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1 Introduction

Algorithmic information theory (AIT, for short) is a framework for applying information-theoretic and
probabilistic ideas to recursive function theory. One of the primary concepts of AIT is the program-size
complezity (or Kolmogorov complerity) H(s) of a finite binary string s, which is defined as the length of
the shortest binary input for.a universal decoding algorithm U, called an optimal prefiz-free machine, to
output s. By the definition, H(s) is thought to represent the amount of randomness of a finite binary
string s. In particular, the notion of program-size complexity plays a crucial role in characterizing the
randomness of an infinite binary string, or equivalently, a real.

In (2] Chaitin introduced the halting probability Qy as a concrete example of random real. His Qy
is defined as the probability that the optimal prefix-free machine U halts, and is shown to be random,
based on the following fact:

Fact 1 (Chaitin [2]). The first n bits of the base-two ezpansion of Qy solve the halting problem of U for
inputs of length at most n. (]

In our former work (7], we investigated the relationship between the base-two expansion of 2y and
the halting problem of U further. On the one hand, we considered the following converse problem of
Fact 1 in a general setting. Let V and W be arbitrary optimal prefix-free machines.

Problem 1. Find a succinct equivalent characterization of a total recursive function f: Nt — N which
satisfies the condition: For alln € N*, if n and the list of all halting inputs for V of length at most n
are given, then the first n — f(n) — O(1) bits of the base-two expansion of Qw can be calculated. O

Theorem 3.1 below is one of the main results of the work [7]. It gives to Problem 1 a solution that the
total recursive function f must satisfy Z:O=1 2-1(" < oo, which is the Kraft inequality in essence. Note
that the condition 372, 27/(") < 0o holds for f(n) = |(1+¢€)log, n] with an arbitrary computable real
€ > 0, while this condition does not hold for f(n) = |log,n]. On the other hand, it is also important
to consider whether the bound n on the length of halting inputs given in Fact 1 is tight or not. In the
work [7], we considered this problem as well in the following form:

Problem 2. Find e succinct equivalent characterization of a total recursive function f: N* — N which
satisfies the condition: For alln € N*, if n and the first n bits of the base-two expansion of Qw are
given, then the list of all halting inputs for V of length at most n + f(n) — O(1) can be calculated. O

Theorem 3.2 below, which is also one of the main results of the work [7), gives to Problem 2 a solution
that the total recursive function f must be bounded to the above. Thus, we see that the bound 7 on
the length of halting inputs given in Fact 1 is tight up to an additive constant.

1t is well known that the base-two expansion of Qy and the halting problem of U are Turing equivalent.
The results in the work (7] can be thought of as an elaboration of the Turing equivalence. Namely, in
the work [7], we studied the relationship between the base-two expansion of Qy and the halting problem
of U using a more rigorous and insightful notion than the notion of Turing equivalence. As a result, we
revealed computational one-wayness between the base-two expansion of Qy and the halting problem of
U in the form of Theorems 3.1 and 3.2 together.

In this paper, based on the same setting, we investigate the relationship between the base-two ex-
pansion of Zy(T') and the halting problem of U. Here, Zy(T) is the partition function at temperature
T € (0,1] [5]. It is one of the thermodynamic quantities in the statistical mechanical interpretation of
AIT [6], and results in Qu in the case of T = 1, i.e., Zy(1) = Qy. In the case where T is a computable
real with 0 < T < 1, we reveal computational equivalence, i.e., computational two-wayness, between

*E-mail: tadaki@kc.chuo-u.ac.jp, Website: http://www2.0dn.ne.jp/tadaki/




121

the base-two expansion of Zy(T') and the halting problem of U. This contrasts the computational
one-wayness between the base-two expansion of 0y and the halting problem of U.

2 Preliminaries

We start with some notation about numbers and strings which will be used in this paper. N =
{0,1,2,3,...} is the set of natural numbers, and N* is the set of positive integers. Z is the set of
integers, and Q is the set of rationals. R is the set of reals. Normally, o(n) denotes any function
f: N* — R such that lim,_,o f(n)/n = 0. On the other hand, O(1) denotes any function g: Nt o R
such that there is C' € R with the property that |g(n)| < C for all n € N*.

{0,1}* = {A,0,1,00,01,10,11,000,...} is the set of finite binary strings where A denotes the empty
string, and {0,1}" is ordered as indicated. We identify any string in {0,1}* with a natural number in
this order, i.e., we consider ¢: {0,1}* — N such that ¢(s) = 1s — 1 where the concatenation 1s of strings
1 and s is regarded as a dyadic integer, and then we identify s with ¢(s). For any s € {0, 1}*, |s| is the
length of s. For any n € N, we dencte by {0,1}™ the set {s | s € {0,1}* & |s| = n}. A subset S of
{0,1}* is called prefiz-free if no string in S is a prefix of another string in S. For any subset S of {0,1}*
and any n € Z, we denote by S|, the set {s € S| |s| < n}. Note that S|,= 0 for every subset S of
{0,1}* and every negative integer n € Z. For any function f, the domain of definition of f is denoted -
by dom f. We write “r.e.” instead of “recursively enumerable.” l

Let a be an arbitrary real. For any n € N*, we denote by af,€ {0, 1}* the first n bits of the base-two
expansion of a — |« with infinitely many zeros, where || is the greatest integer less than or equal to
a. For example, in the case of @ = 5/8, alg= 101000. On the other hand, for any non-positive integer
n € Z, we set af,= A

A real a is called r.e. if there exists a computable, increasing sequence of rationals which converges to
a. Anr.e. real is also called a lefi-computable real. On the other hand, a real « is called Tight-computable
if ~a is left-computable. We say that a real o is computable if there exists a computable sequence
{@n}nen of rationals such that |a — a,| < 27" for all n € N. It is then easy to see that, for every o € R,
« is computable if and only if « is both left-computable and right-computable.

2.1 Algorithmic Information Theory

In the following we concisely review some definitions and results of AIT [2, 3]. A prefiz-free machine is a
partial recursive function C': {0,1}* — {0, 1}"* such that dom C is a prefix-free set. For each prefix-free
machine C and each s € {0,1}*, Hc/(s) is defined by Hc(s) := min{|p| | p € {0,1}* & C(p) = s } (may
be 00). A prefix-free machine U is said to be optimal if for each prefix-free machine C there exists
d € N with the following property; if p € dom C, then there is ¢ € dom U for which U(g) = C(p) and
lgl < |p| +d. It is easy to see that there exists an optimal prefix-free machine. We choose a particular
optimal prefix-free machine U as the standard one for use, and define H(s) as Hy(s), which is referred
to as the program-size complexity of s or the Kolmogorov complezity of s. It follows that for every
prefix-free machine C there exists d € N such that, for every s € {0, 1},

H(s) < He(s) +d. ¢))

Based on this we can show that, for every partial recursive function ¥: {0,1}* — {0,1}*, there exists
d € N such that, for every s € dom ¥,

H(¥(s)) < H(s) +d. 2)

For any s,t € {0,1}*, we define H(s,t) as H(b(s,t)), where b: {0,1}* x {0,1}* — {0,1}* is a particular
bijective total recursive function.

For any optimal prefix-free machine V, Chaitin’s halting probability Qy of V is defined as 2 pedom v 2-lxl,
The real Qy is also called Chaitin Q number. For every optimal prefix-free machine V, since domV is
prefix-free, Qv converges and 0 < 2y < 1. For any o € R, we say that a is weakly Chaitin random if
there exists ¢ € N such that n — ¢ < H(af,) for all n € N* [2, 3]. Based on Fact 1, Chaitin [2] showed

that Qv is weakly Chaitin random for every optimal prefix-free machine V.
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2.2 Partial randomness

In the work {5}, we generalized the notion of the randomness of a real so that the degree of the randomness,

which is often referred to as the partial randomness recently (e.g. [4]), can be characterized by a real T
with 0 < T < 1 as follows.

Definition 2.1 (weak Chaitin T-randomness). Let T € (0,1] and let « € R. We say that a is weakly
Chaitin T-random if there exists d € N such that Tn —d < H(al,) for alln € N*. (]

Definition 2.2 (T-compressibility and strict T-compressibility). Let T € (0,1] and let « € R. We say
that a is T-compressible if H(al,) < Tn + o(n), namely, if limsup,,_ ., H(al,)/n < T. We say that
is strictly T-compressible if there exists d € N such that H(al,) < Tn+d for all n € N*t. 0

Note that, in the case where T = 1, the weak Chaitin 7-randomness results in weak Chaitin random-
ness. If a real a is weakly Chaitin T-random and T-compressible, then lim,_,o, H{al,)/n =T, i.e., the
compression rate of a equals to T'. Note, however, that the converse does not hold. Thus, the notion of
partial randomness is a stronger representation of compression rate.

In the work (5], we generalized Chaitin 2 number to Z(T') as follows.! For each optimal prefix-free
machine V and each real T > 0, the partition function Zy(T) of V at temperature T is defined as
Zpedomv 2-Pl/T  Thus, Zy(1) =Qy. If 0 < T < 1, then Zy(T) converges and 0 < Zy(T) < 1, since
Zv(T) < Qy < 1. The following theorem holds for Zy (T).’

Theorem 2.3 (Tadaki [5]). Let V be an optimal prefiz-free machine and let T € R. If0 < T < 1 and
T is computable, then Zyv(T') is an r.e. real which is weakly Chaitin T-random and T'-compressible. [

An r.e. real has a special property on partial randomness, as shown in Theorem 2.5 below. For any
r.e. reals o and 3, we say that a dominates f if there are computable, increasing sequences {a,} and
{bn} of rationals and ¢ € N* such that lim, o an = @, lim, .00 by, = B, and c(a — a,) > B — b, for all
n € N.

Definition 2.4 (T-convergence and Q(T')-likeness, Tadaki [8]). Let T € (0,1]. An increasing sequence
{an} of reals is called T-convergent if 37 ((ant1 — an)T < 00. An r.e. real a is called T-convergent
if there ezists a T-convergent computable, increasing sequence of rationals which converges to a. An
r.e. real a s called QT)-like if it dominates all T-convergent r.e. reals. O

Theorem 2.5 (equivalent characterizations of partial randomness for an r.e. real, Tadaki (8]). Let
T € (0,1}, and let a be an r.e. real. Then the following three conditions are equivalent: (i) The real a
is weakly Chaitin T-rendom. (ii) The real o is Q(T)-like. (iii) For every T-convergent r.e. real B there
erists d € N such that, for alln € N*, H(B[,) < H(al,) +d. a

3 The Former Result: Computational One-Wayness

Theorem 3.1 (Tadaki [7]). Let V and W be optimal prefiz-free machines, and let f: N* — N be a total
recursive function. Then the following two conditions are equivalent:

(i) There ezist an orucle déterministic Turing machine M and ¢ € N such that, for all n € N+,
Mdom Vln(n) = QW[n-—f(n)—c'

(i) 302,277 < oo. o

Theorem 3.2 (Tadaki [7]). Let V and W be optimal prefiz-free machines, and let f: Nt — N be a total
recursive function. Then the following two conditions are eguivalent:

(i) There exist an oracle deterministic Turing machine M and ¢ € N such that, for all n € N*,
M{OwinH(n) = dom V' [ny f(ny—c, where the finite subset domV [,y p(n)—c of {0,1}° is represented
as a finite binary string in a certain format.

(1) The function f is bounded to the above. O

Yn [5], Z(T) is denoted by QT.
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4 T-Convergent R.E. Reals

Let T be an arbitrary computable real with 0 < T < 1 throughout the rest of the present paper. The
parameter 7" plays a crucial role in the present paper.? In this section, we investigate the relation of the
halting problems to T-convergent r.e. reals. In particular, Theorem 4.6 below is used to show the main
result I in the next section. Recently, Calude, Hay, and Stephan [1] showed the existence of an r.e. real
which is weakly Chaitin T-random and strictly T-compressible, in the case of T < 1, as follows.

Theorem 4.1 (Calude, Hay, and Stephan [1]). Suppose that T < 1. Then there exist an r.e. real
a € (0,1) and d € N such that, for all n € N*, |H(af,) — Tn| < d. 0

We show that the same r.e. real o as in Theorem 4.1 has the following property.

Theorem 4.2. Suppose that T < 1. Let V be an optimal prefiz-free machine. Then there erist an
r.e. real a € (0,1), an oracle deterministic Turing machine M, and c € N such that o is weakly Chaitin
T-random and, for all n € N*t, M9omVIirni(n) = af,_.. a

Calude, et al. [1] uses Lemma 4.3 below to show Theorem 4.1. We also use it to show Theorem 4.2.

Lemma 4.3 (Reimann and Stephan [4] and Calude, Hay, and Stephan [1]). Let V be an optimal prefiz-
free machine. Suppose that T' < 1. Then there ezists c € N* such that, for every s € {0,1}*, there ezists
t € {0,1)}¢ for which Hy(st) > Hy(s) + Tc. (m|

Proof of Theorem 4.2. Suppose that 7" < 1. Let V be an optimal prefix-free machine. Then it follows
from Lemma 4.3 that there exists ¢ € N* such that, for every s € {0, 1}*, there exists ¢t € {0,1}¢ for
which

Hy (st) > Hy(3) + Te. 3)

For each prefix-free machine D and each s € {0,1}*, we denote by S(D;s) the set {u € {0,1}l*]+ |
s is a prefix of u & Hp(u) > T |u| }.

Now, we define a sequence {ax}ren of finite binary strings recursively on k € N by ax := A if
k = 0 and ax := minS(V;ax-1) otherwise. First note that ag is properly defined as A and therefore
satisfies Hy(ap) > T |ag|. For each k > 1, assume that ag,a;,az,...,ax—1 are properly defined. Then
Hy(ak-1) > T'lak—1| holds. It follow from (3) that there exists t € {0,1}° for which Hy (ax—1t) >
Hy(ak-1) + Tc, and therefore ax..1t € {0,1}!%*-11*¢ and Hy (ax_1t) > T |lax—1t|. Thus S(V;ar_1) # 0,
and therefore ax is properly defined. Hence, ax is properly defined for every ¥ € N. We thus see that,
for every k € N, ax € {0,1}°*, Hy(ax) > T |ax|, and ay is a prefix of ax41. Therefore, it is easy to see
that, for every m € Nt there exists k € N such that a; contains m zeros. Thus, we can uniquely define
a real a € [0,1) by the condition that a[= ax for all £ € N+, It follows that Hy(al) > T |afckl
for all k € N*. Note that there exists dy € N such that, for every s,t € {0,1}*, if |t| < c then
|Hy (st) — Hy(s)| < do. Therefore, there exists d; € N such that, for every n € N*, Hy(al,) > Tn—d,,
which implies that a is weakly Chaitin T-random and therefore a € (0,1).

Next, we show that there exists an oracle deterministic Turing machine M such that, for all » € N*,
MdomVlitnl (n) = al,—.. For each k € N, we denote by Fj the set {s € {0,1}* | Hy(s) < |Tck]}. It
follows that

ax = min{ u € {0,1} | ap—1 isaprefixof u & u ¢ Fr } 4)

for every k € N*. By the following procedure, we see that such an oracle deterministic Turing machine
M exists.

Given n and dom V[, with n > ¢, one first calculates the ko finite sets Fy, Fa, ..., Fk,, where kg =
[n/c]. This can be possible because dom V' [[r,) is available and |T'cko] < [Tn]. One then calculates

a1,4az,...,0k, in this order one by one from ag = A based on the relation (4) and Fy, Fy, ..., Fk,. Finally,
one calculates of,_. from ag, and outputs it. This is possible since afcx,= ax, and n — ¢ < ckp.
Finally, we show that « is an r.e. real. Let p;,p2,p3,... be a particular recursive enumeration of

the infinite r.e. set dom V. For each I € N*, we define a prefix-free machine V) by the following two
conditions (i) and (ii): (i) dom V@ = {p,,ps,...,m}. (ii)V I (p) = V(p) for every p € dom V). It is easy
to see that such prefix-free machines V1), V() V) | exist. For each! € N* and each s € {0,1}", note

2The parameter T corresponds to the notion of “temperature” in the statistical mechanical interpretation of AIT
introduced by Tadaki [6].
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that Hyu)(s) > Hy(s) bolds, where Hy )(s) may be co. For each ! € N, we define a sequence {a,(:)}ken
of finite binary strings recursively on k € N by a}:) = Aifk =0and a,(:) = min(S(V(‘);ai‘ll)u{a&ll"})
otherwise. It follows that ag) is properly defined for every k € N. Note, in particular, that a,(:) € {0,1}¢F
and af“) is a prefix of “}:4).1 for every k € N.

Let ! € N*. We show that ag) < a; for every k € N*. To see this, assume that as_),l = ax—1. Then,
since Hy ) (s) > Hy(s) holds for every s € {0,1}*, based on the constructions of a,(:) and a; from agll

and ex_i, respectively, we see that af) < ax. Thus, based on the constructions of {af:)}kgu and {ax}reN
we see that ag) < a; for every k € Nt.

We define a sequence {ri}xen of rationals by ry = O.a,(:‘). Obviously, {rx}xen is a computable
sequence of rationals. Based on the result in the previous paragraph, we see that rx < o for every
k-€ N*. Based on the constructions of prefix-free machines V1), V@ v@ | from V, it is also easy
to see that limyx_.o, rx = a. Thus we see that « is an r.e. real. a

Note that, using Theorem 4.2 and Theorem 5.4 below, we can give to Theorem 4.1 a different proof
from Calude, et al. [1].

Theorem 4.4. Suppose that T < 1. For every r.e. real 8, if 3 is T-convergent then B is strictly
T -compressible.

Proof. Suppose that T < 1. Let 8 be a T-convergent r.e. real. Using Theorem 4.1 we see that there exists
an r.e. real a such that o is weakly Chaitin T-random and strictly T-compressible. Since o is weakly
Chaitin T-random, using the implication (i) = (iii) of Theorem 2.5 we see that, for every T-convergent
r.e. real -, there exists d € N such that, for all n € N¥, H(~],) < H(al,) +d. Since Bis a T-convergent
r.e. real, it follows that H(8[s) < H(al.)+O(1) for all n € N*. Thus, since « is strictly T-compressible,
B is also strictly T-compressible. a

Calude, et al. [1], in essence, showed the following result.

Theorem 4.5 (Calude, Hay, and Stephan [1]). If a real 8 is weakly Chaitin T-random and strictly
T-compressible, then there ezists d > 2 such that a base-two expansion of B has neither a run of d
consecultve zeros nor a run of d consecutive ones. O

Theorem 4.8. Suppose that T < 1. Let V be an optimal prefiz-free machine. For every r.e. real 3, if B
is T'-convergent and weakly Chaitin T-random, then there erist an oracle deterministic Turing machine
M and d € N such that, for all n € N*, MdomViira1(n) = 8], _q4.

Proof. Suppose that T' < 1. Let V be an optimal prefix-free machine. Then, by Theorem 4.2, there exist
an r.e. real «, an oracle deterministic Turing machine Mp, and dy € N such that a is weakly Chaitin
T-random and, for all n € N*, MdemVliTni(n) = al,_4,. Since a is an r.e. real which is weakly Chaitin
T-random, it follow from the implication (i) = (ii) of Theorem 2.5 that « is Q(T)-like.

Now, for an arbitrary r.e. real 3, assume that 3 is T-convergent and weekly Chaitin T-random. Then,
by Theorem 4.4, 3 is strictly T-compressible. It follows from Theorem 4.5 that there exists ¢ 2 2 such
that the base-two expansion of 8 has neither a run of ¢ consecutive zeros nor a run of ¢ consecutive
ones. On the other hand, since the r.e. real o is weakly Chaitin T-random, from the definition of UT)-
likeness we see that @ dominates 8. Therefore, there are computable, increasing sequences {ax}xen and
{bx}xen of rationals and d; € N such that limx_ax = a and limg_,00 b = B and, for all k € N,
a—ax > 2"4(F~b) and |B] = lbx]. Then, by the following procedure, we see that there exists an
oracle deterministic Turing machine M such that, for all n € N+, MdomViirmi(n) = gf n—(do+d; +c+2)-

Given n and domV [[r,) with n > do + d; + ¢ + 2, one first calculates « [n—do by simulating
the computation of My with the input n and the oracle domV [[Tn]. One then find kg € N such
that 0.(a[n-d,) < ai,- This is possible since 0.(a¢[p—_g,) < @ and limk—ooax = a. It follows that
2-(n=do) > o — 0.(aln-d,) > @ — ak, > 2% (8 — by,). Thus, 0 < 8 — by, < 2-("—do=d\)_ Let ¢, be
the first n bits of the base-two expansion of the rational number by, — |bx, | with infinitely many zeros.
Then, |bx, — |bk,] — 0.tn| < 27™. It follows from |3 — | 8] — 0.(B].)| < 2~™ that 10.(81n) — 0tn | <
(2%+d1 4 2)277 < 2%0+di+29-1  Hence, | Bl —tn | < 2%+41+2 where B],, and t,, in {0,1}" are regarded
as a dyadic integer. Thus, t, is obtained by adding to B[, or subtracting from B[, a dp + dy + 2
bits dyadic integer. Since the base-two expansion of 8 has neither a run of ¢ consecutive zeros nor a
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run of ¢ consecutive ones, it can be checked that the first n — (do + d1 + 2 + ¢) bits of t, equals the

first n — (do + dy + 2 + ¢) bits of 8,. Thus one can output Bln—(do+d1+c+2) by calculating the first
n — (dop + di + ¢ + 2) bits of ¢,. O

5 Main Results

Let V and W be optimal prefix-free machines. The following two theorems together show computational

equivalence, i.e., computational two-wayness, between the base-two expansion of Zy (T) and the halting
problem of V in the case of T" < 1.

Theorem 5.1 (main result I). Suppose that T < 1. Let V and W be optimal prefix-free machines, and
let f: N* — N be a total recursive function. Then the following two conditions are equivalent:

(i) There exist an oracle deterministic Turing machine M and ¢ € N such that, for all n € N+,
Mdom Virray (n) = ZW(T)rn-i-f(n)-c-

(1) The function f is bounded to the above. O

Theorem 5.2 (main resuit II). Let V and W be optimal prefiz-free machines, and let f: Nt — N be a
total recursive function. Then the following two conditions are equivalent:

(i) There exist an oracle deterministic Turing machine M and ¢ € N such that, for oll n € N*t,
MZwDinY(n) = domV [[Tn)4f(n)—c» where the finite subset domV Tn]+s(n)=c of {0,1}* is
represented as a finite binary string in a certain format.

(i) The function f is bounded to the above. ) a

Due to the 7-page limit, we only prove Theorem 5.1 in what follows. Let W be an optimal prefix-free
machine. By Theorem 7 of Tadaki [8), Zw (T') is a T-convergent r.e. real. Moreover, by Theorem 2.3,
Zw (T) is weakly Chaitin T-random. Thus, the implication (ii) = (i) of Theorem 5.1 follows immediately
from Theorem 4.6.

On the other hand, the implication (i) = (ii) of Theorem 5.1 follows immediately from Theorem 5.3
below and Theorem 2.3. In order to prove Theorem 5.3, we need Theorem 5.4 below.

Theorem 5.3. Let B be a real which is weakly Chaitin T-random, and let V be an optimal prefiz-free
machine. For every function f: Nt — Z, if there ezists an oracle deterministic Turing machine M such
that, for alln € N*, M¥mViira(n) = g}, f(n), then the function f is bounded to the above. (]

Let M be a deterministic Turing machine with the input and output alphabet {0,1}, and let C be
a prefix-free machine. We say that M computes C if the following holds: for every p € {0,1}*, when
M starts with the input p, (i) M halts and outputs C(p) if p € domC; (ii) M does not halt forever
otherwise. We use this convention on the computation of a prefix-free machine by a deterministic Turing
machine throughout the rest of this paper. Thus, we exclude the possibility that there is p € {0,1}*
such that, when M starts with the input p, M halts but p ¢ dom C. For any p € {0,1}*, we denote the
running time of M on the input p by Tas(p) (may be 0o0). Thus, Thas(p) € N for every p € domC if M
computes C.

We define Ly = min{|p| | p € {0,1}* & M halts on input p} (may be oco0). For any n > Ly,
we define I}, as the set of all halting inputs p for M with |p| < n which take longest to halt in the
computation of M, i.e., as the set {p € {0,1}* | |p| < n & Tnm(p) = T}y } where T}y is the maximum
running time of M on all halting inputs of length at most n. In the work [7], we slightly strengthened
the result presented in Chaitin {3} to obtain the following (see Note in Section 8.1 of Chaitin [3]).

Theorem 5.4 (Chaitin [3] and Tadaki {7]). Let V be an optimal prefiz-free machine, and let M be a
deterministic Turing machine which computes V. Then n = H(n,p)+ O(1) = H(p) + O(1) for all (n,p)
withn > Ly and p € IFy. ' - 0O

Proof of Theorem 5.3. Let 3 be a real which is weakly Chaitin T-random. Let V be an optimal prefix-free
machine, and let M be a deterministic Turing machine which computes V. For each n with [T'n] > Ly,
we choose a particular p, from I }:{ "1, For an arbitrary function f: N* — Z, assume that there exists an
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oracle deterministic Turing machine My such that, for all n € N*, M: em Virra) (n) = Blats(n)- Then,
by the following procedure, we see that there exists a partial recursive function ¥: N x {0,1}* — {0,1)"
such that, for all n with [Tn] > Ly,

lI’(napn) = ﬁfn-l-j(n) . (5)

Given (n,p,) with [Tn] > Ly, one first calculates the finite set dom V ffrn] by simulating the
computation of M with the input ¢ until at most the time step Tnm(pn), for each ¢ € {0,1}* with
lgl < [Tn]. This can be possible because Th(p,) = T,‘r}‘ "1 for every n with [Tn] > Lp. One then

calculates Bl f(n) by simulating the computation of My with the input n and the oracle dom VIiTn)-
It follows from (5) and (2) that

H(Blas fm) < H(n,pa) + 0(1) (6)
for all n with [Tn] > L.

On the other hand, given [T'n] with n € N*, one only need to specify one of [1/T) possibilities of n
in order to calculate n, since T is a computable real and T # 0. Thus, there exists a partial recursive
function @: N+ x {0,1}* x N* — N* x {0,1}* such that, for every n € N+ and every p € {0,1}*, there
exists k € N* with the properties that 1 < k < [1/T] and ®([Tn),p, k) = (n,p). It follows from (2)
and (1) that H(n,p) < H([Tn],p) + max{H(k) |k € N* & 1 < k < [1/T]} + O(1) for all n € N* and
all p € {0,1}*. Hence, using (6) and Theorem 5.4 we have

H(Bln+smy) < H([Tn],pa) + O(1) < [Tn] + O(1) < Tn +0(1) ™
for all n with [Tn] > L.

On the other hand, since 8 is weakly Chaitin T-random, we have Tn + T'f(n) < H(3 fn+s(n)) +O(1)
for all n € N*. Combining this with (7), we see that f is bounded to the above. a
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