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Fractional Calculus and Gamma Function
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Abstract

The following variable change formulae of fractional order and log-
arithm of differentiation are shown.

LN Y 2 N
dza "= F(1+X a) X=dc/’
d

log(——)la=et = —t+~—(log( 1+ X))x=s-

As an application, we show the group generated by 1- parameter groups
{dz“ la € R} and {z%|a € R} is the crossed product R x GF Here G

I'l+s+a)
— =, a, b€ R D
T(1ts+b) Y
multiplication. ¢ € R acts on FZ as the translation 7.:7.Fg(z) =

Fe(z+c) = Fgre.

is the abelian group generated by Fi(s) =

1 Introduction

Fractional calculus (fractional order indefinite integral and differentiation)
was already considered by Leibniz. Its frist application is Abel’s study of
the following dynamical problem: Find the curve F'(z) when the required
total time f(x) for a particle falling down along this curve is given.

F(x) should satisfy

1= [ s Vit PR,

2g a:—t)

Since I" f = m / (z — t)"~ ! f(t)dt is the n-th order indefinite integral

of f , the above integral can be regarded as the half order indefinite integral
1 + F’(x)?. In fact, this equation is solved by using this argument.

Traditionally, fractional calculus is used to analyse phenomena having
singularities of type z%. Fractional order differentiation is a nonlocal opertor.
Recently, owing to this property, fractional calculus is used to study effects of
memories of Brownian motion, which is thought to be useful in mathematical
finance.

As for recent studies on applications of fractional calculus, we refer
[1],[2],[6],[7],[8],[9],[11] and [15]. Besides these studies, Prof.Nakanishi sug-
gested to use fractional calculus to the study of deformation of canonical
commutation relation (CCR) ([4],[12],cf.[13]).
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In this paper, we show by the variable change x = €', fractional Euler

differentiation ¢ Tna is written as follows;
x

dymge dy _ TOEX)
=T dpa =t T T 4 X —a) X=4

This is a continuous extension of the formula

d" d, d

n_— - (= ‘- )
Pl = g (G ( n+1)
da
{ e la € R} is a 1-parameter group. Its generating operator is the log-
T
d
arithm of differentiation log(d—);
x

log(+0)/(x) = ~(logz +7)f (@) - / Tog(e — )T .

Here <y is the Euler constant. As for logarithm of differentiation, we have

d
) +log z)|,— et=( log(T(1+ X)) |5

Dlog, (log( dr

d.
di

Note. For the simplicity, we use 9, and O)og instead of 0, and Vg ¢, in
the rest.

As an application, we show the group GH generated by 1-parameter

log
r of R.

groups {z

Here the abelian group GF is generated by the functions

I'(l14+z+a)
F'l+z+b)’

Fg(m) — a, b € R,
by multiplication. The action of ¢ € R to F@(z) is the translation 7e:

T F¢(x) = F¢(z + o) (= F e ().

For the convenience of readers, brief review of fractional calculus and
logarithm of dlfferentlatlon together with a proof of the variable change

formula of log(—) (Prop.1, (4)) are given in §2. §3 proves variable change

formula of fra,ctlonal Euler differentiation (Th.1, (6)). As an application of
(6) and (4), formal adjoint of fractional Euler differentiation is studied in
§4. §5 deals with alternative definitions of fractional calculus. (4) and (6)
suggest there might exist infinite order differential operator expressions of
fractional order and logarithm of differentiations. Such expressions are given
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in [4] as applications of Leibniz rules and reviewed in §6 (Th.2, (10),(11)).

We can regard e and z¢ as deformed annihilation and creation operators
x

acting on suitable Hilbert space. This is investigated in [4] and reviewed

in §7. Corresponding discussions for log(d—) and log x are given in §8 and
x

d
higher commutation relations in the Lie algebra gjog generated by log( Iz

and log x are given as an application of (4) (Prop.3. cf.[4]). G log =R K G%
is the main part of the target of the exponentlal map from gj,. As the
preliminary of the study of structures of G log and Glog, the target of the
exponential map from g).g, we study Laplace transformations of 9, and djg
in §9. This section also contains an alterantive proof of (6). Then we study

strucures of Gfog and Gl in §10, the last section.

Acknowledgement. Our original proof of (6) is based on (4) and stated
in §9. Then we discovered simple proof of (6) which is stated in §3. Prof.
Nakanishi also discoverd same simple proof of (6) simultaneously.

2 Review on fractional calculus

Definition 1. Let a be a positive real number. We define the a-th order
inde finite integral (from 0) by

I*f(z) = ﬁ /O "z — )" f (1) (1)

Note. If a is a complex number with positive real part, then we can
define a-th order indefinite integral by the same formula.

There are two kinds of definitions of frational order differentation:

_dz;if_(f) = z]lfllif“f(a:), 0<a<l,
d"f(x) a d"f
“dan—a I ( —)(x)-

The frist is called Riemann-Liouville fractional derivative and the second is
called Caputo (or Riesz-Caputo) fractional derivative (cf.[1],[6]). They are
different. But if we replace f be fy;

) f(=z), >0,
fi(z) = {0, z <0,

then this ambiguity is resolved. Because we have

If(@) = g @i o Fro= [ flo— ot
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As a price, we need to replace the constant function 1 by Y, the Heaviside
function. The range of fractional differentiation needs to involve distribu-
tion;

dfy _ df

dr  dx + £(0)9,

where § is the Dirac function and f(0) means lim; o f(x).

If we take the space of Mikusinski’s operators (cf.[10]) as the domain
d_ a
= I?, becomes a 1-

parameter group.

Definition 2. We say the generating operator of the l-parameter
a

d
dd ~ la € R} to be the logarithm of dif ferentiation log(%).
T

group {

d
Explicitly, log(E—) is given by
T

d r df (t
l08(1) () = ~(logz +)f (@) ~ [ 1og(o ~ )L ar
d d
Here « is the Euler constant and —I- means ﬂ
dx dzx
By the variable change t = xs, we have
xete I'(l+c¢)
I _ 1 — a—1 cds = a+c.
2 F(a)/( R ¥ s b
Hence we have
d Cc ___ F(]‘ + C) .’L'C_a. (2)

dze” " T(1+c—a)

Here, we assume both of 1 + ¢ and 1 + ¢ — a are not 0 or negative integer.
d® 1
(2) shows if a is not an integer, then o 1= T a)x_a # 0.

1 d*
Note. Since ——— =0, if x is a negative integer,
I'l+x) & 8% dza
if n is an integer. But in this case, we regard z® " is defined on R. If we
consider fractional derivatives are defined only for the functions on {z|r >

0}, then z°~™ is repalced to % ™. In this case, we have

z?~ " vanishes

da

' =T(a)§ #0, O0<a<l,
dx®

etc.. Here § is the Dirac function.
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As for logarithm of differentiation, we have

d . oo c .
log(G)e" = ‘(10“”‘”2:17@;—@)%

d. ., 1 Ly
log(%)x = —(10g3:+7—(1+§+---+-r—b))a: :

d
Especially, we have log(%—)l = —(logx + 7v) # 0. We also have

log(%)(log )" = —(logz+v)(logz)" +

Tl (C1)klple(n —
+ Z (=1 ]'j( k+1) (log a:)k (3)
k=0 )

Introducing the operator

o0 B dn
dog = =7 + Y (=1)""(n+ 1),
n=1

we have

d
log(zl':;)f(log CL') = (_t + Dlog)f(t)ltzlogma

if f(t) is a power series of t. Since
logl'1+ X)) = —X + i(—l)n—q(—n)X"
n=2 n ’

we obtain

Proposition 1. We can write

Diog = (o 1oa(T(1 + X)) [y - (4)

3 Fractional Euler derivtive

a

Frational Euler derivative z¢ s satisfies
ad®  pd L db
7 g (@ ) = 7 g (0 a)
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a

But {:cad la € R} is not a 1-parameter group. Because
xa
o d*  pd atb 4T
* daca(x @)?éx dxotb’
d® d* d . d°
On the other hand, since %(xaﬁ) =logx - x“ = + z¢ log(%)%,

we have

d d® d

— (2% —)|a=0 = log(—) + log z. 5

da (" gga om0 = los(g) + log (5)

Therefore we may say log(di) + log z is the logarithm of Euler differentia-
x

tion.

By (2), we have

d® I'l+c
(xa ).’Bc — ( ) CIZC.
dze '1+c—a)
a
Hence z€ is an eigenfunction of o if both of 1 + c and 1 + ¢ — a are not
x
equal to O or negative integer. x¢ also satisfies

oo

(log(%) +logz)z® = (—v + Z

n=1

€.

n(n + c))

Theorem 1. By the variable change logx = t, we have

. d? T+ X)
(.’E dxa)|z=e‘ _ F(l + X — a)'X:%‘ (6)

Proof. Since we have

I'(l1+¢) oot :( r'l+ X) | d)@Ct
I'(l1+c—a) I(l1+X —a)X=x’
we obtain
a d® c _ F(1+X) ct
(2° oz ®)lo=et = (Farx- ol x=g)e"

Therefore, if f(x) allows Taylor expansion, or more generally, if f(z) =

J22, x°F(s)ds, then
o d _, Ta+X) .
(:C dxaf(x))l$=et - (F(l 4+ X — a)lX:dit)f(e )
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Hence we have Theorem.

1+ x
Note. If a is not a natural number, then (L+X) allows Taylor
'l+X —a)
expansion at the origin;
I'l+ X) 9
= X X
T+ X —a) cop +Cc1X +c2 =+
In this case, (6) means
I'(l+ X) | et d d2+_“
T(1+X —a)X=2 OT%q T 22

Hence if the convergence radius of 72 ¢, X" is r, then d, can act on finte
exponetial type functions f which satisfy estimate |f(t)] < Medll, ¢ < r,
for some M > 0.

If a = n, a natural number, then

1+ X) = D1+ (X —n)+n)
X(X-1)---(X—n+1)I(1+X —n).

Hence we have the well known formula

d  d
@ Y = 2 (L 1) (L ),
' . ) dm dm—l
Note. Usually, this formula is shown by using | o ——, 7] = Moy

which provides

The proof as a corollary of (6) is simpler than this proof.
Since
i( I'(1+X) = I'(1+ X — a)[(1 + X)
da ‘T'(1+ X —a)’ L1+ X —a)? ’

we have

d I'(l+ X)

—_ 1 ot = el .
Therefore, (4) follows from (6).

d
Note. (3) is shown directly from the definition of log(c—i—:z). But by using

(4), we get (3) easily. Therefore above alternative proof of (4) also provides
simpler proof of (3).
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4 Formal adjoints of fractional Euler diferentia-

tions
dm
If f, g belong to W¥(R), the Sobolev k-space on R, and |l|1m dt—m(t) =0,
t|—oo
0 <m < k—1, then we have
dk dk
9 = G ED. o= [0
Hence we obtain
Proposition 2. Let 9; and 0, be
M = F(l _ X) |
© T TA-X—a)X=a
. d I'ia - X)
g = (-7 los(T(1- X)) x-a = mlng
Then we have
(aaf, g) = (f? 029), (Dlogfy g) = (f) Dikogg)’ (7)
if f, g belong to W*(R) for all k and
d* f
Ii =0, k=0,1,2,....
|:r|11>noo dtk (®) ’

By this Proposition, we may say 0}, and Di"og to be formal adjoints of 0,
and 0j¢. But to consider formal adjoints of fractional Euler differentiations,
some remarks are necessary.

Fractiona differentition does not map polynomials to polynomials. So
we can not consider fractional differentiation to be an operator of L?(R,.),
R4+ = {z|x > 0}. But fractional Euler differentiations map polynomials to
polynomials and power serieses of convergence radius r to power serieses of
same convergence radius. Hence we can regard Euler differntiations to be
operaotrs of L2(R, ). Since

| r@at@a = | " fehglenetat,

by the variable change logz = t, L?(R) does not mapped to L?(R), but
mapped to

L%(R, etdt) = {f] /oo | f|2etdt < oo}.
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As an operator of L?(R,efdt), formal adjoint of 9, is not 0%, but e *d%e?,

where e*? are considered to be linear operators by multiplication. Although

_, dF
td ket is a constant coefficients differential opearotr, e d,e’ is not a dif-

ferential operator. Because 0, is an infinite order differential operator. In
fact, if we use Laplace transformation and adapt arguements of §9, §10, we
have

€

- T(=X —a) X"
Since I'(—X) has a pole of order 1 at X = 0, this shows e *0,€e! is not a

differential operator, but sum of the indefinite integral operator and infinite
order constant coefficients differential opertor.

—T~k T
e "0,€e

d
Note. As for log(d—) + log x, we have same conclusion. In this case, we
x
have
I'(-X)

—1 t __
e Vg€ = mb(:%

5 Alternative definitions of fractional calculus

We have derived (4) from (6). Conversely, we can derive (6) from (4). For
this purpose, first we state alternative definitions of fractional calculus.

Definition by differences.
Let m,: Thf(x) = f(x + h) be the translation operator. As the operator
on the space of power serieses, we have

hi _ h™ d"
Th = s E:: n! dzn’

d
Hence we have 7} = 7, and log(m,) = h%. We set

da : —a a
Sf@) = lim b~ Df(@),
log(-<0)f(x) = lim (log(I ~ ) +log h) f(z),
where 1 is the identity; If = f. Here, we define
(th =D = 7on(I—7_p)"
o0
(-D)"a(a—1)---(a—n—+1)

= Tah (I + Z oy T—-nh)y
_ N “ - T—nh

log(th, —I) = log(my) +log(I—7_p) = h + nzz:l -
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By definitions, (75, — I)®f(x) and log(r;, —1I)f(x) are finite sums if f(x) = 0,
r <0.
By definition, we have

da
dxe’

. d
Since 1, = el dz , we have

d d d
log(rp, — I) = th—:E + logh + log(%) + lOg(G(h.dE))’

1—e X
where G(X) = — Hence we have

d d
10g(a;) = 108;(%)-

a a
Therefore we obtain o = e But the classes of functions on which above
x T
definitions work, are not known.
. 1 ( d da
Direct proof of the formula e%'°8(3) = Toa
T

Let f(z) = > 72 ,cn2™ be a holomorpphic function at the origin. We
define its Borel transformation B[f] by

=5 RGP

Borel transformation is linear and satisfies

%B[ FO1=BE Q) Blfg) = BlftBlg),

d X
where uffv = o / u(x — t)v(t)dt. Inverse Borel transformation is given by
0

-1 ) = ooe”t x
£1(x) / f(at)dt

Since B~[log(] = logz — v, B71[¢?] = I'(1 + a)2* and B~![§] = 271, we
define

a

Bllog¢] =logz+~v, B[¢(Y = fm

Since we have

za

y_r% Bllog(¢ + €)] = log z + 7, llm B[(( + €)% = I[(l1+a)
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only on {z|Rz > 0}, the domain of these extended Borel transformation
shoud be functions on {z|Rz > 0} or C\ {z|z < 0}.
It is known ([3], cf.[12])

Stloge _ € " 4 nf_zf“"
1+t "’ n!’

/ . . 3
where fi* = ff...#f. Hence main properties of Borel transformation are
conserved in this extended Borel transformation ([3]). We define

BN = BICUAQNE),
log()F(O)z) = ~BlloCF(Q](=).

a

d .
Then we have e®1°8(3z) = — in one hand, and

z
~Bllog ¢ F(6)] = ~(ru + [ log(x — ) Gab)

da

dx®’

if u = B[f], on the other hand. Hence we have e® log( ;) —

6 Leibniz rules and infinite order differential op-
erator expressions

If g satisfies suitable condition, e.g., g is a Gevrey class of index « < 1;
| g(fv)l < Mz(n!)®.
then by integration by parts, we have
INfg) = (I'flg — (IPf)g + -+ (=1)" (I gD + -,

T — a—1
We set fo(t) = %

n T — 1 @ T — n+a—2
(@) = oy ), @O e

F(TL+0, 1) n—+—a 1
CENINON

f(t), where z is a parameter. Then we have

f(z).
Hence we obtain

I*(fg) = (I%f)g—a(I*t f)g + -+
-H—D”4da+n“g$+n—

1) (Ia+n—1f)g(n—1) 4.
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(l’fn (l’n’l,—(L

B a __ a3
Then, by using dme = e we obtain

B daf de— lf dg
da:“ (fg) ~ dza? ta dze—1 dz +
+a(a— 1)---(a—n+1)d* " fd"g

n! dxe—" dx™

tol(8)

d
Taking o of this formula, and tends a to 0, we have
a

oo

lo8(-=)(f9) = (loz(-=) f)g + > T (m py &g

n=1

d"g
dxn’

(9)

Leibniz rules (8) and (9) are not symmetric in f and g, unless a is an
integer (cf.[12]). These formulae valid for continuous f and Gevrey class
function g of index o < 1. But by these asymmetry, we obtain the following

a

infinite order differential opearator expressions of T a is not a positive
T
d
integer, and log(—) ([4]).
dx

Theorem 2. Let f be a Gevrey class function of index o < 1, then

S > = LTI
log(%)f = —(logz+7v)f+ i ( nl):“ : Zlf (11)
Proof. Since f(z) = 1- f(z) and
1= T a7 log(-)1 = —(log z + ),

we have Theorem by (8) and (9).
Note. (10) have no meanings if a is a natural number. But we have

0 nl n m
h T f+z ol df):df
n=1

a—»mI‘ 1 —a) a) n' dx™ dxm’

if x # 0.
Problem. Derive (6) and (4) directly from (10) and (11).
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(10) and (11) show fractional order and logarithm of differentiations can
not be defined as a 1-valued operator for functions on R. As for functions
on R, we need to use

n—1 n £
@) = (f<m>+z( Vel )

dCL‘a dxm
d 1 n—1 dr
logs (1) f(x) = —(logsx+7)f(2) +Z n) o TI2) )

Here, we set

44 x?, x>0, 1 log x, z >0,
= i O I =
* eti™|z|% z < 0, 8+ log || £ mi,x < 0.

d
But fractional Euler differentations and log(%) + log x can be defined

for functions on R (or on C).

7 Commutation relations and deformed CCR
By (8) and (9), regarding z to be a multiplication operator, we have

de do—1 d .
[@Z’m] - QW’ [log(%)vw] =1I.

Note. It is known [F(%),x] = F’(Ed—), where
x

—) = ch%, F(zx) = chac”.
n=0 n=0

Above formulae show this formula is valid for F(z) = z* and F(x) = logx.

These formulae are not fit to regard fractional order or logarithm of

a
,0<a<l,

appropriate space of the domain to investigate deformation of CCR is

o0 (o @]
Hy ={) cnz®™ D |enl® < o0},

([4]. As for deformation of Heisenberg algebras, we refer [13]).
In this definition, a # 0 is arbitray and H; is the Hardy space H, when
it is considered to be a complex Hilbert space. But in the rest, we assume

differentiations as deformed annihilation operators. As for
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0 < a < 1. In the later discussions, there are no essential differences between
H, as a real Hilbert space and as a complex Hilbert space. Inner product
(f,9); f,g € Hg is defined by

a [T/°
(h9) =5z | FaCerdo

—7['(1

Here z = re® is the compelx variable, and the integral is taken on —7/a <

¢ < m/a, which is regarded as a cover of the unit circle {z||z| = 1}. By

this inner product, H, is a Hilbert space and {z®"~!|n € N} is a complete

ortho-normal basis of Hy. The map pg:p,(z?* 1) = 27~! defines an isometry

from H, to H.

x* does not belong to H,. But as the multiplication operator, we can

define z%; z*(z*"~') = z2"+*D-1 The adjoint 2% is z7¢; z7%(z7" 1) =
m/a -

z¢m=D-1 1 > 2 Since / ™ 1z=1d9 = 0, it should be z=! = 0 as an
—7/a

operator on H,. Hence we set

7 %z* ) =0.

As an operator on H,, we set

da

-1 _
e x? 0.

dam

Owing to this definition, we do not have ( y a)m =
T T

by this definition, to set

in general. But

tnl

€a,t (:E) Z F(an = gja—lEa’a(txa),

o

n
where E, g(z) = z_: m is the generalized Mittag-Leffler function
(cf.[5]), we have

da
Jpa t(t) = teqa ().

This solution suggests appropriate boundary condition of the equation
d%y
dz®

= Ay is

y(e™ ™) = te?mi/ay (™), E,,(A) = —

Of course, these are only special results. As for generalities of fractional
differntial equations, we refer [14] (cf.[11]).
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Let A, 4+ be diagonal form operators on H, defined by
I'(an)

_ I'la(n+1)) . _ _
Aa an—1 __ an—1 Aa_. an—1 __ an—1
o+ T(an) — ° Jo 7 T(a(n — 1))
Here, we consider A, _x®~! = 0. Then we have
d* —a —a
dza = Aa,_ = Aa’+$ .
de
Hence e = A, 2% =12%A, + and
dCL
[daja ? xa] = Aaa+ - Aa,_'

We set C, = A, 4+ — As—. It is a p-Schatten class operator (cf.[16]) if
1

p > ——. We have lim,_,1 p,C,p; ! = I by the strong topology of operators.
—a

But {0,Ca.p; '|a > 0} does not converge by the uniform topology.

a

We regard d
dr®

and z¢ as deformed annihilation and creation operators.
a
— and z? is a projective limit of

Then the Lie algebra g, generated by
nilpotent Lie algebras, and its higher order elements belong to the Schatten
ideal ([4]). Precisely saying g, is a real Lie algebra if we consider H, to be a
real Hilbert space and complex Lie algebra if we consider H, to be a complex
Hilbert space. If necessary we fix g, as a real Lie algebra and denote g, ¢
the complex Lie algebra g, ® C.

Note. We do not consider topology of g,. Hence an element u of g, is
written as the form

k
m e N
U = COXO + E Ck [Xk:17 T [ka)ka+1] o ']v
k=1

aQ

where X, X, are either Toa

or 2.

a
= e~ %9, 2% = e*. Hence

By the variable change log z = ¢, we have —
T
gq is isomorphic to the Lie algebra generated by e~ %0, and e*. Therefore

we have

Ca,w=et = 6_ataa6at - Da.

a n' dn—k .
Since e~ Z k'( 7T dinF and |a| < 1, C, is changed to an in-

finite order constant coeﬂ"l(:lents dlfferentlal operator by the variable change
logx = t.
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8 Lie algebra generated by logarithm of differen-
tiation and logx

d . .
As for log(d—), appropriate domain to investigate deformed canonical com-
x

mutation relation should be spanned by {(logz)"|n =0,1,...}. We set
O oo
Hiog = {D)_ calogz)"| Y len|* < o0}
n=0 n=0

If we take x to be a complex variable and set z = e, —7 < 6 < 7, then
H,og is isometric to W'/2[—7, 7], the Sobolev 1/2-space on [—m, 7). But we
do not use this identification in the rest.

We can not regard log(c—i—) to be a deformed annihilation operator. But
x

d
we can regard R = log(d—) + log x + v and log x to be deformed annihilation
T

operator and creation operator.

d
Definition 3. We denote the Lie algebra generated by IOg(E;E) and
log x by giog and the Lie algebra generated by R and logx by gr.

By definitions, they are isomorphic and

glog & RI = R D RI.

As for commutation relation, we have

[log(%), log z] = [R,log x].

To compute higher commutation relations in gjoe, it is convenient to
use variable change logxz = t. Then g, is isomorphic to the Lie algebra

d
generated by —t + djog and t. Since 0jog = (—log(F(l +X)))|X=di’ we

dX
have
,__frri_\ dm+1
[t [ [t 010g] -+ ] = (W log(T'(1 + X)))IX:%
_ m - k(K +m)! dr
= (=1)™(m+ DI¢(m +2)I + kzzjl(—n Mk m 1)
We set 0105 = 010g,0 and
m-+1

Dlog,m = (Wlog(r(l + X)))lX:

d .
dt

Then we obtain (cf.[4])
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Proposition 3. Regarding giog to be a Lie algebra generated by t and
Vlog, its element u is written uniquely in the form

u = at + ¢colog,0 + C1010g,1 + - - - + CmOlog,m- (14)

Especially, [u,v] =0, if u=73 ; CiOlogk and v = D _; ;. Vlog k-
In the original giog, we have
m

/_/— d
logz,[ -+ ,[logz, log(@)] ] = (1) (m+ DIC(m + 2)I 4+ Nigg,m-

Here Njogm is a generalized nilpotent operator: Niog m(log ) =0,k <m.
Special values of the (-function appeared in this formula come from the
Taylor expansion of log(T'(1 + x)). So may not be interesting.

Qlog is a projective limit of nilpotent Lie algebras. If the exponential map
is defined for gjog, the image of giog should contain the group generated by
a

la € R} and {z%|a € R}.

the 1-parameter groups { e
x

Definition 4. We denote the group generated by the 1l-parameter
Qa

la € R} and {z°|a € R} by G .

groups { s

We can clarify the structure of Gfog as an application of (4) and (6). By
using Laplace transformation and Proposition 3, it is shown the target of

D and et log(I(1+5)))

the exponential map from g, is generated by Glog

aeR, m=0,1,....
gm+1

Definition 5. The group generated by Gfog and e*as™ T g € R, m =
0,1,... is denoted by Giog.

We can clarify the structure of Gjog as applications of (4),(6) and Propo-
sition 3. For this purpose, first we study Laplace transformation of 0\, etc.,
which also provides an alternative proof of (6).

9 Laplace transformations of 010 and 0,

By the variable change logz = t, the domain {z|x > 0} is mapped to
{—00 < t < o0}. So we need to use birateral Laplace transformation. For
the convenience, we set

£ = [ et f(s)ds.

—0o0

If f is a rapidly decreasing function, then

t/:: est f(s)ds = /ﬁi(%e“)f(s)ds =— /_Z et f'(s)ds.
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Hence we have
(=t -+ 0ug) ELAN(0) = £1( 5 + ) £ (5o
Solution of the equation
dY (s) " I'"(1+ s)
ds I'(l1+s)

Y(s) = AY (s),

is given by
eAs
Y(s) = Cm, CeC.
Hence if the inverse Laplace transformation of
e s H((l + s
['(1+ s) oot "

exists, we obtain solutions of the equation (—t 4 0104)U () = AU (2).

An alternative proof of (6).
By using above solution Y'(s), we can derive (6) from (4) as follows:

. d .
Since e®!°8(3z) — if

dxe’
log(+-Jua (@) = Mu(z),

then
d(l
dz¢
To set uy(expt) = Ux(t), by the variable change logx = ¢, we have

e~ 0,Ux(t) = e Ux(2).
If £[f] = g is sufficiently smooth, then we have
—ad
L™ f(t)](s) = e 3 g(s) = g(s — a). (15)

By this formula, we obtain
(0)] 2, YA(5) = Ya(5 — a).
Since Y)(s) = e**(I'(1 + s))~!, we have

uy(z) = e uy ().

I'(l1+s)
'l+s—a)

(0a)l 4 _, =

Therefore (6) follows from (4).
Problem. By (6) and (4), we have
da
ﬁlx:e‘

Can we show directly e®(—t+%0g) — ¢—aty 2

_ d
=e “taa, log(a)]xzet = —t + Olog.
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10 Structures of groups Gfog and Gigg

b
(8) shows the commutation relation of ¢ and ib is not simple. But by us-
ing variabel change log x = t and Laplace transfc:ﬁ“mation, we can investigate
on such commutation relations.
For the convenience, we set

I'l+z+a)

@) = sz 50)

For example, we have
0 = FO(X))Ix_a, Ld(x) = F2,(z).
dt
By definition, we have F(z)Fj(z) = F{(x)FZ(x) and
Fi(z) =1, F(2)F(z)=F}(z).

Definition 6. We denote G%, the group generated by {F(z)|a,b € R}
by multiplication.

By definition, G% is homomorphic to the quotient group of the free
abelian group

Zg: = Y &Z(a,b),

(a,b)eR?
by the relations
(a,a) =1, (a,b)+ (b,c) = (a,c).

By (11), as an operator, L[exp(at)] = 7—,. Hence as an operator, we
have
da
E[%&lx=et] == ’TaFP_a.

Regarding F;' to be an operator by multiplication, the commutation
relation between 7. and F is

T F§ = Fg‘:CCTc, Fyre =1 F) " F. (16)
b

By the variable change logx = t and Laplace transformation, G’log

isomorphic to the group generated by {7.|c € R} and {7,F°,|a € R}. By
(16), we obtain

is

0 0
Te, Tay F_a1 cTe, Tan

—an

F—(a2+~--+an+c2+---+cn) ... FO
Tay+-+an+ci++cn —a1—(az+-+an+ca+-+cn) —an*
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Therefore we have

Theorem 3. G?Og is the crossed product

G’

log =R Kx G?“’ (17)

where ¢ € R acts on GhF as the translation ..

Corollary G'?Og is a solvable group of solvable length 2.

Proof. Since we have

a1 | an __ a1+c | prantc
Tchl an = Fb1+c an+c Te,

G% is a normal subgroup of G?Og. Then by (16), we have

Gh,/GL =R (18)

Since G% is an abelian group, we have Corollary.

Note 1. Since

For.Fb = TCF;;;CFC’; ¢ {7ala € R},

h

{7ela € R} is not a normal subgroup of Gj,.

Note 2. Let Gr, ... r, be the subgroup of Gfog generated by {FZ|la—b €
h

{r1,...,7x}}. Then Gr,.. . r, is also a normal subgroup of Glog:

By Proposition 3, regarding gios geenrated by t and 0),,, elements ob-
tained by higher commution relations are linear combinartion of

m+1

Olog,m = (W log(I‘(l + X))IX:%'

We denote Laplace transfromation of 0jo5 m by gm(s);

dm+1
Im(s) = Jem 1 log(T"(1 + s)), and set

Gm(s) = eI Gpp(s) = Gm(h + s).
By definition, we have

dm+1
log(T"
Gp(s)® = e¥9m(sth) — g@gmrr log(T(1+s+h)

By the map

k

k
[1G% ., — D ailh),
=1

i=1
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we can identify the group Giogm, generated by Gp,(s) and R, which act
as tranlations, by the multiplication, and RE, the R-vector space having
elements of R as the basis. For the convenience, we denote RE  the vector
space RR identified to Glog,m-

We set G2 = [[°9_, G- Then

Definition 7. We set

Gr = G% x Gh.. (19)

Note. Since Gr is an abelian group, we may write Gr = Gr @ G%.

Since elements of Gt are (analytic) functions on R, elements of R act on
Gr as translations. We set

Giog = R X GT. (20)

By definition, we can define the exponential map exp : giog — Gr by
exp(u) = e*, regarding giog is generated by ¢ and 01,4 and the map is defined
on its images by Laplace transforamtion. Therefore we obtain

Theorem 4. We can take Giog as the target of the exponential map
from giog. It is a solvable group of derived solvable length 2.

Proof. Since we have exp(glog) C Glog and
Glog/GF = R7

we have Theorem, because Gr is an abelian group.

Note 1. In these discussions, we regard gjog to be a real Lie algebra. As
for complex Lie algebra giog = gﬁg, we have same resuluts, replacing G% the

group geenrated by {F?(z)|a,b € C}, which is denoted by G%’C, etc., and set

GEC = C x GE©,

log
etc..

Note 2. We do not consider topologies of Gilog, etc.. Our realization
of Glog is not so useful to the study of its algebraic structure. But to give
good toplogies to glog and Gl so that the completion of gjog becomes the
Lie algebra of the completion of Gjog, our realizations must be useful.
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