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Abstract
The path-distance-width of a graph is a graph parameter to measure how close the

graph is to a path. In this paper, we give an approximation algorithm with a constant
approximation ratio for path-distance-width on $A\Gamma- ff\infty$ graphs.

1 lntroduction
The path-distance-width is a graph pmmeter to measure how close the yaph is to a path

[19, 18]. There are several other such gaph parmeters such as path-width and bandwidth.
Intuitively, the classes of graphs of bounded path-distance-width, bounded bandwidth, and
bounded path-width have chain-like stractures. There are other graph classes which also
have chain-like smicmres. such as interval graphs and AT-free graphs (see [4] for details on
inteival graphs and $AT-ffee$ graphs). It is known that there are relationships among thosc
graph parmeters and graph classes (cf. [10]).

The study is motivated by the research on bandwidth ofAT-free graphs [11, 8]. To see the
motivation, let us briefly review the history of the research of bandwidth for interval graphs
and AT-ffee graphs. Imaginably, if we restrict our input graphs to ffom interval graphs or
$AT-\Re e$ graphs, then we would be able to flnd easily its chain-like stmcmoe (such as its inter-
val representation or a dominating pair), and then from the chain-like structure we might be
able to compute the bandwidth. It was, however, not known the computational complexity of
computing the bandwidth for interval graphs [9]. But then it tumed out that the decision prob-
lem can be solved in polynomial time (see [17]). Since interval graphs are $A\Gamma- ffee$ graphs,
it would be natural to ask whether or not the bandwidth decision problem for AT-ffee graphs
can be solved in polynomial time. Unfortunately, it is known that the bandwidth decision
problem for AT-ffee graphs is NP-complete (cf [13, 11]). Fortunately, however, it is known
that for AT-Ree graphs, the bandwidth decision problem can be approximated in polynomial
time within a constant factor [11].

In a sense, bandwidth and path-distance-width have features in common. In ffict, there is
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a similarity between the problem of computing the path-distance-width and the problem of
computing the bandwidth: Both problems do not admit PTAS even for trees [1, 18]. So, it
would be reasonable to ask the computational complexity of computing the path-distance-
width for $AT-\theta ee$ graphs. Unfortunately, so far, we do not know the complexity even for
interval graphs. In this paper, however, we consider the problem of approximating path-
distance-width for AT-ffee graphs and interval graphs. Although some techniques developed
in the research on bandwidth can be carried over into the research on path-distance-width,
the path-distance-width problem has a serious drawback which bandwidth problm does not
have: Path-distance-width is not closed under the edge deletion. In many cases, this drawback
makes the design and analysis of algorithms very difficult In this study, however, it tums out
that the $res\triangleright iction$ to AT-ffee graphs is enough to overcome the drawback for achieving a
constant factor. In this paper, we give an approximation algorithm with a constant approxi-
mation ratio for path-distance-width on $A\Gamma- ffee$ graphs and also a specialized approximation
algorithm for interval graphs.

2 Definitions and notation
Let $G$ be a graph. $V(G)$ and $E(G)$ denote the vertex set and the edge set of $G$, respectively

We denote the maximum degree of $G$ by $\Delta(G)$ . For a subset $S\zeta V(G)$ and a vertex $v\in V(G)$,
$dist_{G}(S,v)$ denotes the distance between $S$ and $v$ in $G$. We denote $mx\{dist_{G}(S.v)|v\in V(G)\}$

by $e(S)$. We simply write $disl_{G}(u,v)$ and $e_{G}(u)$ imtead of $dist_{G}([u\}.v)$ and $e_{G}([u\})$. The $kth$

power of $G=(VE)$, denoted by $G^{k}$ , is the $\Psi^{aph}$ $(V. E’)$ such that $\{u.v\}\in E’$ if and only
if $dist_{G}(u,v)\leq k$. An independent set of three vertices is called an asteroidal triple if every
two of them are connected by a path avoidng the neighborhood of the third. A yaph is
asteroidal triple-ffee (AT-ffee for short), if it contains no asteroidal triple. $M(n)$ denotes the
time complexity ofmultiplyin$g$ two $nxn$ matrices of integers. For the complexity ofmaPix
multiplication, see, for example, [14, 20].

A sequence $D=(X_{1},\ldots.X_{t})$ of subsets of vertices is the path.distance decomposition (or
simply decomposition) of a graph $G=(V,E)$ if $X_{l}$ is the set of vertices of distance $i-1$
ffom $X_{I}$ for each $1\leq i\leq t$, where $t=e(X_{1})$. Each $X_{l}$ is called a level and specially $X_{1}$

is called the initial set. We will wnite the decomposition with an initial set $X_{1}$ by $D(x_{1}.\sigma)$

or simply $D(X_{1})$ or more simply $D$ if it is clear from the context. For convenience, we
sometimes use $X_{l}$ for $i>t$ and it is treated as an empty $seL$ The width of $D$, denoted by
$pdw_{D}(G)$, is defined as $\max_{0\leq l\leq},$ $|X_{l}|$ . The path-distance-width of $G$, denoted by $pdw(G)_{*}$ is
defined as $minx_{I}\sigma rpdw_{D(X_{1})}(G)$. A subset $X\subseteq V(G)$ is an optimal initial set of $G$ if$pdw(G)=$
$pdw_{D(X)}(G)$ .

An interval graph is a graph whose vertices can be mapped to disbnct intervals in the
real line such that two verices are adjacent in the graph if and only if their correspondin$g$

intervals overlap. For an interval $I$, we denote the left and right endpoints by $l(l)$ and $r(I)$,
respectively. In this paper, we identify an interval with the $corr\propto pond\dot{m}g$ vertex, for instance,
we sometimes write $[I_{l},I_{j}\}\in E(G),$ $dist_{G}(I_{l},I_{J})$, and so on. For an interval representation 1 of
a graph G. $l(1)$ and $r(1)$ denote min$\{l(l)|I\in|\}$ and $\max[r(1)|I\in 1\}$. respectively.
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3 Results
3.1 Path-distance-width of the kth power of a graph
Lemma 3.1. Let $G$ be a graph $d$ be a positive integer and $X_{1}$ be a subset of $V(G)$. And let
$D(X_{1}.G)=(X_{1}\ldots..X,)$ and $D(X_{1},G^{d})=(Y_{1}, \ldots.Y_{u})$ be the decompositions of $G$ and $G^{d}$,
respectively, with $X_{1}$ as the initial set (Note that $X_{1}=Y_{1}$). Then,

1. for each $2\leq i\leq u$. $Y_{l}$ is contained $in\cup\iota X_{b}$ where the union is taken over all $k$ such
that $d(i-2)<k\leq d(i-1)$,

2. for each $1\leq i\leq u$. there exists an index $j$ such $thatX_{l}$ is contained in $Y_{J}$.
Proof. (1) Let $v$ be a vertex in $Y_{l}$ . As $v\in Y_{l}$. we have $dist\alpha(X_{1},v)=i-1$ . Since if
$dist_{G}(X_{1}.v)\leq d(l-2)$ then $dist_{\theta}(X_{I}.v)\leq i-2$. we have $d(i-2)<dist_{G}(X_{1},v)$, Similarly,
we also have $dist_{G}(X_{1},v)\leq d(i-1)$. Hence, we have $d(i-2)<dist_{G}(X_{1}.v)\leq d(i-1)$. and
this completes the proof of (1).

(2) Suppose that there is $aleve1X_{l}$ which intersects $Y_{J}$ and $Y_{l}$ for some $1\leq j<k\leq u$ . Then
let $x\in Y_{j}\cap X_{t}$ and $y\in Y_{k}\cap X_{l}$ . Since $x\in Y_{J}\cap X_{l}$ and the above (1), $d(j-2)<i\leq d(j-1)$ .
On the other hand, since $y\in Y_{k}\cap X_{l}$ and the above (1), $d(k-2)<i\leq d(k-1)$ . Thus, we
have $i\leq d(\backslash j-1)$ and $d(k-2)<i$. However, as $j<k$, we have a contradiction $i\leq d(j-1)\leq$

ロ$d(k-2)<i$.
Lemma 3.2. For a graph G. $pdw(G)\leq pdMG^{d})\leq d\cdot pdw(G)$.
Prvof We first show that $pd\mu G$) $\leq pdw(G^{d})$ . Let $X_{1}$ be an optimal imtial set of $G^{d}$ . From
(2) ofLemma 3.1, $pdMG$) $\leq pdw\alpha X_{1},G)(G)\leq pdw_{D(X_{1},G^{d})}(\theta)$ .

We now show that $pdw(G^{d})\leq d\cdot pdw(G)$ . Let $X_{1}$ be an opumal imitial set of $G$. From $(1)$

ロofLemma 3.1, $pdw(G^{d})\leq pdw_{qX_{1},\theta)}(G^{d})\leq d\cdot pdw_{D(X_{I}.G)}(G)=d\cdot pdw(G)$.

3.2 Approximability of path-distance-width for k-cocomparability graphs
In this subsection, we will need the followin$g$ deflnition and results.
A graph $G=(V,E)$ is a $comparabilil\gamma$ graph if there exists a lmear ordening $<$ on $V$ such

that for any three vertices $u<v<w,$ {$u.v|\in E$ and $\{v.w|\in E$ implies $\{u,w\}\cdot\in E$. A graph
$G=(V,E)$ is a $cocomparabili\alpha$ graph if $G$ is the complement of a comparability graph. It
is known that $G$ is a cocompmbility graph iff it has a cocomparability ordering, i.e., there
exists a linear order $<$ on $V$ such that for any three vertices $u<v<w,$ $\{u.w|\in E$ implies
$\{u,v\}\in E$ or $[v,w|\in E$ . There is another characterization due to Damaschke:

Theorem 3.3 ([6]). Let $G$ be a connected graph. Then $G$ is a cocomparability graph iff $G$

has a linear ordering $<onV(G)$ such that $d_{G}(x.y)+d_{G}(y.z)\leq d(x,z)+2$ for all $x<y<z$.
Actually, any cocomparability ordering satisfles the inequality in Theorem 3.3.
In [5], Chang et al. generalized cocomparabihty graphs and showed the followin$g$ results.
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Deflnition 1 ([5]). Let $G$ be a graph and $k$ a positive integer. A $k- cocomparabili\mathfrak{y}$’ or-
deting (k-CCPO) of $G$ is an ordein$g$ on $V(G)$ such that for every any three vertices $u<$

$v<w,$ $dist_{G}(u,w)\leq k$ implies $dist_{G}(u,v)\leq k$ or $dist_{G}(v,w)\leq k$. A graph is called a
k-cocomparability graph if it admits a k-CCPO.

Note that a l-cocomparability ordering isjust a cocomparability ordering.

Lemma 3.4 ([5]). A graph $G$ is a k-cocomparability graph ifand only if$G^{k}$ is a cocompara-
bilily graph

Theorem 3.5 ([5]). AT-free graphs are 2-cocomparability graphs.

For cocomparability graphs, ffom Lemma 3.2, we can show the next lcmma
Lemma 3.6. Let $G$ be a $cocomparabili\psi$ graph and $s$ be thefrst vertex in a $cocomparabili\varphi$

ordering ofG. Then, $pdw\alpha(s\},G)(G)\leq 4pdw(\sigma)$ .
Proof. Consider the largest level $X_{l}$ in $D([s\},G)$, i.e., $pdw_{D(\{s),G)}(G)=|X_{l}|$ . From Theorem
3.3, we have $dist_{G}(x.y)\leq 2$ for any vertices $x.y\in X_{l}$ . which implies that $X_{l}$ is a clique in $G^{2}$ .
Since any clique in $G^{2}$ camot intersect more than two levels, we know $|X_{l}|’ 2\leq pdw(G^{2})\leq$

ロ$2pdw(G)$. Therefore, $pdw_{D([s).G)}(G)\leq 4pdw(G)$ .
By combining Lemmas 3.2, 3.4, and 3.6, we have the next theorem.

Theorem 3.7. There is an $O(M(n)\log n)$ time algorithm thatfinds an inilld $s\epsilon t$ ofa path-
distance decomposition ofwidth at most $4k$ times the optimal for a given graph $G$ with $n$

vertices, where $k$ is the smallest integer such that $G$ admits a $k- cocompxabili\phi$ ordering.

Proof To find the mitial set, we will need $G^{l}$ for each $1\leq i\leq d$, where $d$ is the dimeter of
$G$. To obtain $G^{2},\ldots,G^{d}$, we first establish the distance matrix of $G$ (i.e., the $(u.v)$ entry in
he matrix is the distance between $u$ and $v$). This can be done in $\alpha M(n)\log n)$ time (e.g., see
[15]$)$ .

Next we find the smallest integer $k$ such that $G^{k}$ is a cocomparabiliq graph by using
the binary search. That is, in the binaiy search, we check if the complement graph $\overline{G^{l}}$ is a
comparability graph. That is, we apply an $O(n^{2})$ time orientation algorithm in [16] to $\overline{G^{l}}$,
then we check if the orientation of $G^{i}$ is transitive by compubng the transitive closure in
$O(M(n))$ time. If the orientation is transitive then we can conclude $G^{l}$ is a cocomparability
graph, otherwise $G^{l}$ is not $cocomparabih\Psi$. This recognition test can be checked in $O(M(n))$
time, Thus, the binaiy search can be done in $O(M(n)\log n)$ time.

After finding the smallest integer $k$, we compute the initial vertex $s$ in a cocomparability
ordering of $G^{k}$ . To this end, we just seek an in-degree $0$ vertex in the oriented graph $G^{k}$,
and take it as $s$. The reason why we can do so is that there is a topological sort $\pi$ of the
oriented graph $G^{k}$ such that $s$ is the initial vertex in $\pi$ (Note that $\pi$ can be considered as a
cocomparability ordering of $G^{k}$).

As a result, the total time is $O(M(n)\log n)$ . $\square$

From Theorem 3.5, we have the following corollary.

Corollary 3.8. For an AT-fee graph G. thepath-distance-width can be approximatedwithin
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afactor 8 in $O(M(|V(G)|))$ time.

3.3 Approximability of path-distance-width for interval graphs
Let 1 be an interval representation of an interval graph $G$. A sequence $(I_{1}\ldots.,I_{n})$ of the

elements in 1 is a lefl endpoint order ofl if $i\leq j$ iff $l(I_{l})\leq l(I_{J})$ for $I_{l},I_{j}\in 1$ .
Lemma 3.9. Let $(I_{1}, \ldots,I_{n})b\epsilon$ a lefl endpoint order in an inlerval representation ofan inter-
val graph G. $d$ be an integer such that $1\leq d\leq e_{G}(I_{1})-1$ . and $I_{l}$ be an interval at distance $d$

$fvmI_{1}$ which has the largest right endpoint among all intervals at distance dfvm $I_{1}$ . $nen_{l}$

$I_{l}$ intersects with all intervals at distance $d+1$ fiom $I_{1}$ .

Proof. Suppose that there is an interval $I_{J}$ such that $I_{J}$ is at distance $d+1$ ffom $I_{1}$ and $I_{j}$ does
not intersect with $I_{l}$ . Then, we have the following two cases, and in each case we have a
contradiction. Recall that we identify an inteival with the corresponding vertex.

Case 1: $I_{J}$ lies to the left of $I_{l}$ $(i.e., r(I_{j})<l(I_{l}))$. Consider a shortest path ffom $I_{1}$ to $I_{i}$ .
Clearly, $I_{j}$ intersects an interval in the shortest path. This means that the distance $I_{J}$ and $I_{1}$ is
at most $d$, a contradiciton.

Case 2: $I_{J}$ lies to the right of $I_{l}$ $(i.e., r(I_{l})<l(I_{J}))$. Clearly, $I_{J}$ intersects an intenal $I_{k}$ at
distance $d$ Rom $I_{1}$ . However, ffom the definition of $I_{l}$ , we have $r(I_{l})\leq r(I_{l})<l(I_{J})$ , which is
a contradiction. ロ

From Lemma 3.9, we have the $fo\mathbb{I}ow\dot{m}g$ corollaiy.

Corolary 3.10. Let $(I_{1},\ldots,I_{n})$ be a lefl endpoint order in an interval graph $G$ and let
$(X_{1}, \ldots,X_{l})$ be the decomposition $D([I_{1}|,G)$. $n_{en}$, for each $1\leq d\leq t-1$ lhere is a vertex
$u\in X_{d}$ which is adjacent to all vertices in $X_{d+1}$ .

From Corollary 3.10 and the fact that $\Delta(G)3\leq pdw(G)$ , we have the following lemma.

Lemma 3.11. Let $(I_{1}, \ldots,I_{n})$ be a lefl endpoint order in an inlerval graph G. Then,
$pdw\alpha|J_{1}|,G)(\sigma)\leq\Delta(\otimes$ . Thus, $pdw\mu\{J_{1}|,G)(G)\leq 3pd\not\in\uparrow(G)$.

From Lemma 3.11, we have the next theorem.

Theorem 3.12. For an interval graph G. thepath-distance-width can be approximatedwilhin
afactor 3 in $O(|V(G)|+|E(G)|)$ time.

4 Conclusion
In this paper, we give approximation algorithms with constant approximation ratios for

path-distance-width on AT-ffee graphs and interval graphs. Unfortunately, however, we do
not know the computational complexity of computing the path-distance-width for AT-ffee
graphs, indeed even for interval graphs. Also it is not elucidated the tigmess of the ratios of
our proposed algorithms.
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