Q 5y < < 65||U(k)||( + / )

u(k) u® 2+1,1+1/2
||l§ )(u(k)) _ lé )(u(o))||W2‘+"‘/2+‘/2(QT,) < c5||U(k)||£2;“, +i/ )

(0,1/2) (0,1/2)
”; Z7LEU®)

n H% <£<u<k>)(u(k)) _ c(u“’))(um)))

Qr
< C(S“U(k) ”(2+l \14+1/2)

Qv

ufk)
IS (US| yarnssarmsirag,,) < e6[UR G2,

(Grr)

“lgu(k)) (u(O)) l(u(o))( (0)) || < C(S”U(k) “ (2+l 1+l/2)

3/2+l 3/4+1/2(G NS
ul®)
”151 )(U(k))“ 1/2+z 1/4+1/2(G NS < C(S“U(k)”(2+l 1+l/2)
ll( ) u(o)
I (@) — 10 @) [yarzriasarisag ) < SITP G2,
1T, 06) (V0% 00 @V ) 00) 0y (e) — I y0) (V 4 00® V (@) 00 )1y ) || W/ A2 Gy
2+1,1+1/2
< CT1/2“QOHW2+I )T1/2||U(k)||£2;_, +1/ ),
Applying the estimate (3.4) and taking (3.37) into account, we obtain
k) | (2+0,141/2 k) (1 (L,1/2
[T®GE ™ 4+ v QWG

< co(T) {(5 + T2 UB | SHIHD 5| v Q®) | G172
_
+ > (F e } : (4.2)
J

where c,(T') is a non-decreasing function with respect to T' independent of &, and
F 5 is the same as (3.37) for d of (4.1). In the proof of the time-local existence we
take 6 and 7" in such a way that co(T')(6 + T”) < 3, we therefore obtain

24-1,141/2 1,l/2
lim([UR G2 +1VQ®WIIGL?) =0

This completes the proof of Theorem 2.2.
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