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Abstract
We present a polynomial-time perfect sampler for the Q-Ising with a vertex-independent noise.

The Q-Ising, one of the generalized models of the Ising, arose in the context of Bayesian image
restoration in statistical mechanics. We study the distribution of Q-Ising on a two-dimensional
square lattice over $n$ vertices, that is, we deal with a discrete state space $\{$ 1, $\ldots,$

$Q\}^{n}$ for a positive
integer $Q$ . Employing the Q-Ising (having a parameter $\beta$ ) as a prior distribution, and assuming
a Gaussian noise (having another parameter a), a posterior is obtained from the Bayes’ formula.
Furthermore, we generalize it: the distribution of noise is not necessarily a Gaussian, but any
vertex-independent noise. We first present a Gibbs sampler from our posterior, and also present a
perfect samplcr by defining a coupling via a monotone update function. Then, wc show $O(n\log n)$

mixing time of the Gibbs sampler for the generalized model under a condition that $\beta$ is sufficiently
small (whatever the distribution of noise is). In case of a Gaussian, we obtain another more natural
condition for rapid mixing that $\alpha$ is sufficiently larger than $\beta$ . Thereby, we show that the expected
running time of our sampler is $O(n\log n)$ .

1 Introduction
The Markov chain Monte Carlo (MCMC) method is a popular tool for sampling from a desired proba-
bility distribution. Thc probability distribution is defined by constructing a (an crgodic) Markov chain
so that its (unique) stationary distribution is the desired probability distribution. We then run the
chain repeatedly, that is, start at an arbitrary initial state, and repeatedly change the current state
according to the transition probabilities. The state after a large number of iterations is used as a
sample from the probability distribution. The Gibbs sampler, which is used in this paper, is one of the
well-known MCMC algorithms.

The sample generated by this simple method is just an approximation: the precision of approxi-
mation is often measured by total variation distance. The mixing time of a sampling algorithm is the
number $t$ such that how many iterations $t$ are needed to converge to the target stationary distribution
within a prescribed (or an acceptable) precision. The main drawback of this simple method is in a
practical issue: practitioners implementing this algorithm have to know the mixing time. For getting
around this problem, Propp and Wilson [6] proposed a sampling algorithm which does not take any
information about the convergence rate beforehand. This was achieved by coupling from the past, where
how many (coupling) steps we need is automatically determined. Moreover, this algorithm produces an
exact sampling from the target distribution. That’s why this algorithm was called an exact sampling,
which is now called a perfect sampling.

In this paper, we present a polynomial-time perfect sampler for the Q-Ising with a vertex-independent
noise. The Q-Ising is one of the generalized models of the Ising. (The Q-Ising for $Q=2$ is the Ising.)
We study the Q-Ising on the two-dimensional square lattice. Throughout this paper, we denote by $n$

the number of vertices of a square lattice. In the Q-Ising, vertices of a square lattice take on discrete
$Q$ values, say, $\{$ 1, $\ldots$ , $Q\}$ , while vertices in the Ising take on binary values, say, $\{-1, +1\}$ .

The motivation of the Q-Ising comes from Bayesian image restoration studied in statistical mechan-
ics: the original image that has $n$ pixels, each of which has $Q$ grey-scales, is assumed to be generated
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from the Q-Ising over $n$ vertices. Initially, Geman and Geman [2] proposed a Gibbs sampler for Bayesian
restoration of a black-and-white (i.e., two valued) image, adopting the Ising as a prior distribution. In-
oue and Carlucci [5] investigated static and dynamic properties of gray-scale image restoration by
making use of the Q-Ising. They checked the efficiency of the model by Monte Carlo simulations as
well as an iterative algorithm using mean-field approximation. Tanaka et al. [7] proposed an algorithm
based on Bethe approximation to estimate hyperparameters (that are used for image restoration) when
the Q-Ising is adopted as a prior distribution.

In [3], Gibbs showed a perfect sampler for the Ising with a Gaussian noise. Given a square lattice
$G=(V, E)$ over $n$ vertices, the prior distribution is assumed to follow the Ising: any $x\in\{-1, +1\}^{n}$ is
generated with $Pr\{X=x\}=e^{-\beta H(x)}Z_{\beta}$ for some $\beta>0$ , where $H(x)=- \sum_{(i,j)\in E}x_{i}x_{j}$ , and $Z_{\beta}$ is
a normalizing constant. The value of $\beta$ reflects the strength of the attractive force between adjacent
vertices. The distribution of noise at each vertex is assumed to independently follow a normal (or
Gaussian) distribution $N(0, \sigma^{2})$ of mean zero and variance $\sigma^{2}$ . From the Bayes’ formula, the posterior
of $x$ given $y$ is defined as follows:

$Pr\{X=x|Y=y\}=\frac{1}{Z_{\sigma,\beta}(y)}\exp(\frac{1}{2\sigma^{2}}\sum_{i\in V}x_{i}y_{i}+\beta\sum_{(t,j)\in E}x_{i}x_{j})$ , (1)

where $Z_{\sigma,\beta}(y)$ is a normalizing constant. Then, it was shown that the mixing time of a Gibbs sampler
from (1) is $O(n^{2})$ , which was improved to $O(n\log n)$ in [4, section 4]. Moreover, Gibbs showed a
monotone coupling, thereby derived a perfect sampler that has the expected running time $O(n\log n)$ .
Remark 1. Here, it is necessary to give some comments on $[4J$, in particular, section 3 of the paper.
Gibbs obtained $O(n\log n)$ mixing time for a continuous state space, say, $[0,1]^{n}$ , while we deal with a
discrete state space. It seems non-tnvial whether the argument in $[4J$ can be extend to the discrete
state space, say, $\{$ 1, $\ldots,$

$Q\}^{n}$ for any fixed positive $ir\iota teger$
. Q. (The similar analysis might be applied to

$\{$ 1, $\ldots,$
$Q\}^{n}$ for a sufficiently large $Q.$ ) With the practical motivation in mind, it is natural to study a

distribution over a discrete state space.

In this paper, we employ the Q-Ising as a prior distribution to deal with a discrete state space.
In the similar way to obtaining (1), we can derive a posterior, that has two parameters: $\alpha$ related
to a Gaussian noise and $\beta$ related to the Q-Ising. (This posterior is also appeared explicitly in [5].)
Furthermore, we generalize it: the distribution of noise is not necessarily a Gaussian, but any vertex-
independent distribution. See the next section for the details. We first present a Gibbs sampler from
our posterior, and also present a perfect sampler by defining a coupling via an update function. We
then show that it is monotone. Finally, we show $O(n\log n)$ mixing time of the Gibbs sampler for the
generalized model under a condition that $\beta$ is sufficiently small. In case of a Gaussian, we obtain
another more natural condition that $\alpha$ is sufficiently larger than $\beta$ . Thereby, we derive the following
our main theorems:

Theorem 1.1 (vertex-independent noise). Let $\mathcal{D}_{1}$ be a posterior of the Q-Ising with an arbitrary vertex-
independent noise D. For any positive integer $Q$ and for any distnbution $D$ , we have the following: if
$\beta>0$ salisfies

$\beta\leq\frac{\ln(8Q)-\ln(8Q-1)}{2Q}$ $(\beta=O(1/Q^{2}))$ ,

then there exists a perfect sampler for $\mathcal{D}_{1}$ that has the expected running time $O(n\log n)$ .

Theorem 1.2 (Gaussian noise). Let $\mathcal{D}_{2}$ be a posterior of the Q-Ising with a Gaussian noise. For any
positive integer $Q$ , and for any $\alpha,$ $\beta>0$ satisfying

$\alpha\geq 8Q^{2}\beta+3\ln(Q\prime 2)$ $(\alpha=\Omega(Q^{2})\beta+\Omega(\ln Q))$ ,

there exists a perfect sampler for $\mathcal{D}_{2}$ that has the expected running time $O(n\log n)$ .

Remark 2. The former theorem says that if $\beta$ is sufficiently small, e.g., $\beta=O(1Q^{2})$ , then a
polynomial-time perfect sampler exists whatever the $dist_{7}nbutionD$ is. On the other hand, the lat-
$ter$ says in case that $D$ is a Gaussian, if $\alpha$ is suitably larger than $\beta$ , then a polynomial-time perfect
sampler exists even if $\beta=\Omega(1/Q^{2})$ . Gibbs showed (for the continuous version) that if $\alpha\geq(3/4)\beta$ ,
then a polynomial-time perfect sampler exists.
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2 The probability model and the Markov chain

2.1 The probability model
As is stated in the introduction, we consider the Q-Ising as a prior distribution, which is defined as
follows: Given any two-dimensional square lattice $G=(V, E)$ , let $\Xi=\{1, \ldots , Q\}^{V}$ . (From now on, we
denote $\{$ 1, $\ldots,$

$Q\}$ by $[Q].)$ Then, for any $x\in\Xi$ , the distribution is defined as

$Pr\{X=x\}^{dcf}=\frac{\exp(-H_{\beta}(x))}{Z_{\beta}}$ , where $\{\begin{array}{ll}H_{\beta}(x) = \beta \sum(x(u)-x(v))^{2},Z_{\beta} = x\in-\sum_{\overline{-}}^{)}\exp(-H_{\beta}(x))(uv)\in B,\end{array}$

where $x(v)\in[Q]$ is the value of $x\in\Xi$ at $v\in V$ . We assume that the distribution of the noise at
each vertex independently follows a common distribution, here denoted by $D$ . That is, for a given
$X=x\in\Xi$ , the distribution of the output $Y=y\in\Xi$ caused by this degradation process is

$Pr\{Y=y|X=x\}$ $=$
$\prod_{v\in V}Pr\{Y(v)=y(v)|X(v)=x(v)\}$

$=$ $\exp(\sum_{v\in V}\ln D(x(v), y(v)))$ .

In case $D$ is a normal (or Gaussian) distribution $N(0, \sigma^{2})$ of mean zero and variance $\sigma^{2}$ , then

$Pr\{Y=y|X=x\}$ $=$ $\frac{1}{Z_{\sigma}}\exp(-\frac{\sum_{v\in V}(x(v)-y(v))^{2}}{2\sigma^{2}})$ ,

where $Z_{\sigma}$ is a normalizing constant. Thcn, the posterior is obtained from the two distributions defincd
above using the Bayes’ formula:

$Pr\{X=x|Y=y\}=\frac{Pr\{Y=y|X=x\}Pr\{X=x\}}{Pr\{Y=y\}}$ .

Fix $y\in\Xi$ arbitrarily. Then, the denominator of the Bayes’ formula is a constant. The numerator is

$Pr\{Y=y|X=x\}Pr\{X=x\}$

$=$ $\exp(\sum_{v\in V}\ln D(x(v), y(v)))\cdot\frac{1}{Z_{\beta}}\exp(-\beta\sum_{(u,v)\in E}(x(u)-x(v))^{2})$

$=$ $\frac{1}{Z_{\beta}}\exp(\sum_{v\in V}\ln D(x(v), y(v))-\beta\sum_{(u,v)\in E}(x(u)-x(v))^{2})$ .

Thus, the posterior which we study in this paper is given by

$Pr\{X=x|Y=y\}$ $=$ $\frac{1}{Z_{D\beta}(y)}\cdot\exp(-H_{D,\beta}(x, y))$ ,

where
$H_{D,\beta}(x, y)=- \sum_{v\in V}\ln D(x(v), y(v))+\beta\sum_{(u.v)\in E}(x(u)-x(v))^{2}$

,

and $Z_{D,\beta}(y)$ is a normalizing constant so that $\sum_{x\in\Xi}Pr\{X=x|Y=y\}=1$ . In case $D$ is $N(0, \sigma^{2})$ , the
posterior is given by

$H_{D,\beta}(x, y)=H_{\alpha,\beta}(x, y)= \alpha\sum_{v\in V}(x(v)-y(v))^{2}+\beta\sum_{(u,v)\in E}(x(u)-x(v))^{2}$
,

where $\alpha=1/(2\sigma^{2})$ , and we denote the normalizing constant by $Z_{\alpha_{1}\beta}(y)$ .
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2.2 The Markov chain
In what follows, we fix $y\in\Xi$ arbitrarily. We define a Markov chain by presenting a Gibbs sampler (for
the fixed y) from the posterior defined above. Let $\mathcal{M}$ be the Markov chain. The state space of $\mathcal{M}$ is $\Xi$ .
Then, the transition probabilities are defined by the Gibbs sampler shown in Fig. 1 below, where $x^{(i)}$

indicates $x^{(i)}(w)=x(w)$ for all $w\in V\backslash \{v\}$ and $x^{(\iota)}(v)=i$ .

step $0$ : Given $x\in\Xi$ ,

step 1 : Choose $v\in V$ uniformly.
step 2 : Set $x’(w)=x(w)$ for all $w\in V\backslash \{v\}$ , and let for each $j\in[Q]$ ,

$x’(v)=j$ with probability $\frac{p_{j}}{\sum_{i\in[k|}p_{i}}$ , where $p_{i}^{def}= \frac{\exp(-H_{D,\beta}(x^{(\tau)},y))}{Z_{D,\beta}(y)}$ .

Figure 1: The Gibbs sampler from our posterior

It is easy to see that $\mathcal{M}$ is a finite ergodic Markov chain, and hence it has a unique stationary
distribution. Moreover, the stationary distribution exactly follows our posterior. (This is a well-known
property of the Gibbs sampler.) Let $v$ be a vertex chosen at step 1 of the Gibbs sampler. Then, since
for any $i,$ $i’\in[Q]$ we have $x^{(i)}(w)=x^{(i’)}(w)$ for any $w\in V\backslash \{v\}$ , we have the following from an
elementary calculation: for any $j\in[Q]$ ,

$\frac{p_{j}}{\sum_{i\in[Q]}p_{i}}$
$=$ $\frac{\exp(\ln D(j,f(v))-\beta\sum_{w\in N(v)}(j-x^{(j)}(w))^{2})}{\sum_{i\in[Q|}\exp(\ln D(i,f(v))-\beta\sum_{w\in N(v)}(i-x^{(i)}(w))^{2})}$,

where $N(v)$ is the set of vertices adjacency to $v$ . In case $D$ is $N(0, \sigma^{2})$ ,

$\frac{p_{j}}{\sum_{i\in[Q]}p_{l}}=\frac{\exp(-(\alpha(j-f(v))^{2}+\beta\sum_{w\in N(v)}(j-x^{(j)}(w))^{2}))}{\sum_{i\in[Q]}\exp(-(\alpha(i-f(v))^{2}+\beta\sum_{w\in N(v)}(i-x^{(i)}(w))^{2}))}$.

Here, we define a cumulative distribution function $q_{v}^{(x)}(j)$ of $p_{j}’ \sum_{\iota\in[Q]}p_{i}$ for later use: $q_{v}^{(x)}(0)=0$ and

for any $j\in[Q],$ $q_{v}^{(x)}(j)^{dcf}= \sum_{i\in[j]}p_{i’}(\sum_{\iota\in[Q]}p_{i})$ .

3 The Perfect Sampler

3.1 The monotone coupling from the past
Before presenting our sampling algorithm, we briefly review the coupling from the past (abbrev. CFTP)
proposed in [6], in particular, the monotone CFTP.

Given an ergodic Markov chain with a finite state space $\Xi$ and a transition matrix $P$ . The transition
probabilities can be described by defining a deterministic function $\phi$ : $\Xi x[0,1)arrow\Xi$ as well as a
random number $\lambda$ uniformly distributed over $[0,1)$ so that $Pr(\phi(x, \lambda)=y)=P(x, y)$ for every pair of
$x,$ $y\in\Xi$ . This function is called an update function. Then, we can realize the Markov chain $X\mapsto X’$

by setting $X’=\phi(X, \lambda)$ . Note that an update function corresponding to the given transition matrix $P$

is not unique. For integers $t_{1}$ and $t_{2}(t_{1}<t_{2})$ , let $\vec{\lambda}=(\lambda[t_{1}], \lambda[t_{1}+1], \ldots, \lambda[t_{2}-1])\in[0,1)^{t_{2}-t_{1}}$

be a sequence of random real numbers. Given an initial state $x$ , the result of transitions of the
chain from time $t_{1}$ to time $t_{2}$ by $\phi$ with A is denoted by $\Phi_{t_{1}}^{t_{2}}(x,\vec{\lambda})$ : $\Xi x[0,1)^{t_{2}-t_{1}}arrow\Xi$ , where
$\Phi_{t_{1}}^{t_{2}}(x,\vec{\lambda})=\phi(\phi(\ldots(\phi(Jdef.,., \lambda[t_{1}]), \ldots), \lambda[t_{2}-2]), \lambda[t_{2}-1])$ .

Suppose that there exists a partial order $tt\succeq$ on the state space $\Xi$ . We say that an update function
$\phi$ is monotone with respect $to\succeq$ if $\forall\lambda\in[0,1),\forall x,$ $y\in\Xi[x\succeq y\Rightarrow\phi(x, \lambda)\succeq\phi(y, \lambda)]$ . We also say
that a Markov chain is monotone if the chain has a monotone update function. Suppose further that
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there exist a unique maximum state $x_{m\infty}$ and ayunique minimum state $x_{\min}$ with respect to $\succeq$ , that
is, there exists a pair of $x_{\max}$ and $x_{\min}$ such that $x_{\max}\succ zx_{Z}^{\succ}x_{\min}$ for all $x\in\Xi\backslash \{x_{\max}, x_{\min}\}$ . Then,
a standard monotone coupling from the past (CFTP) algorithm is expressed as in Fig. 2. Then, the

step 1 : Set the starting time period as $T=-1$ , and set $\vec{\lambda}$ as the empty sequence.
step 2 : Generate random real numbers $\lambda[T]$ . $\lambda[T+1],$ . . , $\lambda|\lceil T/2\rceil-1]$ uniformly from $[0,1)$ ,

and insert them to the head of $\vec{\lambda}$ in order, i.e., set $\vec{\lambda}$ as $\vec{\lambda}=$ $(\lambda[T], \lambda[T+1], . . , \lambda[-1])$ .

step 3 : Start two chains from $x_{\max}$ and $x_{\min}respectively_{arrow}at$ time period $T$ , and run each
chain to time period $0$ by the update function $\phi$ with $\lambda$ . (Here we note that each chain
uses the common sequence A.)

step 4 : For two states $\Phi_{T}^{0}(x_{\max},\vec{\lambda})$ and $\Phi_{T}^{0}(x_{\min},\vec{\lambda})$ ,

(a) If $\exists y\in\Xi[y=\Phi_{T}^{0}(x_{\max},\vec{\lambda})=\Phi_{T}^{0}(x_{\min},\vec{\lambda})]$ , then return $y$ .
(b) Else, set the starting time period $T$ as $T=2T$ , and go to step 2.

Figure 2: The monotone CFTP algorithm

monotone CFTP theorem says:

Theorem 3.1 (Monotone CFTP Theorem [6]). Given a monotone Markov chain as above. The mono-
tone CFTP algorethm shown in Fig. 2 terminates with probability 1, Moreover, the output exactly follows
the stationary distnbution of the Markov chain.

With thcsc preparatioii abovc, we iiow dcscribc our saiiipling algorithin. For this. it sufficcs to
dcfiiic an update function $\phi$ for our posterior. Besides a random number $\lambda\in[0,1)$ , our update function
$\phi$ : $\Xi\cross V\cross[0,1)arrow\Xi$ takcs $v\in V$ chosen uniformly from $V$ . Then, given $x\in\Xi$ . thc new state
$x’=\phi(x, v, \lambda)$ is defined as follows: recall our cumulative distribution function $q_{v}^{(x)}(j)$ defined in the
previous section. Let $i\in[Q]$ be an integer satisfying $q_{v}^{(x)}(i-1)\leq\lambda<q_{v}^{(x)}(i)$ . Then, for each $w\in V$ ,
set $x’(w)=i$ if $w=v$ , and $x’(w)=x(w)$ otherwise.

3.2 The monotone Markov chain
For showing the monotonicity of our update function, we introduce a natural partial order $\succeq$

’ to $\Xi$ .
For an arbitrary pair of $x,$ $y\in\Xi$ , we say that $x\succeq y$ if $x(w)\geq y(w)$ for all $w\in V$ . Let $x_{\max}$ (resp. $x_{\min}$ )
be a state such that $x_{\max}(w)=Q$ $($ resp. $x_{\min}(w)=1)$ for all $w$ . Then, $x_{\max}$ (resp. $x_{\min}$ ) is the unique
maximum (resp. minimum) of the partially ordered set $\Xi$ w.r. $t$ . $\succeq$ .

Lemma 3.1. Let $x,$ $y\in\Xi$ be arbitrary states such that $x\succ\neq y$ . Let $v\in V$ be an arbitrary vertex. Then,

for any $\alpha,$ $\beta>0$ , and for any $j\in|Q]$ , we have $q_{v}^{(x)}(j)<q_{v}^{(y)}(j)$ .

Proof. Fix $j\in[Q]$ arbitrarily. By some elementary calculation, we have $q_{v}^{(x)}(j)<q_{v}^{(y)}(j)$ if for any
$s,$ $t\cdot 1\leq s\leq j<t\leq Q$ ,

$\exp(-(\beta\sum_{w\in N(v)}(s-x^{(s)}(w))^{2}))$ $\exp(-(\beta\sum_{w\in N(v)}(t-y^{(t)}(w))^{2}))$

$<$ $\exp(-(\beta\sum_{w\in N(v)}(s-y^{(s)}(w))^{2}))$ $\exp(-(\beta\sum_{w\in N(v)}(t-x^{(t)}(w))^{2}))$ .

Furthermore, for any such fixed $s,$ $t$ , this inequality holds if for any $w\in N(v)$ ,

$(s-x^{(s)}(w))^{2}+(t-y^{(t)}(w))^{2}>(s-y^{(s)}(w))^{2}+(t-x^{(t)}(w))^{2}$ .

Since $x^{(i)}(w)\geq y^{(i)}(w)$ for any $i\in[Q]$ , this inequality holds if $t>s$ , which is the assumption on $s$ and
$t$ . $\square$
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Theorem 3.2. Our update function $\phi$ is monotone on the partially ordered set $\Xi w.r.t$ . $\succeq$ , i. e., $\forall x,$ $y\in$

$\Xi,$ $\forall v\in V,$ $\forall\lambda\in[0,1)[x\succeq y\Rightarrow\phi(x, v, \lambda)\succeq\phi(y, v, \lambda)]$ .

Proof. Let $x,$ $y\in\Xi$ be arbitrary states such that $x\succ\not\cong y$ , Fix $v\in V$ and $\lambda\in[0,1)$ arbitrarily. First, it
is easy to see from the definition of $\phi$ that $x’(w)\geq y’(w)$ for every $w\in V\backslash \{v\}$ . Next, from the above
lemma, $q_{v}^{(x)}(j)<q_{v}^{(y)}(j)$ for any $j\in[Q]$ . From this and the definition of $\phi$ , we also have $x’(v)\geq y’(v)$ .
Therefore, $x’(w)\geq y’(w)$ for every $w\in V$ , and hence we conclude that $\phi(x, v, \lambda)\succeq\phi(y, v, \lambda)$ . $\square$

4 Expected Running Time
Before showing the expected running time of our sampling algorithm, we note notions and notations.
For probability distribution $p_{1}$ and $p_{2}$ , the total vanation distance between $p_{1}$ and $p_{2}$ is defined as
$d_{TV}(p_{1},p_{2})def=$ $(1 \prime 2)\sum_{x\in\Xi}|p_{1}(x)-p_{2}(x)|$ . Consider an ergodic Markov chain over a finite state
space $\Xi$ . Given a precision $\epsilon>0$ , the $m\iota mng$ time $\tau(\epsilon)$ of the Markov chain is defined as $\tau(\epsilon)def=$

$\max_{x\in\Xi}\{\min\{t : \forall s\geq t[d_{TV}(\pi, P_{x}^{s})\leq\epsilon]\}\}$ , where $\pi$ is the stationary distribution, and $P_{x}^{s}$ is the
probability distribution of the chain at time $s$ where the chain starts at $x$ . The path coupling lemma
[1] is a powerful tool for bounding the mixing time.

Theorem 4.1 (Path coupling lemma [1]). Let $Z_{t}$ be an ergodic Markov chain on a finite state space
$\Xi$ . Let $d$ . $\Xi\cross\Xiarrow\{0,1, \ldots, D\}$ be a (quasi-)metnc function for some integer D. Let $S\subset\Xi\cross\Xi$ be
a set such that graph $(\Xi, S)$ is connected. Suppose that there exists a (partial) coupling $(X_{t}, Y_{t})$ for $Z_{t}$

such that
$\gamma<1,$ $\forall(z, z’)\in S[E[d(X_{1}, Y_{1})|X_{0}, Y_{0}]\leq\gamma E[d(X_{0}, Y_{0})]]$ .

Then, $\tau(\epsilon)\leq\ln(D/\epsilon)’(1-\gamma)$ .

In this section, we estimate the expected running time of our sampling algorithm. For this, we first
estimate the mixing time of the Gibbs sampler shown in Fig. 1 by the path coupling lemma above,
wherc the coupling is \dagger he one implicitly specified in our sampling algorithm shown in Fig. 2.

4.1 Vertex-independent noise
In this subsection, we show the mixing time, and derive a condition for rapid mixing in case the
distribution of noise is any vertex-independent noise.

Lemma 4.1. For any positive integer $Q$ and for any distnbution $D$ , if $\beta>0$ satisfies $\beta\leq(\ln(8Q)-$

$\ln(8Q-1))/(2Q)$ , then the mixing time $\tau(\epsilon)$ of the Gibbs sampler shown in Fig. 1 is bounded by
$\tau(\epsilon)\leq 2n\ln(Qn/\epsilon)$ .

Proof. As stated above, we prove it by the path coupling lemma, where the coupling is the one implicitly
specified in our sampling algorithm shown in Fig. 2. We will show that $E[d(X_{1}, Y_{1})|X_{0}=x_{0}, Y_{0}=y_{0}]\leq$

$1-1/(2n)$ for any $x_{0},$ $y_{0}\in\Xi$ with $d(x_{0}, y_{0})=1$ , where $d(x, y) def=\sum_{v\in V}|x(v)-y(v)|$ . We assume that
$X_{0}$ and $Y_{0}$ do not agree at $v_{0}\in V$ . We denote by $v$ the vertex chosen at step 1 in the Gibbs sampler
shown in Fig. 1.

First, consider the case of $v=v_{0}$ . This event occurs with probability 1 $n$ . In this case, the coupling
is identical since $x(w)=y(w)$ for all $w\in V\backslash \{v\}$ . Moreover, the distance decreases by one, i.e, it gets
zero.

Next, consider the case of $v\not\in N(v_{0})$ . In this case, the coupling is identical. However, in contrast
to the first case, the distance does not change, ie.. it remains one.

Finally, consider the case of $v\in N(v_{0})$ . This event occurs with probability at most $4/n$ . Recall the
coupling by the update function: Given $X=x$ and $Y=y$ , choose $\lambda$ uniformly from $[0,1)$ . Then, we
definc $x’(v)$ and $y’(v)$ as

$x’(v)=\ell$ where $q_{v}^{(x)}(\ell-1)\leq\lambda<q_{v}^{(x)}(\ell)$ ,
$y’(v)=\ell$ where $q_{v}^{(y)}(\ell-1)\leq\lambda<q_{v}^{(y)}(\ell)$ .

In what follows, we assume w.l. $0.g$ . that $X_{0}(v_{0})=Y_{0}(v_{0})+1$ . We will nee the following propositions:
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Proposition 4.2.

$EId(X_{1}, Y_{1})-1|X_{0},$ $Y_{0},$

$v \in N(v_{0})]=\sum_{j\in[Q1}(q_{v}^{(y)}(j)-q_{v}^{(x)}(j))$ .

Proposition 4.3. If $\beta>0satis$]$\dot{t}es\beta\leq(\ln(8Q)-\ln(8Q-1))/(2Q)$ , then $\sum_{j\in[Q1}(q_{v}^{(y)}(j)-q_{v}^{(x)}(j))\leq$

$1/8$ .

Here, we omit the proofs of these two propositions. From these two, we have $E[d(X_{1}, Y_{1})-1|X_{0},$ $Y_{0},$ $v\in$

$N(v_{0})]\leq 1’ 8$ . Therefore, the total expectation is

$E[d(X_{1}, Y_{1})-1|X_{0}, Y_{0}]\leq\frac{1}{n}(-1)+\frac{4}{n}$ . $\frac{1}{8}=-\frac{1}{2n}$ .

Since the maximum distance is $Qn$ , this lemma follows from the path coupling lemma. 口

Our first theorem, Theorem 1, is derived from this lemma.

4.2 Gaussian noise
In this subsection, we derive another condition for rapid mixing in case the distribution of noise is a
Gaussian noise $N(O, \sigma^{2})$ .

Lemma 4.4. For any positive integer $Q$ , and for any $\alpha,$ $\beta>0$ satisfying $\alpha\geq 8Q^{2}\beta+3\ln(Q/2)$ , the
mixing time $\tau(\epsilon)$ of the Gibbs sampler shown in Fig. 1 is bounded by $\tau(\epsilon)\leq 2n\ln(Qn/\epsilon)$ .
Proof. The proof is identical to the one for the general noise, except for using the following proposition
instead of Proposition 4.3.

Proposition 4.5. If $\alpha,$ $\beta>0$ satisfy the following inequality: $\alpha\geq 8Q^{2}\beta+3\ln(Q/2)$ , then $\sum_{j\in[Q1}(q_{v}^{(y)}(j)-$

$q_{v}^{(x)}(j))\leq 1’ 8$ .

Here, we omit the proof of this proposition. From Proposition 4.2 in the proof for the general noise
and the proposition above, we obtain

$E[d(X_{1}, Y_{1})-1|X_{0}, Y_{0}, v\in N(v_{0})]\leq\frac{1}{8}$ .

From this, we obtain the desired mixing time. $\square$

Our second theorem, Theorem 2, is derived from this lemma.
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