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Abstract
The path-distance-width of a graph is a graph parameter to measure how close the
graph is to a path. In this paper, we give an approximation algorithm with a constant
approximation ratio for path-distance-width on AT-free graphs.

1 Introduction

The path-distance-width is a graph parameter to measure how close the graph is to a path
[19, 18]. There are several other such graph parameters such as path-width and bandwidth.
Intuitively, the classes of graphs of bounded path-distance-width, bounded bandwidth, and
bounded path-width have chain-like structures. There are other graph classes which also
have chain-like structures, such as interval graphs and AT-free graphs (see [4] for details on
interval graphs and AT-free graphs). It is known that there are relationships among those
graph parameters and graph classes (cf. [10]).

The study is motivated by the research on bandwidth of AT-free graphs [11, 8]. To see the
motivation, let us briefly review the history of the research of bandwidth for interval graphs
and AT-free graphs. Imaginably, if we restrict our input graphs to from interval graphs or
AT-free graphs, then we would be able to find easily its chain-like structure (such as its inter-
val representation or a dominating pair), and then from the chain-like structure we might be
able to compute the bandwidth. It was, however, not known the computational complexity of
computing the bandwidth for interval graphs [9]. But then it turned out that the decision prob-
lem can be solved in polynomial time (see [17]). Since interval graphs are AT-free graphs,
it would be natural to ask whether or not the bandwidth decision problem for AT-free graphs
can be solved in polynomial time. Unfortunately, it is known that the bandwidth decision
problem for AT-free graphs is NP-complete (cf. [13, 11]). Fortunately, however, it is known
that for AT-free graphs, the bandwidth decision problem can be approximated in polynomial
time within a constant factor [11].

In a sense, bandwidth and path-distance-width have features in common. In fact, there is
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a similarity between the problem of computing the path-distance-width and the problem of
computing the bandwidth: Both problems do not admit PTAS even for trees [1, 18]. So, it
would be reasonable to ask the computational complexity of computing the path-distance-
width for AT-free graphs. Unfortunately, so far, we do not know the complexity even for
interval graphs. In this paper, however, we consider the problem of approximating path-
distance-width for AT-free graphs and interval graphs. Although some techniques developed
in the research on bandwidth can be carried over into the research on path-distance-width,
the path-distance-width problem has a serious drawback which bandwidth problem dees not
have: Path-distance-width is not closed under the edge deletion. In many cases, this drawback
makes the design and analysis of algorithms very difficult. In this study, however, it turns out
that the restriction to AT-free graphs is enough to overcome the drawback for achieving a
constant factor. In this paper, we give an approximation algorithm with a constant approxi-
mation ratio for path-distance-width on AT-free graphs and also a specialized approximation
algorithm for interval graphs.

2 Definitions and notation

Let G be a graph. V(G) and E(G) denote the vertex set and the edge set of G, respectively.
We denote the maximum degree of G by A(G). For a subset S © V(G) and a vertex v € V(G),
distc(S, v) denotes the distance between S and vin G. We denote max{distg(S,v) | v € V(G)}
by e(S). We simply write distg(u, v) and eg(u) instead of distg({u}, v) and eg({u}). The kth
power of G = (V,E), denoted by G*, is the graph (¥, E’) such that {u,v} € E’ if and only
if distg(u, v) < k. An independent set of three vertices is called an asteroidal triple if every
two of them are connected by a path avoiding the neighborhood of the third. A graph is
asteroidal triple-free (AT-free for short), if it contains no asteroidal triple. M(#n) denotes the
time complexity of multiplying two n X n matrices of integers. For the complexity of matrix
multiplication, see, for example, [14, 20].

A sequence D = (Xj,...,X;) of subsets of vertices is the path-distance decomposition (or
simply decomposition) of a graph G = (¥, E) if X; is the set of vertices of distance i — 1
from X, for each 1 < i < ¢, where ¢ = e(X;). Each X; is called a level and specially X,

is called the initial set. We will write the decomposition with an initial set X; by D(Xj, G)
or simply D(X;) or more simply D if it is clear from the context. For convenience, we
sometimes use X; for i > ¢ and it is treated as an empty set. The width of D, denoted by
pdwp(G), is defined as maxgg;<, | Xj|. The path-distance-width of G, denoted by pdw(G), is
defined as miny,cypdwpx,)(G). A subset X C V(G) is an optimal initial set of G if pdw(G) =
padwpun(G).

An-interval graph is a graph whose vertices can be mapped to distinct intervals in the
real line such that two vertices are adjacent in the graph if and only if their corresponding
intervals overlap. For an interval I, we denote the left and right endpoints by /(1) and r(7),
respectively. In this paper, we identify an interval with the corresponding vertex, for instance,
we sometimes write {1;, I;} € E(G), distg(l;, I;), and so on. For an interval representation | of
a graph G, /(1) and r(l) denote min{}() | I € |} and max{r(J) | I € |}, respectively.
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3 Results

3.1 Path-distance-width of the ikth power of a graph

Lemma 3.1. Let G be a graph, d be a positive integer and X be a subset of V(G). And let
D(X,,G) = (X,-..,X;) and D(X;,G?) = (Y1,...,Y.) be the decompositions of G and G°,
respectively, with X, as the initial set (Note that X, = Y\). Then,

1. for each 2 < i S u, Y; is contained in Uy X}, where the union is taken over all k such
thatd(i-2)<k<sd@i-1),
2, for each | < i < u, there exists an index j such that X; is contained in Y.

Proof. (1) Let v be a vertex in ¥;. As v € Y, we have distges(Xy,v) = i — 1. Since if
distg(X1,v) < d(i - 2) then distge(X,, V) < i — 2, we have d(i — 2) < distg(X,, v), Similarly,
we also have distg(X],v) < d(i — 1). Hence, we have d(i - 2) < distg(X1,v) < d(i - 1), and
this completes the proof of (1).

(2) Suppose that there is a level X; which intersects ¥; and Y; forsome 1 < j < & < w. Then
let x € Y; N X; and y € Y3 N X]. Since x € Y; N X; and the above (1),d(j - 2) <i < d(j - 1).
On the other hand, since y € Y; N X, and the above (1), d(k — 2) < i < d(k - 1). Thus, we
have i < d(j — 1) and d(k — 2) < i. However, as j < k, we have a contradictioni < d(j - 1) <
dk-2)<i. (u]

Lemma 3.2. For agraph G, pdw(G) < pdw(G?) < d - pdw(G).

Proof. We first show that pdw(G) < pdw(G?). Let X; be an optimal initial set of G. From
(2) of Lemma 3.1, pdw(G) < pdwpx, 6)(G) < pdwpx, 4(G?).

We now show that pdw(G”) < d - pdw(G). Let X, be an optimal initial set of G. From (1)
of Lemma 3.1, pdw(G?) < pdwpy, 6(G?) < d - pdwpix,6)(G) = d - pdw(G). =

3.2 Approximability of path-distance-width for k-cocomparability graphs

In this subsection, we will need the following definition and results.

A graph G = (V, E) is a comparability graph if there exists a linear ordering < on ¥ such
that for any three vertices # < v < w, {,v} € E and {v,w} € E implies {u,w} € E. A graph
G = (V. E) is a cocomparability graph if G is the complement of a comparability graph. It
is known that G is a cocomparability graph iff it has a cocomparability ordering, i.e., there
exists a linear order < on ¥ such that for any three vertices ¥ < v < w, (#,w} € E implies
{u,v} € E or {v,w} € E. There is another characterization due to Damaschke:

Theorem 3.3 ([6]). Let G be a connected graph. Then G is a cocomparability graph iff G
has a linear ordering < on V(G) such that dg(x,y) + dc(3,2) < d(x,z2) + 2forall x <y < z.

Actually, any cocomparability ordering satisfies the inequality in Theorem 3.3.
In [5], Chang et al. generalized cocomparability graphs and showed the following results.
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Definition 1 ([S5]). Let G be a graph and k a positive integer. A k-cocomparability or-
dering (k-CCPO) of G is an ordering on V(G) such that for every any three vertices u <
v < w, distg(u,w) < k implies distg(u,v) < k or distg(v,w) < k. A graph is called a
k-cocomparability graph if it admits a &~-CCPO.

Note that a 1-cocomparability ordering is just a cocomparability ordering.

Lemma 3.4 ([5]). A graph G is a k-cocomparability graph if and only if G* is a cocompara-
bility graph.

Theorem 3.5 ([5]). AT-free graphs are 2-cocomparability graphs.
For cocomparability graphs, from Lemma 3.2, we can show the next lemma.

Lemma 3.6. Let G be a cocomparability graph, and s be the first vertex in a cocomparability
ordering of G. Then, pdwp(s),6)(G) < 4pdw(G).

Proof. Consider the largest level X; in D({s}, G), i.e., pdwp(s).6)(G) = IXj|. From Theorem
3.3, we have distg(x, y) < 2 for any vertices x,y € X;, which implies that X; is a clique in G2.
Since any clique in G? cannot intersect more than two levels, we know |Xj|/2 < paw(G?) <
2pdw(G). Therefore, pdwp(;),6)(G) < 4pdw(G). o

By combining Lemmas 3.2, 3.4, and 3.6, we have the next theorem.

Theorem 3.7. There is an O(M(n)log n) time algorithm that finds an initial set of a path-
distance decomposition of width at most 4k times the optimal for a given graph G with n
vertices, where k is the smallest integer such that G admits a k-cocomparability ordering.

Proof. To find the initial set, we will need G’ for each 1 < i < d, where d is the diameter of
G. To obtain G?,...,G%, we first establish the distance matrix of G (i.e., the (u, V) entry in
the matrix is the distance between u and v). This can be done in O(M{(n) log n) time (e.g., see
[15D).

Next, we find the smallest integer k such that G* is a cocomparability graph by / using
the binary search. That is, in the binary search, we check if the complement graph G! isa
comparability graph. That is, we apply an O(n?) time orientation algorithm in [16] to G,
then we check if the orientation of G/ is transitive by computing the transitive closure in
O(M(n)) time. If the orientation is transitive then we can conclude G' is a cocomparability
graph, otherwise G/ is not cocomparability. This recognition test can be checked in O(M(n))
time, Thus, the binary search can be done in O(M(n) log n) time.

After finding the smallest integer k, we compute the initial vertex s in a cocomparability
ordering of G*. To this end, we just seek an in-degree 0 vertex in the oriented graph G*,
and take it as 5. The reason why we can do so is that there is a topological sort r of the
oriented graph G* such that s is the initial vertex in 7 (Note that 7 can be considered as a
cocomparability ordering of G*).

As a result, the total time is O(M{(n) log n). o

From Theorem 3.5, we have the following corollary.

Corollary 3.8. For an AT-free graph G, the path-distance-width can be approximated within
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a factor 8 in O(M(IV(G)))) time.

3.3 Approximability of path-distance-width for interval graphs

Let | be an interval representation of an interval graph G. A sequence (/y,...,J,) of the
elements in | is a left endpoint order of | if i < j iff ((5;) < I)) for I}, I; € .

Lemma 3.9. Let (1,,...,1,) be a left endpoint order in an interval representation of an inter-
val graph G, d be an integer such that 1 < d < eg(I}) — 1, and I; be an interval at distance d
Jrom I, which has the largest right endpoint among all intervals at distance d from I,. Then,
1 intersects with all intervals at distance d + 1 from I,.

Proof. Suppose that there is an interval /; such that J; is at distance d + 1 from /; and ; does
not intersect with /;, Then, we have the following two cases, and in each case we have a
contradiction. Recall that we identify an interval with the corresponding vertex.

Case 1: I; lies to the left of J; (i.e., r(;) < I(1;)). Consider a shortest path from /; to ;.
Clearly, /; intersects an interval in the shortest path. This means that the distance ; and 1, is
at most d, a contradiciton.

Case 2: I, lies to the right of J; (i.e., r(I}) < I(I})). Clearly, I; intersects an interval I at
distance d from /;. However, from the definition of J;, we have () < r(1;) < I(I;), which is
a contradiction. u]

From Lemma 3.9, we have the following corollary.

Corollary 3.10. Let (1,,...,1,) be a lefl endpoint order in an interval graph G and let
(X1, ...,X)) be the decomposition D({1,}, G). Then, for each 1 < d < t — 1 there is a vertex
u € Xq which is adjacent to all vertices in Xg,,.

From Corollary 3.10 and the fact that A(G)/3 < pdw(G), we have the following lemma.

Lemma 3.11. Let (I},...,1,) be a left endpoint order in an interval graph G. Then,
Pawpan)6(G) < A(G). Thus, pdwpr,).6)(G) < 3pdw(G).

From Lemma 3.11, we have the next theorem.

Theorem 3.12. For an interval graph G, the path-dtstance—w:dth can be approximated within
a factor 3 in O(|V(G)| + |E(G)|) time.

4 Conclusion

In this paper, we give approximation algorithms with constant approximation ratios for
path-distance-width on AT-free graphs and interval graphs. Unfortunately, however, we do
not know the computational complexity of computing the path-distance-width for AT-free
graphs, indeed even for interval graphs. Also it is not elucidated the tightness of the ratios of
our proposed algorithms.
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