
The Membrane Systems Language Class*

Artiom ALHAZOV1’2, Constantin CIUBOTARU1, Yurii ROGOZHIN1, Sergiu IVANOV1’3
1 Institute of Mathematics and Computer Science, Academy of Sciences of Moldova,

Academiei 5, Chi\c{s}in\u\{a}u MD-2028 Moldova
E-mail: {artiom,chebotar,rogozhin,sivanov}@math.md

2 IEC, Department of Information Engineering, Graduate School of Engineering
Hiroshima University, Higashi-Hiroshima 739-8527 Japan

3 Technical University of Moldova
\c{S}tefan cel Mare } 68, Chi\c{s}in\u\{a}u MD-2004 Moldova

Abstract This paper introduces the class of lan-
guages generated by the transitional model of mem-
brane systems without cooperation and without ad-
ditional ingredients. The fundamental nature of
these basic systems allows us to define this class of
languages it in terms of derivation trees of context-
free grammars. We compare this class to the well-
known language classes and discuss its properties.

1 Introduction

Membrane computing is a theoretical frame-
work of parallel distributed multiset process-
ing. It }$\iota\Re$ been introduced by Ghcorghe Piun
in 1998, and remains an active research area,
see [6] for the comprehensive bibliography and
[3],[4] for a systematic survey.

The configurations of membrane systems
(with symbol objects) consist of multisets over
a finite alphabet, distributed across a tree
structure. Therefore, even such a simple struc-
ture as a word (i.e., a sequence of symbols) is
not explicitly present in the system. To speak
of languages as sets of words, onc first needs
to represent them in membrane systems, and
there are a few ways to do it.

The first way is to represent words by string
objects. Rather many papers take this ap-
proach, see Chapter 7 of [4], but only few con-
sider parallel operations on words. Moreover,
a tuple of sets or multisets of words is already
a quite complicated structure. The third draw-
back is that it is very difficult to define an el-
egant way of interactions between strings. Ex-

’Artiom Alhazov acknowleges the support of the
Japan Society for the Promotion of Science and the
Grant-in-Aid for Scientific Research, project $20\cdot 08364$.
All authors acknowledge the support by the Science and
Technology Center in Ukraine, project 4032.

amples are polarizations and splicing, but these
are difficult to use in applications. Here we deal
with the symbol objects.

The second way is to represent a word by a
single symbol object, or by a few objects of the
form (letter,position) as in, e.g., [1]. One can
only speak about finite languages in this way.

The third way is to represent positions of the
letters in a word by nested membranes. The
corresponding letters can be encoded by ob-
jects in the associated regions, membrane types
or membrane labels. Such a representation re-
quires sophisticated types of rules, [2].

The fourth way is to consider letters as digits
and then view words as numbers, or use some
other encoding of words into numbers or multi-
sets. Clearly, the concept of words is no longer
direct, and implementing basic word operations
in this way requires a lot of number processing.

The fifth way is to work with multisets,
and regard the order of sending the objects in
the environment as their order in the output
word. The class of languages of our interest
is the class generated by systems with paral-
lel applications of non-cooperative rules rewrit-
ing objects and sending them between the re-
gions. Surprisingly, this class has not received
enough attention. Almost all known charac-
terizations and bounds for generative power of
different membrane systems with various in-
gredients and descriptional complexity bounds
are expressed in terms of REG , MAT, ETOL
and RE , their length sets and Parikh sets (and
much less often in terms of FIN, other subreg-
ular classes, CF or CS). The membrane sys-
tems language class lies between regular and
context-sensitive classes, being incomparable
with well-studied intermediate ones.

数理解析研究所講究録
第 1691巻 2010年 44-50 44

$\frac{A.A1hazov,C.Ciubotaru}{2Definitions}$S. $Ivanov,$ Yu .
$RogozhinTheMembraneSystemsLanguageClassrespondingregions(exceptobjectsainregions$

i such that R_{i} does not contain any rule $aarrow u$,
We start with some formal language prelimi- but these objects do not contribute to the re-
naries. Consider a finite set V . The set of all sult). The choice of rules is non-deterministic.
words over V is denoted by V^{*} , the concatena- A sequence of transitions is called a compu-
tion operation is denoted by . and the empty tation. The computation halts when such a
word is denoted by λ . Any set $L\subseteq V^{*}$ is called configuration is reached that no rules are appli-
a language. For a word $w\in V^{*}$ and a sym- cable. The result of a (halting) computation is
bol $a\in V$, the number of occurrences of a in the sequence of objects sent to the environment
w is written as $|w|_{a}$. The permutations of a (all the permutations of the symbols sent out in
word $w\in V^{*}$ are Perm$(w)=\{x\in V^{*}||x|_{a}=$ the same time are considered). The language
$|w|_{a}\forall a\in V\}$. We denote the set of all per- $L(\Pi)$ generated by a P system Π is the union
mutations of the words in L by Perm(L) , and of the results of all computations. The class of
we extend this notation to classes of languages. languages generated by non-cooperative tran-
We use FIN, $REG,$ $LIN,$ CF , MAT, CS , sitional P systems with at most m membranes
RE to denote finite, regular, linear, context- is denoted by LOP_{m} (ncoo, tar). If the number
free, matrix, context-sensitive and recursively of membranes is not bounded, m is replaced by
enumerable families of languages, respectively. $*$ or omitted. If the target indications of the
The family of languages generated by extended form in_{j} are not used, tar is replaced by out.
(tabled) interactionless L systems is denoted by
$E(T)OL$. For more preliminaries see [5]. Example 1 To illustrate the concept of gener-

ating languages, consider the following P sys-Throughout this paper we use string nota- tem: $\Pi=(\{a, b, c\}$, $[]a^{2}\{aarrow\lambda,$ $aarrow$
tion to denote the multisets. When speaking a b c^{2} }, $0)$. Each of the two

l l
symbols a has aymabout membrane systems, the order in which out out

non-deterministic choice whether to be erased
symbols are written is irrelevant. or to reproduce itself while sending a copy of

b and two copies of c into the environment.
Therefore, the contents of region 1 can re-

2.1 Transitional P systems main a^{2} for an arbitrary number $m\geq 0$ of
steps, and after that at least one copy of a

A membrane system is defined by a tuple $\Pi=$ is erased. The other copy of a can reproduce
$(O, \mu, w_{1}, \cdots, w_{m}, R_{1}, \cdots, R_{m}, i_{0})$, where O is a itself for another $n>0$ steps before being
finite set of objects, μ is a hierarchical struc- erased. Each of the first m steps, two copies
ture of m membranes, bijectively labeled by of b and four copies of c are sent out, while

in each of the next n ste s onl one co ofps, on y one copy 0

$1,$ $\cdots,$ m ; the interior of each membrane defines b and two copies of c are ejected. Therefore,
a region; the environment is referred to as re- $L(\Pi)=(Perm(bccbcc))^{*}(Perm(bcc))^{*}$.
gion $0,$ w_{i} is the initial multiset in region i ,
$1\leq i\leq m,$ R_{i} is the set of rules of region i , 3 Time yield of CF grammars
$1\leq i\leq m$, and $i_{0}=0$ is the output region.

The rules of a membrane systems have the Consider a grammar $G=(N, T, S, P)$ and $A\in$

form $uarrow v$, where u \in $O^{+},$ v \in $(O\cross$ N . We denote by G_{A} the grammar (N, T, A, P)
Tar)*. The target indications from Tar $=$ obtained by considering A as axiom in G .
{here, out} $\cup\{in_{j}|1\leq j\leq m\}$ are written A derivation tree in a context-free grammar
as a subscript, and target here is omitted. In is always a rooted tree with leaves labeled by
case of non-cooperative rules, $u\in O$. terminals and all other nodes labeled by non-

The rules are applied in maximally parallel terminals. Rules of the form $Aarrow\lambda$ cause a
way: no further rule should be applicable to problem, which can be solved by allowing to
the idle objects. In case of non-cooperative also label leaves by λ , or by transformation of
systems, the concept of maximal parallelism the corresponding grammar. Note: we only
is the same as evolution in L systems: all ob- consider finite derivation trees. We define n-
jects evolve by the associated rules in the cor- th level yield of a derivation tree τ :

45

A. Alhazov, C. Ciubotaru, S. Ivanov, Yu. Rogozhin The Membrane Systems Language Class
We define $yield_{0}(\tau)=a$ if τ has a
single node labeled by $a\in T$, and
$yield_{0}(\tau)=\lambda$ otherwise.

Let k be the number of chil-
dren nodes of the root of τ , and
$\tau_{1},$ $\cdots,$ τ_{k} be the subtrees of τ with
these children as roots. We de-
fine $yield_{n+1}(\tau)$ $=$ $yield_{n}(\tau_{1})$.
$yield_{n}(\tau_{2})\cdots\cdot\cdot yield_{n}(\tau_{k})$.

We now define the time yield L_{t} of a context-
free grammar derivation tree τ , as the usual
yield except the order of terminals is vertical
from root instead of left-to-right, and the order
of terminals at the same distance from root is
arbitrary. We use \prod to denote concatenation
in the following definition:

$L_{t}(\tau)=\prod_{n=0}^{height(\tau)}(Perm(yield_{n}(\tau)))$.

The time yield $L_{t}(G)$ of a grammar G is
the union of time yields of all its derivation
trees. The corresponding class of languages is
$L_{t}(CF)=$ { $L_{t}(G)|G$ is a CF grammar}.

$G_{1}=(\{S, A, B, C\})\{a, b, c\},$ $S,$$P)a$,
Example 2 Consider grammar

$P=\{Sarrow SABC,$ $Sarrow ABC,$ $Aarrow A$,
$Barrow B,$ $Carrow C,$ $Aarrow a,$ $Barrow b,$ $Carrow c\}$.

We now show that $L_{t}(G_{1})=\{w\in\{a, b, c\}^{*}|$

$|w|_{a}=|w|_{b}=|w|_{c}>0\}=$ L. Indeed, all
derivations of A are of the form $A\Rightarrow^{*}A\Rightarrow a$.
Likewise, symbols $B,$ C are also trivially
rewritten an arbitrary number of times and
then changes into a corresponding terminal.
Hence, $L_{t}(G_{1A})$ $=$ $\{a\},$ $L_{t}(G_{1B})$ $=$ $\{b\}$,
$L_{t}(G_{1C})=\{c\}$. For inclusion $L_{t}(G)\subseteq L$ it
suffices to note that S always generates the
same number of symbols $A,$ $B,$ C .

The converse inclusion follows from the fol-
lowing simulation: given a word $w\in L_{J}$ gen-
erate $|w|/3$ copies of $A,$ $B,$ C , and then ap-
ply their trivial rewriting such that the timing
when the terminal symbols appear corresponds
to their order in w .

Corollary 1 $L_{t}(CF)\not\subset CF.$

4 Membrane class via deriva-
tion trees of CF grammars

We first show that for every membrane system
without cooperation, there is an equivalent sys-
tem from the same class with one membrane.

Lemma 1 LOP(ncoo, tar) $=LOP_{1}$ (ncoo, out),

Proof. Consider an arbitrary transitional mem-
brane system Π (without cooperation and with-
out additional ingredients). The known tech-
niquc of flattening the structure consists of
transforming Π as follows. Object a in region
associated to membrane i is transformed into
object (a, i) in the region associated to the sin-
gle membrane. The alphabet, initial configu-
ration and rules are transformed accordingly.
Clearly, the configurations of the old system
and the new system are isomorphic, and the
output in the environment is the same. \square

Theorem 1 $L_{t}(CF)=LOP(ncoo$, tar $)$.

Proof. By Lemma 1, the statement is equiv-
alent to $L_{t}(CF)=LOP_{1}$ (ncoo, out). Con-
sider a P system $\Pi=$ $(O, 1_{1}]_{1},$ $w,$ $R,$ $0)$. We
construct a context-free grammar $G=(O’\cup$
$\{S\},$ $O,$ $S,$ $P\cup\{Sarrow w\})$, where S is a new
symbol, / is a morphism from O into new sym-
bols and $P=\{a’arrow u’v|(aarrow uv_{out})\in R$,
$a\in O,$ $u,$ $v\in O^{*}\}\cup\{a’arrow\lambda|$ \negヨ $(aarrow uv_{out})\in$

$R\}$. Here v_{out} are those symbols on the right
side of the rule in R which are sent out, and u

are the remaining right-side symbols.
The computations of Π are identical to paral-

lel derivations in G , except the following points.
First, unlike $G,$ Π docs not kcep track of thc
left-to-right order of symbols. This does not
otherwise influence the derivation (the rules are
context-free) or the result (the order of non-
terminals produced in the same step is arbi-
trary, and the timing is preserved). Second,
the initial configuration of Π is produced from
the axiom of G in one additional step. Third,
the objects of Π that cannot evolve are erased
in G , since they do not contribute to the result.

It this way $L_{t}(CF)\supseteq$ LOP(ncoo, tar). To
prove the converse inclusion, consider an arbi-
trary context-free grammar $G=(N, T, S, P)$.
We construct a P system Π $=$ $(N\cup$

$T,$ $[_{1}]_{1},$ $S,$ $R,$ $0)$, where $R=\{aarrow h(u)|(aarrow$

u $)$ $\in R\}$, where h is a morphism defined by
$h(a)=a,$ $a\in N$ and $h(a)=a_{out},$ $a\in T$.
The computations in Π correspond to parallel
derivations in G , and the order of producing

46

A. Alhazov, C. Ciubotaru, S. Ivanov, Yu. Rogozhin The Membrane Systems Language Class
terminal symbols in G corresponds to the order
of sending them to the environment by Π . \square

We now present a few normal forms.

Lemma 2 (First normal form) For a context-
free grammar G there exists a context-free
grammar G‘ such that $L_{t}(G)=L_{t}(G’)$ and. the axiom of $G’$ does not appear in the

right side of any rule, and. if the left side is not the axiom in $G’$, then
the right side is not empty.

Proof. The technique is essentially the same as
removing λ-productions in classical theory of
context-free grammars. Let $G=(N, T, S, P)$.
First, introduce the new axiom $S’$ and add a
rule $S’arrow S$. Compute the set $E\subseteq N$ of non-
terminals that can derive λ by closure of $(Aarrow$

$\lambda)arrow(A\in E)$ and

$(A_{1}, \cdot\cdot,A_{k}^{\cdot}\in E)(Aarrow.A_{1}\cdot\cdot A_{k})$

,
$arrow(A\in E)$.

Then replace productions $Aarrow u$ by $Aarrow h(u)$,
where $h(a)=\{a, \lambda\}$ if $a\in E$ and $h(a)=a$ if
$a\in N\cup T\backslash E$. Finally, remove λ-productions
for all non-terminals except the axiom (this
preserves not only the generated terminals, but
also the order in which they are generated). \square

The First normal form shows that erasing can
be limited to the axiom.

Lemma 3 (Binary normal form) For a
context-free grammar G there is a context-free
grammar G‘ such that $L_{t}(G)=L_{t}(G’)$ and. G‘ is in the First normal form,. the right side of productions is at most 2.

Proof. The only concern in splitting the longer
productions of $G=$ (N, T, S, P) in shorter
ones is to preserve the order in which non-
terminals are produced. The number $n=$
$\lceil\log_{2}(\max_{(Aarrow u)\in P}|u|)\rceil$ is the number of steps
sufficient to implement all productions of G by
at most binary productions. Each production
$p:Aarrow A_{1}\cdots A_{k},$ $k\leq 2^{n}$, is replaced by pro-
ductions implementing a binary tree, rooted in

A with new symbols in intermediate nodes, and
leaves labeled $A_{1},$

$\cdots,$
A_{k} at depth n . \square

The Binary normal form shows that produc-
tions with right side >2 are not needed.

Lemma 4 (Third normal form) For a context-
free grammar G there exists a context-free
grammar $G’$ such that $L_{t}(G)=L_{t}(G’)$ and. $G’$ is in the Binary normal form,. $G’=(N, T, S, P’);\forall A\in N$ is reachable,. either $G’=(\{S\}, T, S, \{Sarrow S\})$, or $G’=$

$(N, T, S, P’)$ and $\forall A\in N,$ $L_{t}(G_{A}’)\neq\emptyset$.

Proof. Consider a CF grammar in the Binary
normal form. First, compute the set $D\subseteq N$

of productive non-terminals as closure of $(Aarrow$

$u),$ $(u\in T^{*})arrow(A\in D)$ and

$(A_{1}, \cdot\cdot,A_{k}^{\cdot}\in D)(Aarrow.A_{1}\cdot\cdot A_{k})$

,
$arrow(A\in D)$.

Remove all non-terminals that are not pro-
ductive from N , and all productions contain-
ing them. If the axiom was also removed,
then $L_{t}(G)$ $=$ \emptyset , so we can take $G’$ $=$

$(\{S\}, T, S, \{Sarrow S\})$. Otherwise, compute the
set $R\subseteq N$ of reachable non-terminals as clo-
sure of $(S\in R)$ and

$(A(Aarrow A_{1}\cdot\cdot A_{k})\in R),$

. $arrow(A_{1}, \cdots, A_{k}\in R)$.

Remove all non-terminals that are not reach-
able from N , and all productions containing
them. All transformations preserve the gener-
ated terminals and the order of their produc-
tion, as well as the Binary normal form. \square

The Third normal form shows that non-ending
derivations are only needed for \emptyset .

5 Comparing the class
Theorem 2 LOP(ncoo, tar) $\supseteq REG$.

Proof. Any regular language is accepted
by some complete finite automaton M $=$

$(Q, \Sigma, q_{0}, F, \delta)$. We construct a context-free
grammar $G=(Q,$ $\Sigma,$ $q_{0},$ $P)$, where $P=\delta\cup$

47

A. Alhazov, C. Ciubotaru, S. Ivanov, Yu. Rogozhin The Membrane Systems Language Class
$\{qarrow\lambda|q\in F\}$. The order of symbols ac- Lemma 5 Let $G=(N, T, P, S)$ be a context-
cepted by M corresponds to the order of sym- free grammar in the Third normal forrn. If for
bols generated by G , and the derivation only every rule $(Aarrow BC)\in P$, symbol B does not
finishes when the final state is reached. \square

have unbounded time, than $L_{t}(G)\in REG$.

Theorem 3 LOP(ncoo, tar) $\subseteq CS$.

Proof. Consider a context-free gram-
mar G $=$ (N, T, S, P) in the First nor-
mal form. We construct a grammar G‘ $=$

$(N\cup t\# 1, L, R, F, \# 2\}, T, S‘, P‘)$, $P‘=\{S‘arrow$

$\#_{1}LS\# 2,$ $L\# 2arrow R\# 2,$ $\# 1Rarrow\#_{1}L,$ $\# 1Rarrow$

$F,$ $F\# 2arrow\lambda\}\cup\{LAarrow uL$ $(Aarrow u)\in$

$P\}\cup\{Laarrow aL, Faarrow aF|a\in T\}\cup\{aRarrow$

$Ra|a\in N\cup T\}$. The symbols $\# 1,$ $\# 2$ mark the
edges; symbol L applies productions P to all
non-terminals, left-to-right, skipping the termi-
nals. At the end marker, symbol L changes into
R and returns to the beginning marker, where
it either changes back to L to iterate, or to F

to check if the derivation is finished.
Hence, $L(G’)=L_{t}(G)$. The length of senten-

tial forms in any derivation (of a word with n

symbols in $G’$) is at most $n+3$, because the only
shortening productions are the ones removing
$\#_{1},$ $\# 2$ and F , and each is applied once. \square

To show that the membrane systems lan-
guage class does not contain the class of lin-
ear languages, we first define the notions of un-
bounded yield and unbounded time.

Definition 1 Take a grammar G $=$

(N, T, S, P) . We say that $A\in$ N has an
unbounded yield if $L_{t}(G_{A})$ is an infinite
language, i. e., there is no upper bound on the
length of words genemted from A .

Clearly, $L_{t}(G_{A})$ is infinite if and only if $L(G_{A})$

is infinite; decidability of this property is well-
known from the theory of CF grammars.

Definition 2 In a grammar $G=(N, T, S, P)$,
we say that $A\in N$ has unbounded time if the
set of all derevation trees in G_{A} is infinite. i. e.,
there is no upper bound on the number of par-
allel steps of terminated derivations in G_{A} .

Clearly, A has unbounded time if $L(G_{A})\neq\emptyset$

and $A\Rightarrow^{+}A$. Decidability of this property is
well-known from the CF grammar theory.

Proof. Assume the premise of the lemma. Let
F be the set of the first symbols in the right
sides of all binary productions. There exists a
maximum m of time bounds for the symbols
in F . For every such symbol $B\in F$ there also
exists a.finite sct $t(B)$ of derivation trees in G_{B} .
Let $t= \{\emptyset\}\cup\bigcup_{B\in F}t(B)$ be the set of all such
derivation trees, also including the empty tree.
Recall that t is finite.

We perform the following transformation
of the grammar: we introduce non-terminals
of the form $A[\tau_{1}, \cdots, \tau_{m-1}],$ A \in $N\cup\emptyset$,
τ_{i}

\in $t,$ 1 \leq i \leq $m-1$. The new ax-
iom is $S[\emptyset, \cdots, \emptyset]$. Every binary produc-
tion A $arrow$ BC is replaced by productions
$A[\tau_{1}, \cdots, \tau_{m-1}]arrow yield_{0}(\tau)yield_{I}(\tau_{1})\cdots$

$yield_{m-1}(\tau_{m-1})C[\tau, \tau_{1}, \cdots, \tau_{m-2}]$ for all
τ \in $t(B)$. Accordingly, productions
$Aarrow C,$ $C\in N$ are replaced by produc-
tions $A[\tau_{1}, \cdots, \tau_{m-1}]arrow yield_{1}(\tau_{1})\cdots$

$yield_{m-1}(\tau_{m-1})C[\emptyset, \tau_{1}, \cdots.\tau_{m-2}]$, and pro-
ductions A $arrow$ $a,$ a \in T are replaced by
$A[\tau_{1}, \cdots, \tau_{m-1}]arrow ayield_{1}(\tau_{1})\cdots$

$yield_{m-1}(\tau_{m-1})\emptyset[\emptyset, \tau_{1}, \cdots.\tau_{m-2}]$. Finally,
$\emptyset[\emptyset, \cdots, \emptyset]arrow\lambda$ and

$\emptyset[\tau_{1}, \cdots, \tau_{m-1}]arrow yield_{1}(\tau_{1})\cdots$

$yield_{m-1}(\tau_{m-1})\emptyset[\emptyset, \tau_{1}, \cdots, \tau_{m-2}]$.

If the effect of one symbol is limited to m

steps, then the choice of the corresponding
derivation tree is memorized as an index in the
other symbol, and needed terminals are pro-
duced in the right time. In total, m indexes
suffice. The grammar is regular, since only one
non-terminal is present. \square

Lemma 6 $\{a^{n}b^{n}|n\geq 1\}\not\in LOP$ (ncoo, tar).

Proof. Denote $\{a^{n}b^{n}|n\geq 1\}$ by L . Suppose
$G=(N, T, S, P)$ is a context-free grammar in
the Third normal form and $L_{t}(G)=L$. Clearly,
there must be a rule $Aarrow BC$ or $Aarrow CB\in$

P such that both B and C have unbounded

48

A. Alhazov, C. Ciubotaru, S. Ivanov, Yu. Rogozhin The Membrane Systems Language Class
time (by Lemma 5, since $L\not\in REG$) and C has
unbounded yield $($ since $L\not\in FIN)$.

Languages generated by any non-terminal
from N must be scattered subwords of words
from L , otherwise G would generate some lan-
guage not in L . Thus, $L_{t}(G_{B}),$ $L_{t}(G_{C})$ \subseteq

$\{a^{i}W|i, j\geq 0\}$. Clearly, G_{C} must produce
both symbols a and b . Indeed, since the lan-
guage generated from C is infinite, substituting
derivation trees for C with different numbers of
one letter must preserve the balance of two let-
ters. Consider two cases, depending on whether
$L_{t}(G_{B})\subseteq a^{*}$.

If B only produces symbols a , then consider
the shortest derivation tree τ in G_{C} . Since B

has unbounded time, some symbol a can be
generated after the first letter b appears in τ ,
so $L_{t}(G)\not\subset L$, which is a contradiction.

Now assume B can produce a symbol b in
some derivation tree τ in G_{B} . On one hand, a
bounded number of letters a can be generated
from B and C before the first letter b appears in
τ ; on the other hand, C has unbounded yield.
Varying derivations under C we get an infinite
subset of $L_{t}(G)$ with a bounded number of lead-
ing symbols a , so $L_{t}(G)\not\subset L.$ \square

Corollary 2 $LIN\not\subset$ LOP(ncoo, tar).

Lemma 7 The class LOP(ncoo, tar) is closed
under permutations.

Proof. In a given grammar $G=(N, T, S, P)$,
replace the terminals a by non-terminals a_{N}

throughout the description of G , and then add
rules $a_{N}arrow a_{N},$ $a_{N}arrow a$ to $P,$ $a\in T$. The
terminals are generated in arbitrary order. \square

Corollary 3 Perm(REG) $\subseteq LOP(ncoo$, tar $)$.

Summarizing the position of the membrane
system class w.r. t the Chomsky hierarchy,

Theorem 4 LOP(ncoo, tar) strictly contains
REG and Perm(REG), is strictly contained in
CS, and is incomparable with LIN and CF.

The lower bound can be strengthened:

Theorem 5 REG . Perm (REG)
$\subseteq LOP$ (ncoo, tar).

Proof. Consider the construction from the
regularity theorem. Rewrite the symbol cor-
responding to the final state, into the axiom
of the grammar generating the second regular
language, to which the permutation technique
is applied. \square

Example 3 $L_{2}\in LOP$ (ncoo, tar),
$L_{2}= \bigcup_{m,n\geq 1}(abc)^{m}Perm((def)^{n})$.

6 Closure properties

Following the permutations, we present a few
other closure properties.

Lemma 8 The class LOP(ncoo, tar) is closed
under emsing/renaming morphisms.

Proof. Without restricting generality, we as-
sume that the domain and range of a mor-
phism h are disjoint. For a given grammar $G=$

(N, T, S, P) , consider a transformation where
the terminal symbols become non-terminals
and the rules $aarrow h(a),$ $a\in T$ are added to
P . The new grammar generates $h(L_{t}(G))$. \square

Corollary 4 $\{a^{n}b^{n}c^{n}|n\geq 1\}$

$\not\in LOP$(ncoo, tar).

Proof. By contrary, reducing to Lemma 6. \square

Corollary 5 LOP(ncoo, tar) is not closed un-
der intersection with regular languages.

Proof. By Example 2, $L=\{w\in T^{*}||w|_{a}=$

$|w|_{b}=|w|_{c}>0\}$ belongs to the membrane sys-
tems language class. However, $L\cap a^{*}b^{*}c^{*}=$

$\{a^{n}b^{n}c^{n}|n\geq 1\}$ does not, by Corollary 4. \square

Theorem 6 LOP(ncoo, tar) is closed under
union but not intersection or complement.

Proof. The closure under union follows from
adding a new axiom and productions of non-
deterministic choice between multiple axioms.
The class is not closed under intersection be-
cause it contains all regular languages (Theo-
rem 2) and is not closed under intersection with
them (Corollary 5). This class is not closed un-
der complement, since intersection is the com-
plement of union of complements. \square

49

A. Alhazov, C. Ciubotaru, S. Ivanov, Yu.$Ciubotaru,$ S Ivanov, Yu Rogozhin The Membrane Systems Language Class
Lemma 9 $L\not\in LOP(nc\circ\circ,$ tar $)$, 7 Conclusions

$L= \bigcup_{m,n\geq 1}Perm((ab)^{m})c^{n}$.
We have reconsidered the class of languages

Proof. Suppose there exists a context-free generated by transitional P systems without
grammar $G=(N, T, S, P)$ in the Third nor- cooperation and without additional control.
mal form such that $L_{t}(G)=L$. Clearly, there It was shown that one membrane is enough,
must be a rule $Aarrow BC$ or $Aarrow CB\in P$ and a characterization of this class was given
such that both B and C have unbounded time via derivation trees of context-free grammars.
(by Lemma 5, since $L\not\in REG$) and C has un- Next, three normal forms were given for the
bounded yield (since $L\not\in$ FIN). By choos- corresponding grammars. It was than shown
ing as $Aarrow BC$ or $Aarrow CB$ the rule satis- that the membrane systems language class
fying above requirements which is first applied lies between REG . Perm(REG) and context-
in some derivation of G , we make sure that all sensitive languages, and it is incomparable with
three letters $a,$ $b,$ c appear in words of $L_{t}(G_{A})$. linear and with context-free languages.

Languages generated by any non-terminal The membrane systems class was shown to
from N must be scattered subwords of words be closed under union, permutations, eras-
from L , otherwise G would generate some lan- ing/renaming morphisms. It is not closed un-
guage not in L . Thus, $L_{t}(G_{B}),$ $L_{t}(G_{C})$ \subseteq

der intersection, intersection with REG, com-
$\{a, b\}^{*}c^{*}$. Consider two cases, depending on plement, concatenation or the mirror image.
whether $L_{t}(G_{B})\subseteq\{a, b\}^{*}$. Some questions are still not answered, like

If B only produces symbols $a,$ b , then con- inclusion in ETOL and MAT, sharper lower
sider the shortest derivation tree τ in G_{C} . Since and upper bounds and closure under arbitrary
B has unbounded time, some symbol a or b can morphisms.

be generated after the first letter c appears in τ ,
so $L_{t}(G)\not\subset L$, a contradiction. References

Now assume B can produce a symbol c in
some derivation tree τ in G_{B} . On one hand, [1] A. Alhazov, D. Sburlan: Static Sorting P

Systems. Applications of Membrane Com-a bounded number of letters $a,$ b can be gen-
puting (G. Ciobanu, Gh. Paun, M.J. P\’erez-erated from B and C beforc the first letter c

Jim\’enez, Eds.), Natural Computing Series,appears in τ , on the other hand, C has un-
Springer-Verlag, 2005, 215-252.bounded yield. Varying derivations under C

we obtain an infinite subset of $L_{t}(G)$ where the [2] F. Bernardini, M. Gheorghe: Language
number of leading symbols $a,$ b is bounded, so Generating by means of P Systems with
$L_{t}(G)$ I L \square Active Membranes. Brainstorming Week on

Membrane Computing, Technical Report
26, Rovira i Virgili University, Tarragona,

Corollary 6 LOP(ncoo, tar) is not closed un- 2003, 46-60.
der concatenation or taking the mirror image.

[3] Gh. Paun: Membmne Computing. An In-
troduction, Springer-Verlag, Berlin, 2002.

Proof. Since $\bigcup_{m\geq 1}$ Perm $((ab)^{m})$ \in

Perm(REG) \subseteq LOP(ncoo, tar) by Corollary 3 [4] Gh. $P\dot{a}un$, G. Rozenberg. A. Salomaa, Eds.:
and $c^{+}\in REG\subseteq$ LOP(ncoo, tar) by $T\}ieo-$ Handbook of Membrane Computing. Oxford
rem 2, the first part of the statement follows University Press, 2009.
from Lemma 9. Since $\bigcup_{m,n>1}c^{n}Perm((ab)^{m})\in$

REG . Perm(REG) \subseteq LOP(ncoo, tar) by [5] G. Rozenberg, A. Salomaa: Handbook of
Theorem 5, the second part of the statement Formal Languages, vol. 1-3, Springer, 1997.
also follows from Lemma 9. \square [6] P systems webpage.

http: $//ppage$. psystems. $eu/$

50

