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Abstract

We first consider a variant of the Schmidt-Samoa-
Takagi encryption scheme without losing additively ho-
momorphic properties. We show that this variant is se-
cure in the sense of IND-CPA under the decisional com-
posite residuosity assumption, and of OW-CPA under
the assumption on the hardness of factoring $n=p^{2}q$ .
Second, we introduce new algebraic properties ”aftine”
and ”pre-image restriction”, which are closely related to
homomorphicity. Intuitively, “affine” is a tuple of func-
tions which have a special homomoiphic propeity, and
”pre-image restriction” is a function which can restrict
the receiver to having information on the encrypted
message. Then, we propose an encryption scheme with
primitive power roots of unity in $(\mathbb{Z}/n^{s+1})^{X}$ . We show
that our scheme has, in addition to the additively ho-
momorphic property, the above algebraic properties. In
addition to the properties, we also show that the encryp-
tion scheme is secure in the sense of OW-CPA and IND-
CPA under new number theoretic assumptions.

Keywords: Paillier’s encryption scheme, factoring, ho-
momorphism, power roots of unity.

1 Introduction

Background. Homomorphicity is a useful algebraic
property in cryptography, and it has been well-studied.
For groups $G$ and $H$ , a function $f$ : $Garrow H$ is
(group) homomorphism if for $g,$ $g’\in G,$ $f(g)\circ_{H}f(g’)=$

$f(g\circ cg’)$ , where $\circ_{G}$ and $\circ_{H}$ are the group operations
over $G$ and $H$ , respectively. From a mathematical point
of view, this property means that $f$ preserves the group
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structure of $G$ . From a cryptographic point of view, we
can obtain a meaningful cipheitext by combining sev-
eral ciphertexts without knowing the corresponding hid-
den messages nor the secret key. This property is useful
to many cryptographic applications such as electronic
voting, electronic cash, and so on.

Let $G$ be a subgroup of an integer residue ring. We
call $f$ a multiplicative homomorphism if $\circ_{G}$ is the mul-
tiplication $x$

” over the integer residue ring. There ex-
ist many encryption schemes with multiplicatively ho-
momoiphic propeities, for example, the RSA encryp-
tion scheme [6], the ElGamal enciyption scheme [3].
We call $f$ an additive homomorphism if $\circ_{G}$ is the addi-
tion $+$

” over the integer residue ring. There also ex-
ist many encryption schemes with additively homomor-
phic properties, for example, the Goldwasser-Micali
encryption scheme [4], the Paillier encryption scheme
[5]. In paiticular, the Paillier encryption scheme has in-
teresting structure and many mathematical advantages.
Many variants of his scheme have been proposed.

Our Contribution. In this paper, we consider a vari-
ant of the Schmidt-Samoa-Takagi encryption scheme
[7] without losing additively homomorphic properties,
described as $\mathcal{E}(r, m)=\nearrow^{r}(1+n‘)$’ $mod n^{s+1}$ , where
$m\in \mathbb{Z}/(’\gamma^{s-t+1}/p)$ is a message and $r\in(\mathbb{Z}/n)^{x}$ is a
random number. We show that this variant is secure
in the sense of IND-CPA under the decisional compos-
ite residuosity assumption, and of OW-CPA under the
assumption on the hardness of factoring $n=p^{2}q$ .

We formalize the notions of general homomorphic
properties. Then, by extending our variant, we pro-
pose an encryption scheme with primitive power roots
of unity in $(\mathbb{Z}/n^{s+1})^{x}$ . We show that this extended en-
cryption scheme satisfies, in addition to the additively
homomorphic property, our proposed notions of gen-
eral homomorphic properties. We define a computa-
tional and a decisional problems which are the factor-
ing problem and the decisional composite residuosity
problem with power roots of unity as additional infor-

数理解析研究所講究録
第 1691巻 2010年 36-43 36



mation, respectively. We also show that our extended
encryption scheme is secure in the sense of OW-CPA
under the assumption on the hardness of the computa-
tional problem, and of IND-CPA under the assumption
on the hardness of the decisional problem. In order to
show that our scheme works, we analyze several prop-
erties on primitive power roots of unity in $(\mathbb{Z}/n)^{x}$ , and
give an algorithm which finds them efficiently.

Related Works. In 1999, Paillier proposed a public-
key encryption scheme, which has the additively homo-
moiphic property [5]. He showed that the encryption
scheme is secure in the sense of IND-CPA under the de-
cisional composite residuosity assumption. However, it
is not known whether the one-wayness is reduced to the
problem of factoring $n=pq$.

Damgard and Jurik proposed a variant of the Paillier
encryption scheme where the ciphertext space $(\mathbb{Z}/n^{2})^{x}$

is extended to $(Z/n^{s+1})^{X}[1]$ . Thereby, it can efficiently
handle messages of arbitrary length in their scheme, al-
though the public key and the secret key are fixed. The
security of their variant is similar to that of the Paillier
encryption scheme and it is not known whether the one-
wayness is reduced to the problem of factoring $n=pq$ .
Their scheme can be applied to threshold cryptosys-
tem and zero-knowledge protocols. They constructed
an electronic voting scheme by using these protocols
and their threshold variant[2].

Schmidt-Samoa and Takagi proposed another variant
which employs modulus $n=p^{2}q$ instead of $n=pq$
[7], where $p$ and $q$ are primes with same length. The
Schmidt-Samoa-Takagi function $f$ is as follows:

$f$ : $(\mathbb{Z}/n)^{x}\cross \mathbb{Z}/n$ $arrow$ $(Z/n^{2})^{x}$

$(r, /n)$ $\mapsto$ $\rho(1+mn)mod n^{2}$ ,

where $m$ is a message and $r$ is a random number. Their
scheme is secure in the sense of not only IND-CPA
under the decisional composite residuosity assumption,
but also OW-CPA under the assumption on the hardness
of factoring $n=p^{2}q$ . They constmcted trapdoor hash
families based on the problem of factoring $n=p^{2}q$ ,
by applying the encryption scheme. These hash fami-
lies suitable for on$- line/of\Gamma$-line or chameleon signatures
schemes.

Organization. The organization of this paper is as fol-
lows. In Section 2, we give some definitions. In Section
3, we propose a variant of the Schmidt-Samoa-Takagi
encryption scheme. In Section 4, we describe new alge-
braic properties and a construction of primitive power

roots of unity in $(\mathbb{Z}/n^{s+1})^{x}$ . Then, we extend our variant
with primitive power roots of unity.

2 Preliminaries
We denote $\{0,1,$ $\ldots,n-1|$ by $\mathbb{Z}/n$ , and its reduced
residue class group by $(\mathbb{Z}/n)^{x}$ , namely, $(\mathbb{Z}/n)^{x}=\{x\in$

$\mathbb{Z}/n|gcd(x,n)=1\}$ . For $g\in(\mathbb{Z}/n)^{x}$ , ord$ng$ is de-
fined as the smallest positive integer $e$ such that $g^{e}\equiv 1$

$(mod n)$ .
We denote the set of positive real numbers by $\mathbb{R}^{+}$ . We

say that a function $\epsilon:Narrow \mathbb{R}^{+}$ is negligible if and only
if for every polynomial $p$ , there exists $k_{0}\in N$ such that
for all $k\geq k_{0},$ $\epsilon(k)<\frac{1}{p(k)}$ .

We denote the probability distribution on a set $X$ by
$xarrow X$ and the uniform distribution by $xarrow uX$ .

We review the definitions of public-key encryption
schemes, of the one-wayness against the chosen plain-
text attack (OW-CPA), and of the indistinguishability
against the chosen plaintext attack (IND-CPA).

Definition 1 A public-key encryption scheme $\Pi$ $=$

$(q\zeta, \mathcal{E}, D)$ consists of the following three algorithms:

Key Generation $K(1^{k})$ : The key generation algorithm
$’\kappa$ is a randomized algorithm that takes a security
parameter $k$ and returns a pair $(pk, sk)$ of keys, $a$

public key and a matching secret key.

Encryption $\mathcal{E}(pk, r,m)$ : The encryption algorithm $\mathcal{E}$ is
a randomized algorithm that takes the public key
$pk$ , a randomness $r_{2}$ and a plaintext $m$ and returns
a ciphertext $c$.

Decryption $D(sk,c)$ : The decryption algorithm $D$ is a
deterministic algorithm that takes the secret key $sk$

and a ciphertext $c$ and returns the corresponding
plaintext $m$ or a special $symbol\perp to$ indicate that
the ciphertext is invalid.

Definition 2 Let $\Pi=(K,\mathcal{E}, D)$ be a public-key en-
cryption scheme and $\mathcal{A}$ an adversary. We define an
advantage of $\mathcal{A}$ via $Adv_{\Pi,\ovalbox{\tt\small REJECT}}^{ow-cpa}(k)=Pr[(pk, sk)arrow$

$K(1^{k});carrow \mathcal{E}(pk, r, m)$ : $\mathcal{A}(pk, c)=m]$ . We say that
$\Pi$ is secure in the sense of OW-CPA if $Adv_{\Pi..fl}^{ow- cpa}(k)$ is
negligible in $k$, for any probabilistic polynomial-time
adversary $\mathcal{A}$ .

Definition 3 Let $\Pi=(K, \mathcal{E}, \mathcal{D})$ be a public-key en-
cryption scheme and $\mathcal{A}=$ $(\mathcal{A}_{1},\mathcal{A}_{2})$ an adversary.
We define the advantage of $\mathcal{A}$ via $Adv_{\Pi,\ovalbox{\tt\small REJECT}}^{ind-cpa}(k)$ $=$
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$|2Pr[(pk, sk)arrow q\zeta(1^{k});m_{0},$ $m_{1},$
$statearrow \mathcal{A}_{1}(pk);barrow u$

$\{0,1|;carrow \mathcal{E}(pk, r, m_{b})$ : $\mathcal{A}_{2}$ ( $m_{0},$ $m_{1},$ $c$ , state) $=b]-1|$ .
We say that $\Pi$ is secure in the sense of IND-CPA if
$Adv_{\Pi,JI}^{ind\cdot c\rho a}(k)$ is negligible in $k$ , for any probabilistic
polynomial-time adversary $\mathcal{A}$ .

3 A Variant of the Schmidt-
Samoa-Takagi Encryption
Scheme

Paillier proposed the public-key encryption scheme
with the additively homomorphic property which can be
applied to many cryptographic applications [5]. Several
variants of the Paillier encryption scheme have been
studied. In this section, we review the Schmidt-Samoa-
Takagi encryption scheme which is a variant of the Pail-
lier encryption scheme [7]. Fu$\mathfrak{n}he ore$ , we show that
our variant is as secure as the Schmidt-Samoa-Takagi
encryption scheme.

The Schmidt-Samoa-Takagi encryption scheme is
secure in the sense of IND-CPA under the decisional
composite residuosity assumption, and of OW-CPA un-
der the assumption on the hardness of factoring $n=$
$p^{2}q$ . The decisional composite residuosity assump-
tion is that there is no polynomial-time algorithm that
solves the following “the decisional composite residu-
osity problem” with non-negligible advantage.

Definition 4 Let $n$ be a randomly chosen k-bit $p^{2}q$

modulus. For a probabilistic polynomial-time al-
gorithm $\mathcal{A}$ . we define the following probabilities:
$P_{Random}$ $=Pr[xarrow(Z/n^{2})^{x} : \mathcal{A}(n, x)= 1]$ and
$P_{{\rm Res} id_{tl}e}=Pr[xarrow(\mathbb{Z}/n)^{x} : \mathcal{A}(n, x^{n}mod n^{2})=1]$ .
Then, we denote an advantage of $\mathcal{A}$ by $Adv^{DCR}fl(n)=$

$|P_{Random}$ $P_{{\rm Res} idue}|$ .

In this paper, we use the above definition by replac-
ing $(\mathbb{Z}/n^{2})^{x}$ and $x^{n}mod n^{2}$ with $(\mathbb{Z}/n^{s+1})^{x}$ and $x^{n^{\sigma}}$ mod
$n^{s+1}$ , respectively.

3.1 Our Encryption Function

We consider a variant of the $Schmidt\prime Samoa$-Takagi
encryption scheme via the idea of Damgard and Ju-
rik [1]. Let $n=p^{2}q$ , where $p$ and $q$ are primes with
same length. In addition, we introduce new parameters
$s,$ $t\in N$ such that $s\geq t$ to the Schmidt-Samoa-Takagi

function. Then, we define a function $f$ as follows:

$f$ : $(Z/n)^{\cross}\cross Z/n^{s}$ $arrow$

$(r,m)$ $\mapsto$

$\rho’(1+n^{t})^{m}mod n^{s+1}(Z/n^{s+1})^{x}$

,

where $m$ is a message and $r$ is a random number.
We note that our function coincides with the Schmidt-
Samoa-Takagi function if $s=t=1$ . Obviously, our
function is additive homomorphism in $m$ . We give prop-
erties of $f$ , which can help us to compute $f^{-1}$ .

Lemma 5 Let $s,$ $t\in N$ such that $t\leq s<p,$ $q$ . Then,

1. $1+an^{s}\equiv(1+n^{t})^{an^{\prime-l}}(mod n^{s+1})$ for $a\in(Z/n^{s+1})^{x}$ .
2. ord$n^{c*1}(1+n^{t})=n^{s-t+1}$ , that is, $\langle 1+n^{t}\rangle\simeq Z/n^{s-t+1}$ .

Lemma 6 For $x,y\in(Z/n)^{x}$ and $s\geq 1$ ,

$x^{n}’\equiv y^{n^{\tau}}$ $(mod n)$ $=$ $x\equiv y$ $(mod pq)$ .

Corollary 7 $\{x\in(Z/n)^{\cross}|x\equiv y^{n}$
‘

$(mod n),y\in$
$(Z/n)^{x}|$ is a subgroup of $(Z/n)^{x}$ , whose the order is
$(p-1)(q-1)$. Especially, the subgroup is equivalent
to $\{x^{n}\prime mod n|x\in(Z/pq)^{\cross}]$ .

By Lemma 5, 6 and Corollary 7, we have the follow-
ing theorem and corollary.

Theorem 8 $f(r, m)$ $=$ $f(r+ipq,$ $m-(r^{-1}$ mod
$n^{s})in^{s-(}pq+jn^{s-l+1})$ for $i\in\{1,2, \ldots, p\}$ and $j\in$

$\{1,2,$
$\ldots,$

$n^{t-1}|$ . that is, $f$ is an $(n^{l-l}p)- to- 1$ function.
Corollary 9 1. The restriction $f_{r}=f|_{\langle Z/pq)^{x}xZ/n^{-\iota+}},|$

on $r$ is l-to- $]$ . Then $f_{r}$ holds the following equa-
tion : $f_{r}(r_{1}, m_{1})f_{r}(r_{2},m_{2})=f_{r}(r_{1}r_{2}mod pq,$ $m_{1}+$

$m_{2}+(r_{\rho q}^{-1}mod n^{s})ln^{s-/}pqmod n^{s-l+1})$, where $r_{pq}=$

$r_{1}r_{2}mod pq$ and $l\in(1,2,$ $\ldots,$
$p|$ such that $r_{1}r_{2}=$

$r_{\rho q}+lpqmod n$ .

2. The restriction $f_{/n}=f|_{(z/n)^{x}xZ/(n^{t4t-1}/p)}$ on $m$ is
l-to-l. Then $f_{n1}$ holds the following equation:
$f_{m}(r_{1},m_{1})f_{m}(r_{2},m_{2})=f_{m}(r_{1}r_{2}-lpqmod n,m_{1}+$

$m_{2}mod (n^{s-t+1}/p))$, where $m_{pq}=m_{1}+m_{2}$ mod
$(n^{s-l+1}/p)$ and $l\in(1,2,$ $\ldots,$

$p|$ such that $m_{1}+m_{2}=$

$m_{pq}-(r_{\rho q}^{-1}mod n^{s})ln^{s-t}pqmod n^{s-t+1}$ .

3.2 Our Encryption Scheme
In this section, we give a variant of the Schmidt-Samoa-
Takagi encryption scheme by using our function in the
previous sectlon.

Our encryption scheme is described as follows. Note
that $s$ and $t$ are public system parameters and given to
the key generation, the encryption, the decryption algo-
rithms.
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Key Generation: Given a security parameter $k$ , choose
randomly a modulus $n=p^{2}q$ of $k$ bits, where $p,$ $q$

have same length with $t\leq s<p,$ $q$ . Compute
$d\equiv n^{-s}(mod (p-1)(q-1))$ and $l\in \mathbb{Z}$ such that
$2^{l}<n^{s-t+1}/p<2^{l+1}$ . Then, the public key is $pk=$

$(n, l)$ and the secret key is $sk=(p, q, d)$ .

Encryption: To encrypt a message $m\in\{0,1\}^{l}$ , choose
$r\in(\mathbb{Z}/n)^{x}$ at random and compute $\mathcal{E}(r, m)$ , where
$\mathcal{E}=f_{m}$ , that is,

$\mathcal{E}(r,m)=\rho\cdot,(]+n^{t/?l})mod n^{s+1}$ .

Decryption: To decrypt a ciphertext $c$ , compute $r=$
$c^{d}mod pq$ , and $y=c(r^{-1})^{n^{\sigma}}mod n^{s+1}$ . Then, by
using Algorithm XDJ which is described below,
we obtain a message $m\in\{0, ]\}^{l}$ by

$D(c)$ $=$ XDJ$(s, t, n,y, 1)mod (n^{s-t+1}/p)$ .

We describe the decryption algorithm of our variant
in detail. First, we extract $r=c^{d}mod pq$ with the secret
key where $c=\rho’(1+n^{l})^{m}mod n^{s+1}$ is a ciphertext.
Second, we set $y=c(r^{-1})^{n^{7}}mod n^{s+1}=(1+n^{t})^{m}$ mod
$n^{s+1}$ . To decrypt a message $m\in Z/(n^{s-t+1}/p)$ from $y$ ,

we need to compute $x\in \mathbb{Z}/n^{s-t+1}$ such that $y=(1+$
$n^{t})^{X}mod n^{s+1}$ . We can find $x$ efficiently via the idea by
Damgdrd and Jurik [1], although it is hard to solve the
discrete logarithm in general. We modify their idea as
follows.

Now, we know $y=(1+an^{t})^{m}mod n^{s+1}$ and $a=1$ .
Then, for $(1 +an^{t})^{X}mod n^{s+1}$ , we know the following
equation:

$(1 +an^{t})^{X}=1+(\begin{array}{l}xl\end{array})an^{t}+(\begin{array}{l}x2\end{array})a^{2}n^{2l}+$

$...+(\begin{array}{l}x\delta\end{array})a^{\delta}n^{t\delta}+n^{(\delta+1)t}(\cdots)$

$\equiv 1+(\begin{array}{l}x1\end{array})an^{t}+(\begin{array}{l}x2\end{array})a^{2}n^{2t}+$

$...+(\begin{array}{l}x\delta\end{array})a^{\delta}n^{\delta t}$ $(mod n^{s+}|)$ ,

where $\delta\in N$ such that $\delta t<s+$ ] $\leq(\delta+1)t$ . In particular,
$\delta=\lceil\frac{s}{t}\rceil-1$ .

In the first step, we compute $x_{1}=xmod n^{t}$ as fol-
lows. By the above equation $y\equiv 1+(\begin{array}{l}x_{1}1\end{array})an^{t}\equiv 1+x_{1}an^{t}$

$( mod n^{2t}),x_{1}=(a^{-1}mod n^{2t})\frac{0^{\prime mod n^{\underline{\gamma},})-1}}{n^{l},wheren^{t}}mod n^{t}(a^{-1}mod n^{2t})L_{n^{t}}(ymod n^{2t})mod L_{n^{l}}(x)$
$==$

$\frac{x-1}{n^{t}}$ . In the second step, we compute $x_{2}=xmod n^{2t}$

as follows. Since there exists $k\in \mathbb{Z}/n^{t}$ such that
$x_{2}=x_{1}+kn^{t}$ ,

$y$
$\equiv$ $1+(\begin{array}{l}x_{2}l\end{array})an^{t}+(\begin{array}{l}x_{2}2\end{array})a^{2}n^{2t}$ $(mod n^{3t})$

$\equiv$ $1+x_{2}an^{t}+(\begin{array}{l}x_{1}+kn^{l}2\end{array})a^{2}n^{2t}$ $(mod n^{3t})$

$\equiv$ $1+x_{2}an^{t}+(\begin{array}{l}x_{1}2\end{array})a^{2}n^{2t}$ $(mod n^{3t})$ ,

therefore $x_{2}=(a^{-1} mod n^{3t})\frac{C^{ymod n^{3t})-1}}{n’}-(\begin{array}{l}x_{1}2\end{array})an^{t}$ mod
$n^{2t}=(a^{-1}mod n^{3t})L_{n^{t}}(ymod n^{3t})-(\begin{array}{l}x_{I}2\end{array})an^{t}mod n^{2t}$.

Generally, for 1 $\leq i\leq\delta$ , we use $x_{i-1}$ to compute
$x_{i}=xmod n^{it}$ as follows. There exists $k\in Z/n^{t}$ such
that $x_{i}=x_{i-1}+kn^{\langle i-1)l}$ ,

$y\equiv 1+(\begin{array}{l}x_{i}l\end{array})an^{t}+(\begin{array}{l}x_{i}2\end{array})a^{2}n^{2\iota}+$

. $..+(\begin{array}{l}x_{i}i\end{array})a^{i}n^{it}$ $(mod n^{(i+1)l})$

$\equiv 1+x_{i}an^{t}+(\begin{array}{l}x_{i- 1}+kn^{(i-1)t}2\end{array})a^{2}n^{2t}+$

$...+(\begin{array}{l}x_{i-|}+kn^{(i-1)l}i\end{array})a^{i}n^{it}$ $(mod n^{\langle i+1)l})$

$\equiv 1+x_{i}an^{l}+(\begin{array}{l}x_{i- l}2\end{array})a^{2}n^{2l}+$

$...+(\begin{array}{l}x_{i-l}i\end{array})a^{i}n^{i1}$ $(mod n^{(i+1)t})$ .

Therefore, we can compute $x_{i}$ with the value $L_{n^{t}}(y$ mod
$n^{(i+1)t})$ , since

$x_{i}=(a^{-1} mod n^{(i+1)t})\frac{(ymod n^{(i+I)t})-1}{n^{t}}$

$-(\begin{array}{l}x_{i- 1}2\end{array})an^{t}-\cdots-(\begin{array}{l}x_{i-l}i\end{array})a^{i-1}n^{(i-1)t}mod n^{it}$

$=(a^{-1}mod n^{(l+1)t})L_{n^{t}}(ymod n^{(i+1)t})$

$- \sum_{j=2}^{i}(\begin{array}{l}x_{i-l}j\end{array})a^{j-1}n^{(j-1)t}mod n^{il}$ .

This equation leads to Algorithm XDJ.

Algorithm 10 Let $L_{n^{t}}(x)= \frac{x-1}{n^{l}}$ . The following algo-
rithm takes $y\in(\mathbb{Z}/n^{s+1})^{x},$ $a\in(\mathbb{Z}/n^{s+1})^{x}$ , and $s,$ $t\in N$

such that $t\leq s$, and computes $x\in Z/n^{s-t+1}$ such that
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$y=(1+an^{t})^{X}mod n^{s+1}.\cdot$

$XDJ(s, t, n,y, a)$

$x:=0$

$\delta:=\lceil\frac{s}{t}\rceil-1$

for $(i:=1 to \delta)$

$t_{1}:=(a^{-1}mod n^{(i+1)t})$

$\cross L_{n’}(ymod n^{(i+1)t})mod n^{il}$

$t_{2}:=x$

for $(j:=2$ to i$)$

$x:=x-1$
$t_{2}:=t_{2}\cross xmod n^{it}$

$t_{1};=t_{1}- \frac{t_{2}x(an^{l})^{j-I}}{j!}mod n^{il}$

$x:=t_{1}$

retum $xmod n^{s-t+1}$ .

We can check whether $y$ is a valid form $(1+an^{l})^{X}$ , since
$(1+an^{l})^{X}-1$ is divided by $n^{l}$ . We note that Algorithm
XDJ coincides with that by Damgdrd and Jurik when
$t=a=1$ , and works for any $n\in N$ if there exists $x$ .

We give the following theorem on the security for our
scheme.

Theorem 11 For our scheme, the following securities
hold.

1. Our scheme is secure in the sense of OW-CPA un-
der the assumption on the hardness offactoring
$n=p^{2}q$.

2. Our scheme is secure in the sense ofIND-CPA un-
der the decisional composite residuosity assump-
tion by replacing $(Z/n^{2})^{x}$ and $x^{m}mod n^{2}$ with
$(Z/n^{s+1})^{x}$ and $l^{}mod n^{s+1}$ , respectively.

4 Constructions Based on Primi-
tive Power Roots of Unity

In this section, we first introduce new algebraic proper-
ties related to the homomorphic property. Second, we
describe some facts on primitive power roots of unity,
and apply them to our encryption function. Then, we
propose an extended encryption scheme which has the
above algebraic propeities.

4.1 New Algebraic Properties
In this section, we formalize the notion of a general
homomorphic property as follows: Let $f_{1},f_{2},$ $\ldots,f_{k},f$

be functions, and $*,g$ polynomial-time computable op-
erations. For $m_{1},$ $m_{2},$ $\ldots,$ $m_{k}$ , we consider $f_{I}(m|)*$

$f_{2}(m_{2})*\cdots*f_{k}(m_{k})=f(g(m_{1},m_{2}, \ldots,m_{k}))$ . These
functions do not always have common domain or com-
mon range. For example, a multiplicative homomor-
phism can be expressed by $f_{1}=f_{2}=$ . . $=f_{k}=$
$f$ and $g(a_{1},a_{2}, \ldots,a_{k})=a_{1}\cross a_{2}\cross\cdots\cross a_{k}$ . With
this formalization, we consider two properties. A
tuple $(\{f_{1},f_{2},$ $\ldots,f_{k}|,f)$ of functions is called “affine
with $x_{I},x_{2},$ $\ldots,$ $x_{k}$

” if $f_{1}(m_{1})*f_{2}(m_{2})*\cdots*f_{k}(m_{k})=$

$f(x_{1}m_{1}+x_{2}m_{2}+\cdots+x_{k}m_{k})$ , that is, $g(m_{1},m_{2}, \ldots,m_{k})=$

$x_{1}m_{1}+x_{2}m_{2}+\cdots+x_{k}m_{k}$ . An additive homomor-
phism can be considered as the special case. A tuple
of $(\{f_{1},f_{2},$ $\ldots,f_{k}|,f)$ of functions is called “pre-image
restriction with modulo $n$

” if $m=m_{I}=m_{2}=\cdots=m_{k}$

and $f_{1}(m)*f_{2}(m)*\cdots*f_{k}(m)=f(mmod n)$, that is,
$g(m,m, \ldots,m)=mmod n$ .

Definition 12 A tuple $(\{f_{1},f_{2},$ $\ldots,f_{k}|,f)$ of functions
has the property of affine with $x_{1},$ $x_{2},$ $\ldots,$ $x_{k}$ if for
$m_{1},m_{2},$ $\ldots,m_{k},$ $f_{1}(m_{1})*f_{2}(m_{2})*\cdots*f_{k}(m_{k})=f(x_{1}m_{1}+$

$x_{2}m_{2}+\cdots+x_{k}m_{k})$ .

Definition 13 A tuple of functions $(\{f_{1},f_{2}, \ldots,f_{k}\},f)$

has the property ofpre-image restriction with modulo
$n$ iffor $m$. $f_{1}(m)*f_{2}(m)*\cdots*f_{k}(m)=f(mmod n)$ .

4.2 Our Extended Encryption Function
In order to extend our function $f$ in Section 3.1, we in-
troduce primitive power roots of unity in $(Z/n^{s+1})^{x}$ to
$f$ .

At first, we give the definition of primitive power
roots of unity in the integer residue ring.

Definition 14 Let $n$ and $\ell$ be positive integers. $w_{t}\in$

$\ell(Z/n)^{x}$
is a primitive $\ell$-th root of 1 in $(Z/n)^{x}$ if $ord_{n}w_{t}=$

$\ln$ order to show existence conditions and constructions
of primitive power roots of unity, we give some facts
on primitive power roots of unity in $(\mathbb{Z}/n^{s+1})^{\cross}$ (See [8,
Section 6.5] $)$ .

Lemma 15 For $\ell\in N$, let $p$ be an odd prime such that
$\ell|p-1$ . Then, there exist $\varphi(\ell)$ primitive $\ell$-th roots of
1 in $(Z/p)^{x}$ , where $\varphi$ is the Euler phi-function, and we
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can compute them efficiently if we know prime factors
of $p-1$ . In particular, for a generator $g$ of $(\mathbb{Z}/p)^{X}$ ,
$g^{(\rho-1)/\ell}mod p$ is a primitive $\ell$-th root of 1 in $(\mathbb{Z}/p)^{x}$ .

Now, we use primitive $\ell$-th roots of 1 in $(\mathbb{Z}/p)^{\cross}$ to
those in $(\mathbb{Z}/n^{s+1})^{\cross}$ by employing the Chinese Remain-
der Theorem, where $n=p^{2}q$ and $s\in N$ such that
$s<p,$ $q$ . We give the following important lemma (see

$e.g$ . [ $8$ , Section 6.5] $)$ .

Lemma 16 Let $p$ and $q$ be distinct odd primes, and $e$

and $e’$ positive integers.

1. $(\mathbb{Z}/p^{e})^{x}$ is a cyclic group. In particular
$|(\mathbb{Z}/p^{e})^{x}|=p^{e-1}(p-1)$ .

2. For a group $(Z/p^{e}q^{e’})^{x}$ ,
$\max_{g\epsilon(Z/p\gamma’)^{X}}\{$ ord$p^{e}t^{\prime g1}$

$1cm(|(\mathbb{Z}/p^{e})^{x}|, |(\mathbb{Z}/q^{e’})^{x}|)$ $=$ $1cm(p^{e-1}(p$ $-$

1 $)$ , $q^{\epsilon’-1}(q-1))$ .

We can eMciently compute a generator $g$ of
$(\mathbb{Z}/p^{2s+2})^{x}$ using the Hensel lifting due to Lemma 16
if we know prime factors of $p-1$ , Similarly, we can
compute a generator $h$ of $(\mathbb{Z}/q^{s+1})^{x}$ efficiently. From $g$

and $h$ , we can find an element $w\in(Z/n^{s+1})^{x}$ such that
$ord_{n’}+|w=1cm(p^{2s+1}(p-1), q^{s}(q-1))$ , by using the Chi-
nese Remainder Theorem. Now, let $p-1=\ell p’,$ $q-1=$
$\ell q’$ , and $gcd(p-1, q-1)=\ell$ , where $p’,$ $q’\in$ N. Let
$w_{t}=w^{(ord_{r\iota^{l+1}}.w)/t}mod n^{s+1}$ . Then, $w_{r}$ is a primitive $\ell-$ th
root of 1 in $(\mathbb{Z}/n^{s+1})^{x}$ since ord.,$+\ovalbox{\tt\small REJECT} w=p^{2s+1}q^{s}p’q’\ell$ .
Thus, we can compute a primitive $\ell$-th root of 1 efii-
ciently.

Let $W_{t}$ be the set of $\ell$-th roots of 1 in $(Z/n^{s+1})^{x}$ . The
set of $w_{t}$ constructed by the above computation of prim-
itive $\ell$-th roots of 1 in $(Z/n^{s+1})^{x}$ is a subset of $W_{l}$ . We
define this subsct as $S_{t}$ . In other words,

$S_{t}=\{w_{t}\in W_{\ell}|$ ord$p^{\underline{1},\underline{+}\mathcal{W}\ell}=ord_{q^{s*1}}w_{f}=\ell\}$ .

Remark 17 If $gcd(\ell, (p-1)(q-1))=1$ , we see that
there exists no primitive $\ell$-th root of 1: In the $RSA$ en-
cryption scheme [6], the encryption function $f(X)=$
$X^{e}mod n$, where the exponent $e$ is relatively prime to
$\varphi(n)=(p-1)(q-1)$ , is a permutation on $(\mathbb{Z}/n)^{x}$ . So is
on $(\mathbb{Z}/p)^{x}$ and $(\mathbb{Z}/q)^{\cross}$ by the Chinese Remainder The-
orem. Hence, for all $x\in(\mathbb{Z}/n)^{\cross}$, there exists only one
e-th root, that is, the e-th root of 1 is 1 in $(\mathbb{Z}/n)^{x}$ .

Factoring-based cryptographic schemes are often in-
stantiated by choosing $n$ to be the product of two strong
primes (we note that $p\in N$ is a strong prime if $p$

is prime and $p=2p’+1$ , where $p’$ is also prime).
It is well-known that strong primes have resistance
against factoring attacks which depend on the structure
of primes. Such attacks include the $p-1$ method and
the elliptic curve method. However, since $\ell$ is limited
to 2 or $p’$ for a strong prime $p$ , there are only $g_{2},$ $g_{p^{t}}$ in
$(\mathbb{Z}/p)^{x}$ as primitive $\ell$-th roots of 1. We consider to use
the following primes with many power roots of unity in
$(\mathbb{Z}/p)^{x}$ , called “semi $\ell$-smooth primes”.

Definition 18 For $\ell\in 2N$, a prime $p\in N$ is semi $\ell-$

smooth if$p=\ell p’+1$ , where $p’$ is prime such that $p’>\ell$.

In our extended encryption function and scheme, we re-
quire that $\ell$ is constant and much smaller than $p’$ , in or-
der to resist against factoring attacks mentioned above.
We do not know whether the number of the primes
above is infinite. However, we assume that there exist
infinite number of semi $\ell$-smooth primes for any $\ell\in N$ .
Henceforth in this paper, we assume that $p$ and $q$ are
semi $\ell$-smooth prime.

For $i$ $\in$ $\{1,2, \ldots, \ell\}$ , we define an extended en-
cryption function $f_{i}$ with a primitive $\ell$-th root of 1 in
$(Z/n^{s+1})^{x}$ as follows:

$f_{i}$ : $(\mathbb{Z}/n)^{\cross}\cross \mathbb{Z}/n^{s}$ $arrow$ $(\mathbb{Z}/n^{s+1})^{x}$

$(r, m)$ $\mapsto$ $\prime^{l}.,(1-w_{\ell}^{i}n)^{m}mod n^{s+1}$ ,

where $m$ is a message, $r$ is a random number, and $w_{t}$ is
a primitive $\ell$-th root of 1 in $(\mathbb{Z}/n^{s+1})^{x}$ . We note that our
extended encryption function is similar to the Schmidt-
Samoa-Takagi function if $s=1$ and $i=\ell$ , since $w_{t}^{t}\equiv 1$

$(mod n^{s+1})$ . In addition, the extended encryption func-
tion is considered as $t=1$ . Obviously, our function is
additive homomorphism in $m$ . We give the following
property on $f_{i}$ .

Corollary 19 Let $s\in N$ and $a$ $\in(Z/n^{s+1})^{x}$ . Then,
$ord.,*1(1+an)=n^{s}$ , that is, $\langle 1+an\rangle\simeq Z/n^{s}$ .

We see that $ord_{n^{\sigma\star 1}}.(1-w_{t}^{i}n)=n^{s}$ since $w_{\ell}^{i}$ is relatively
prime to $n$ for any $i$ . Therefore, for any $i$ , we obtain the
properties similar to Theorem 8 and Corollary 9.

Theorem 20 For any $i\in\{1,2, \ldots, \ell\}$ ,

1. $f_{i}(r, m)=f_{i}(r+jpq, m-(r^{-1}mod n^{s})jpqn^{s-1})$ for
$j\in\{1,2, \ldots, p\}$ , that is, $f_{i}$ is a p-to-l function.

2. The restriction $f_{i.r}$ $=$ $f_{i}|_{(z/pq)^{X}xZ/n^{:}}$ on $r$ is 1-
to-l. Then $f_{i,r}$ holds the following equation:
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$f_{i,r}(r_{1}, m_{1})f_{i.r}(r_{2}, m_{2})=f_{i.r}(r_{1}r_{2}mod pq,$ $m_{1}+\prime_{2}+$

$(r_{pq}^{-1}mod n^{s})lpqmod n^{s})$ , where $r_{pq}=r_{1}r_{2}$ mod
$pq$ and $l\in\{1,2, \ldots, p\}$ such that $r_{1}r_{2}=r_{\rho q}+$

$lpqmod n$ .

3. $\cdot$ The restriction $f_{i.m}$ $=$ $f_{i}|_{(Z/n)^{x}xZ/(n^{J}/p)}$ on $m$ is
l-to-l. Then $f_{i,m}$ holds the following equa-
tion: $f_{i.m}(r_{1}, m_{1})f_{i.m}(r_{2}, m_{2})=f_{i.m}(r_{1}r_{2}-lpq$ mod
$n,$ $m_{1}+m_{2}mod (n^{s}/p))$, where $m_{pq}=m_{1}+m_{2}$ mod
$(n^{s}/p)$ and $1\in\{1,2, \ldots, p\}$ such that $m_{1}+t_{2}=$

$m_{pq}-(r_{\rho q}^{-1}mod n^{s})lpqmod n^{s-t+1}$ .

4.3 Our Extended Encryption Scheme
We propose a concrete scheme based on our extended
encryption function $f_{i}$ . We describe our extended en-
cryption scheme as follows. Note that $s$ and $\ell$ are public
system parameters and given to the key generation, the
encryption, the decryption algorithms.

Key Generation: Given a security parameter $k$ , choose
randomly a modulus $n=p^{2}q$ of $k$ bits, where $p,$ $q$

are semi $\ell$-smooth prime such that $p|q-1$ and
$q|p-1$ with the same length, and $\ell\leq s<p,$ $q$ .
Compute $d\equiv n^{-s}(mod (p-1)(q-1)),$ $l\in Z$ such
that $2^{/}<n^{s}/p<2^{/+1}$ and a primitive $\ell$-th root
$w_{t}\in S_{t}$ of 1 in $(Z/n^{s+1})^{x}$ . Then, the public key is
$pk=(n, 1, w_{t})$ and the secret key is $sk=(p, q, d)$ .

Encryption: To encrypt a message $m\in\{0,1\}^{/}$ , choose
$i\in\{1,2, \ldots, \ell\}$ and randomly $r_{j}\in(Z/n)^{\cross}$ , and
compute $\mathcal{E}_{j}(r_{i}, m)$ , where $\mathcal{E}_{i}=f_{i.n\iota}$ , that is,

$c_{i}$ $=$ $\mathcal{E}_{j}(r_{j}, m)$ $=$ $\mu_{i}^{\sigma}(1-w_{t}^{i}n)^{m}mod n^{s+1}$ .

Then, the ciphertext is $(c_{j}, i)$ .

Decryption: To decrypt $c_{i}$ , compute $r=c_{i}^{d}mod pq$

and $y=c_{i}(r^{-1})^{n}\prime mod n^{s+1}$ . Then, by using Al-
gorithm XDJ, we obtain a message $m\in\{0,1\}^{/}$ by

$D((c_{i}, i))$ $=$ XDJ$(s, 1, n,y, -w_{f}^{l})mod (n^{s}/p)$ .

Obviously, $\mathcal{E}_{i}$ has the additively homomorphic property,
for any $i$ .

Now, we show the security proofs of OW-CPA and
IND-CPA. However, it might be hard to compute $w_{t}$

from $n$ with no information on $p$ or $q$ . That is, we cannot
prove in a similar fashion of the proof for Theorem 11.

Here, we consider the following computational prob-
lem, denoted by the factoring problem with power
roots, which is not harder than the standard factoring
problem.

Definition 21 Let $n$ be a randomly chosen k-bit $p^{2}q$

modulus, where $p$ and $q$ are semi $\ell$-smooth prime. For a
probabilistic polynomial-time algorithm $\mathcal{A}$ , we denote
an advantage of $\mathcal{A}$ by

$Pr[w_{t}arrow S_{t}:\mathcal{A}(n, w_{t}, \ell)=p]$ ,

where $S_{t}$ is described in Section 4.2.

In addition to the computational problem, we can also
consider a decisional problem, that is, the decisional
composite residuosity problem with additional informa-
tion of $w_{t}$ , denoted by the decisional composite residu-
osity problem with power roots. Then, in a similar fash-
ion of Theorem 11, we can show the security properties
on OW-CPA and IND-CPA.

Theorem 22 For any $i\in\{1,2, \ldots, \ell\}$ , the following se-
curities hold.

1. Our extended encryption scheme is secure in the
sense of OW-CPA under the assumption on the
hardness offactoring $n=p^{2}q$ with $w_{f}$ .

2. Our extended encryption scheme is secure in the
sense of lND-CPA under the assumption on the
hardness of the decisional composite residuos-
ity problem with $w_{t}$ . by replacing $(Z/n^{2})^{x}$ and
$x^{n}mod n^{2}$ with $(Z/n^{s+1})^{x}$ and $x^{n}mod n^{s+1},$ re-
spectively.

In addition to the security proofs, our extended
encryption scheme satisfies the algebraic properties
“affine” and ”pre-image restriction”. Let $F_{t}(r,m)=$

$\rho(1-n^{t})^{m}mod n^{s+1}$ , which is the same as the encryp-
tion function described at Section 3.1.

Theorem 23 For the functions $\mathcal{E}_{1},$ $\mathcal{E}_{2},$

$\ldots,$
$\mathcal{E}_{t}$ , the fol-

lowing properties hold:

1. For all $i,j,k\in\{1,2,$ $\ldots,\ell|$ , there exist $x_{i.k}$ and
$x_{i.j}$ such that $((\mathcal{E}_{i}, \mathcal{E}_{j}\}, \mathcal{E}_{k})$ is an affine tuple with
$x_{i.k}$ and $x_{j.k}$ on $m$, that is, for all $r_{i},$ $r_{j}\in(\mathbb{Z}/n)^{x}$

and $m_{i},$ $m_{j}$
$\in$ $\mathbb{Z}/(n^{s}/p)$ . $\mathcal{E}_{i}(r_{i},m_{i})\mathcal{E}_{j}(r_{j}, m_{j})$ $=$

$\mathcal{E}_{k}(r_{i}r_{j}, x_{i.k}m_{i}+x_{j.k}m_{j})$ , where $x_{o.b}\in Z/n^{s}$ such that
1 $-w_{t}^{a}n\equiv(1-w_{t}^{b}n)^{x_{n.b}}(mod n^{s+1})$. $ln$ particular,
we can compute $x_{i.k}$ and $x_{j.k}$ , efficiently.

2. For all $t\in N$ such that $t|\ell,$ $(\{\mathcal{E}_{\delta}, \mathcal{E}_{2\delta}, \ldots, \mathcal{E}_{t\delta}\}, F_{(})$

is a pre-image restriction modulo $n^{s-t+1}$

tuple on $m$, where $\delta$ $=$ $\ell/t$ , that is,

for all $r_{\delta},$ $r_{2\delta},$ $\ldots,$ $r_{t\delta}$
$\in$ $(Z/n)^{x}$ and
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$m\in \mathbb{Z}/n^{s},$ $\mathcal{E}_{\delta}(r_{\delta},m)\mathcal{E}_{2\delta}(r_{2\delta}, m)\cdots \mathcal{E}_{t\delta}(r_{t\delta}, m)$ $=$

$F_{t}(r_{\delta}r_{2\delta}\cdots r_{t\delta},mmod n^{s-t+1})$ . $ln$ partic-
ular, $\mathcal{E}_{\delta}(r_{\delta}, m)$ $\mathcal{E}_{2\delta}(r_{2\delta}, /)\cdots \mathcal{E}_{t\delta}(r_{t\delta}, m)$

$F_{t}(r_{\delta}r_{2\dot{\delta}}\cdots r_{t\delta},m)$.

Note that we can also construct a scheme based on
the Damgard-Jurik encryption scheme [1] instead of
the Schmidt-Samoa-Takagi scheme, although we do
not know whether the one-wayness is reduced to the
problem of factoring $n=pq$ .

References
[1] I. $Damg^{o}ard$ and M. Jurik. A Generalisation,

a Simplification and Some Applications of Pail-
lier’s Probabilistic Public-Key System. $PKC2001$ ,
LNCS, 1992: 119-136, 2001.

[2] I. Damgard and M. Jurik. A Length-Flexible
Threshold Cryptosystem with Applications. ACISP
2003, LNCS, 2727:350-364, 2003.

[3] T. ElGamal. A Public Key Cryptosystem and
a Signature Scheme Based on Discrete Loga-
rithms. lEEE Transactions on information Theory,
31 (4)$:469-472$, 1985.

[4] S. Goldwasser and S. Micali. Probabilistic Encryp-
tion. Journal of Computer and Systems Sciences,
$28(2):270-299$ , 1984.

[5] P. Paillier. Public-Key Cryptosystems Based on
Composite Degree Residuosity Classes. EURO-
CRYPT’99, LNCS, 1592:223-238, 1999.

[6] R. L. Rivest, A. Shamir, and L. Adleman. A
Method for Obtaining Digital Signatures and
Public-key Cryptosystems. Communications of the
$ACM,$ $21(2):120-126$, 1978.

[7] K. Schmidt-Samoa and T. Takagi. Paillier’s Cryp-
tosystem Modulo $p^{2}q$ and Its Applications to Trap-
door Commitment Schemes. Mycrypt 2005, LNCS,
3715:296-313, 2005.

[8] V. Shoup. A Computational Introduction to Number
Theory and Algebra. Cambridge Unversity Press,
2005.

43


