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We study dynamical systems generated by discrete Laplacians on the plane lattice and

prove a fixed point theorem for even neighborhoods and a periodicjty theorem for odd

neighborhoods.

1. ITERATION DYNAMICAL SYSTEM OF DISCRETE LAPLACIANS

We consider the plane lattjce whjch is generated by two families of lines which are
orthogonal to each other. The naturally defined squares are called cells of the lattice. A

set of cells whjch are attached to the reference cell $p$ defines a nejghborhood $U_{p}$ . The

neighborhood js named even (or odd) if the number of the cells js even (or odd). We give

several examples, some of them are well known.

Fjgure 1

数理解析研究所講究録
第 1691巻 2010年 22-28 22



We take the set $F$ of $\{0,1\}-$valued functions defined on the plane lattice $U$and introduce

a discrete Laplacian by $\Delta_{\iota/},f(p)=\sum_{q\epsilon L_{f}}.(f(q)-f(p))$ , $mod 2$ . For any initial function $f_{0}\in F$,

we consider the dynamical system $\{f_{n}\},$ $f_{n}(p)=(\Delta_{U_{p}}f_{n-1})(p),$ $\forall p\in U,$ $(n=1,2, \ldots)$ .

2. COMPUTER SIMULATION

Choosing sources and neighborhoods, we can realize a wide class of phenomena by these

dynamical systems. We call a point $Q$ a source of the dynamical system if $f,(\emptyset=1$ for

any $n$ . In case that we have sources, we apply the Laplacian at all points except the

sources. We give several examples of computer simulations, by plotting several $f_{n}$

Generation of design pattems
Figure 2

3. MATHEMATICAL PROBLEMS OF DISCRETE LAPLACIANS

Here we recall some basic notations on dynamical systems and state assertions on

mathematical structures ([1], [3]). At first we restrict ourselves to dynamical systems of
$r$
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periodic functions. For an integer $M$, which is called the size, we consider the following
periodic functions:

$F(M)=\{f\in F|f(x+mM,y+nM)=f(x,y),(n,m\in Z)\}$

Choosing a neighborhood we define the discrete Laplacian respecting the periodicity

and we consider the corresponding dynamical system. Hence, we understand that we
consider the dynamical system on the torus with the size $M\cross M$ . The torus is
denoted by $T(M)$ . We prepare several basic notations:

(1) A dynamical system has a fixed point, if $\exists k\in N$ such that $f_{n}=f_{k}(\forall n\geq k)$

(2) A dynamical system is called periodic, if $\exists n,$ ョ $l\in N$ such that
$f_{n}=f_{n+k1}(\forall k\in N)$ . If $n=0$ , then it is simply called periodic and if $n\neq 0$ , it

is called asymptotically periodic, respectively.
(3) Points $Q_{/}\in\{Q_{1},Q_{2},..,Q_{k}\}\subset T(M)$ are called sources of a dynamical system, if

$f_{n}(Q_{j})=1$ , for $\forall n\in N,j=1,2,$ $\ldots,k$ .

Conjecture ([1], [2])

We propose the following conjectures:

(1) In the case $M=2^{p}$ and a single source, we have the following results:

$(a)$ If a neighborhood is even, we see that the dynamical system has a fixed

point and its fixed point can be attained after 2 $p-1$ (or $2^{P}$ ) steps for Moore,

Hexagonal, and Neumann (resp. Sierpinski) neighborhoods.

$(\beta)$ If the neighborhood is odd, we see that the dynamical system is periodic,

period is depending on neighborhoods.

(2) In the case where $M$ is odd, we see that the dynamical system is periodic in the
case of a single source. We give the table of periods for some $M$ (see Table 1).

$\frac{M35791113t51719212325272931}{p_{8\cap 00t5613306229305111262046204510211638461}}$

Recurrence
$\{$ 1 $\{$ 1 1 1 1 1 11 $\{$ 1 $\{$ $\{$ {ooi nt

Table 1 Periods for smaUer odd sizes

4. FIXED POINT THEOREM FOR EVEN NEIGHBORHOODS
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Theorem I

In the case that $M=2^{p}$ , the neighborhood is of Sierpinski type (resp. Neumann type),

and it has one source, the dynamical system has a fixed point after $2^{p}$ (resp. 2 $p-1$ )

steps.

Proof of the assertion for Sierpinski neighborhood
We give an idea of the proof of Theorem I in the case $p=2$ . Making an observation
only in this simple case, we may understand that our assertion holds (see Figure 3).

Figure 3

We introduce a coordinate system such that the origin

is (0,0) at the right upper corner of the rectangle as in
Figure 4. We denote the support (or locus) of the $n$ th
generation by $N_{n}$ : $N_{n}=\{(i,j);i+j=n,i,j\geq 0\}$ . We

also put $M_{n}= \bigcup_{k=0}^{n}N_{k}$ . We can prove the following

proposition which proves the assertion of Theorem I in

the case of general $2^{p}$ :
Figure 4

Proposition 1
For the dynamical system $\{f_{n}\}$ with the source at the origin, we see that

(1) $f_{n}(i,j)=f_{n}(j,i)$ on $N_{n}$ ,

(2) $f_{n}(n,0)=f_{n}(0_{2}n)=1,(0\leq n\leq M-1)$

(3) $f_{n}(i,j)=f_{n}(i-1,j)+f_{n}(i,j-1)$ on $N_{n}(mod 2)$

(4) The Laplacian preserves the invariance on $M_{n}:f_{n+11_{M_{n}}}=f_{n}$

Remark 1
By proposition 1 we recognize the following facts: (i) The Pascal triangle $mod 2$ appears

in the upper triangle part. (ii) At the 2 $p_{-}$th step, every element in the diagonal is 1. (iti)

Then the lower triangle is filled by $0$ (see Figure 3).
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Proof of the assertion for Neumann neighborhood
At first we give a proof of Theorem I in the case $p=2$ (see Figure 5).

Figure 5

We introduce a coordinate system such that the origin
(0,0) is centered as in the Figure 6. We denote the

support (or locus) of $n$ th generation again by $N_{n}$ :
$N,,$ $=\{(i,j):|i+j|=n\}$ . We also put $M$. $=^{n}\cup N$ .

We can prove the following proposition which proves

Figure 6 the assertion of Theorem I in the case of general $2^{p}$ :

Proposition 2
Let $\{f_{n}\}$ be a dynamical system with a source at the origin. Then we can prove the
following facts for an integer $n$ of the form $n=2^{q}(0\leq q\leq p-1)$ :

(1) The Laplacian $\Delta$ maps the support of $M_{n}$ to $M_{n+1}$ ,

(2) The Laplacian preserves the function $f_{n}$ on $M_{n},i.e.,$ $f_{n+1}|_{M_{n}}=f_{n}$ ,

(3) $f_{n}(i,j)=1i \int i+j=\pm n$ ’ and $f_{n}(i,j)=0$ outside of $M,,$ ,

(4) $f_{n+1}(\pm(n+1).0)=1,$ $f_{n+1}(0,\pm(n+1))=1$ on $N_{n+1}$ .

Remark 2
The condition (2) in proposition 2 is called monotonic increasing condition. We can prove

the same assertion under this condition.

Remark 3
In [3], the concept of the “symmetric matrix” is introduced for a discrete Laplacian and

the basic matrix theory with binary values $\{0,1\}$ is developed. Also its dynamical system

is considered. The comparison theorems on the fixed points and periodicity between

these operators and the original discrete Laplacian might be interesting topics and

should be considered.
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Remark 4
In [4], using the concept of characteristic polynomials which are considered in [5], the

case of 1-dimensional lattice can be transported to the plane lattice and it is proved that

the period of Neumam neighborhood is identical with that of Moor neighborhood.

5. PERIODICITY THEOREM FOR ODD NEIGHBORHOODS
Theorem II
In the case that $M=2^{p}$ , the neighborhood is of Peano type, Roof type or Tannenbaum

type and it has one source, the dynamical system is periodic and its period is $2^{p}$ (resp.

2 $p-1)$ .

Proof
We give the proof for the Peano neighborhood. The proofs for the other cases are similar.

We illustrate the idea of the proof in the case $p=2$ (see Figure 7).

Figure 7

We choose a local coordinate system as in the case of Sierpinski neighborhood. Then we
can prove the assertion of Theorem II by the following proposition:

Proposition 3
We denote the square domain of size $2^{k}(=m)$ with the origin at a corner by $T(m)$ . We

consider a dynamical system $\{f_{n}\}$ with a source at the origin. Then we can
prove the following assertions for an integer $m$ of a form $m=2^{q}(0\leq q\leq p-1)$ :

(1) The Laplacian $\Delta$ maps the support of $M_{m}$ to $M_{m+1}$ ,

(2) $f_{m}(m=2^{k})$ is harmonic on $T(m)$ , i.e., $\Delta f_{m-1}|_{T(m)}=0$ ,

Remark 5
The condition (2) in proposition 3 is called harmonic monotonic increasing condition. We

can prove the same assertion under this condition.
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