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Abstract
Hamiltonian monodromy is known to be the simplest obstruction to the existence of global action-angle

variables in integrable models of classical dynamics. Recently, the corresponding quantum monodromy
concept is introduced and shown to be an important qualitative feature of many different realistic models
and concrete physical quantum systems. Vibrational structure of simple molecules, electronic states of
hydrogen atom in external fields, coupling of angular momenta is discussed as basic physical examples.
Starting from these examples new qualitative features of molecular systems leading naturally to generalized
monodromy notions is introduced. Going finally to really complex systems the tentative relation between
phyllotaxis and monodromy is suggested.

1 Introduction
The idea of the present paper is to demonstrate new qualitative features which were found recently
in different relatively simple quantum atomic and molecular systems, namely, I speak about quantum
Hamiltonian monodromy and its generalizations. In classical mechanics, the Hamiltonian monodromy
was initially considered in the context of completely integrable Hamiltonian systems as the first ob-
struction to the existence of global action variables [52, 18]. Its differential geometry meaning was not
appreciated by physicists at the beginning and the Hamiltonian monodromy was treated as mathe-
matical curiosity which apparently does not lead to interesting physical or any other natural science
applications. Only after more than 15 years of intensive popularization of the monodromy notion
by Richard Cushman at interdisciplinary physics-chemistry-mathematics conferences and in his book
[8], the monodromy subject became rather popular, especially in molecular science. This success of
monodromy was mainly due to the formulation of the quantum version of Hamiltonian monodromy
[9, 69, 59] and the discovery of quantum Hamiltonian monodromy in many different real physical
systems [11, 23, 7, 30, 72]. Recent proof of the persistence of monodromy under small perturbations
spoiling the integrability [6] strengthens the interest of applications to real (typically non-integrable)
systems.

The simplest way to see Hamiltonian monodromy is to construct the so called momentum or
energy-momentum map for an completely integrable (for simplicity two-dimensional) Hamiltonian
system [2, 8, 36, 5]. This is a map from the classical phase space to the space of values of integrals
of motion (see figure 1). It allows us to consider the classical phase space as (generically singular)
fibration with the base space being the space of values of integrals of motion and fibers being the
inverse images of the map. The image of the map consists of regular and singular values. The inverse
images of regular values are regular tori [2], while singular values correspond to topologically different
singular tori. Several examples of singular fibers are represented in figure 2.

In the simplest case the Hamiltonian monodromy is due to the generic presence of a singular fiber,
so called pinched torus (figure 2, a), which manifests itself in the image of the energy-momentum
map as an isolated singular value (see figure 1, $a$ ). This situation is often referenced as focus-focus
singularity [49, 43].

In higher dimensional problems the singular fiber of the pinched torus type is a generic singularity of
codimension 2. This means that for completely integrable $3D$-degree of freedom Hamiltonian systems
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$a$ $b$ $c$

Figure 1: Typical images of the energy momentum map for completely integrable Hamiltonian systems
with two degree of freedom in the case of: $(a)-$ integer monodromy; $(b)-$ fractional monodromy; $(c)$

$-$ nonlocal monodromy; $(d)-$ bidromy. Values in light shaded area lift to single regular 2-tori; values
in dark shaded area lift to two regular 2-tori. Black point in subfigure $a$ corresponds to pinched torus
shown in figure 2 $(a)$ . Each point of thick solid line in subfigure $(b)$ corresponds to curled torus (see
figure 2 $b$ ). Each point of dash line in subfigures $(c)$ and $(d)$ corresponds to bitorus shown in figure
2 $c$ . Each of two cuspidal points in subfigures $(c)$ and $(d)$ associated with the end of bitorus line
correspond to singular torus represented $i_{I1}$ figure 2 $d$ .

a $b$ $c$ $d$

Figure 2: Two dimensional singular fibers in the case of integrable Hamiltonian systems with two
degrees of freedom: a- pinched torus, b- curled torus, c- bitorus, and d- singular torus.
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value of the first action

a $b$ $c$

Figure 3: Quantum joint spectra for typical regions of the image of energy - momentum map for
integrable problems. a- a region of regular values. b- region around a singular value of the classical
map, associated with pinched torus. c- neighborhood of a two-component region of the classical map
(dark curvilinear triangle).

we typically meet lines of singular values whose points correspond to singular (pinched) tori (or to
focus-focus singularities). The appearance of codimension 3 and higher singularities in physically
relevant dynamical systems remains till now an open question [3, 33, 34, 35]

The completely integrable toric fibration allows existence of local action variables in any simply
connected region of regular values of the energy-momentum map. At the same time global action vari-
ables do not exist in a non-simply connected region of regular values surrounding the critical value(s)
of the energy-momentum map associated, in particular, with the pinched torus. The monodromy of
the classical integrable Hamiltonian system is defined as an automorphism of the first homology group
of a regular fiber after continuation of basic cycles along a closed contour going through regular values
and surrounding singular value of the momentum map in the base space of the integrable fibration.

Very simple and clear manifestation of the Hamiltonian monodromy can be seen on pictures show-
ing simultaneously the image of the classical energy momentum map and the corresponding joint
spectrum of mutually commuting quantum observables, i.e. the lattice formed by common eigenval-
ues of mutually commuting operators [59]. Simple Bohr quantization rules together with existence of
local action variables lead to appearance of a local regular lattice of common eigenvalues of mutually
commuting operators in any simply connected region of the image of classical energy-momentum map,
corresponding to regular values of the map (see figure 3, $a$ ). At the same time, going with elemen-
tary cell of so obtained lattice of common quantum eigenvalues along a non-contractible closed path
surrounding critical value results in a modification of the elementary cell.

Figure 3 demonstrates evolution of an elementary cell after going along a closed path surrounding
either isolated singularity (3, b) or the whole two-component region (3, c) on the $2D$-image of the
energy-momentum map. The matrix relating initial and final cell is a quantum monodromy 2 $\cross 2$

matrix with integer entries. It is inverse conjugated (dual) to classical monodromy matrix giving
the transformation of the basis cycles of the first homology group. It is clear, that the basis of the
regular lattice in the quantum case, or of the homology group in the classical case, can be chosen in an
ambiguous way, up to similarity transformation with an arbitrary matrix from $SL(2, Z)$ , the special
group of $2\cross 2$ matrices with integer entries. Due to this ambiguity the monodromy matrix is defined
as a class of conjugated elements of $SL(2, Z)$ or $GL(2, Z)$ and the particular “normal form” can be
chosen to represent each class of conjugated elements.

One of fundamental physical problems which clearly shows the presence of monodromy is the
hydrogen atom under the presence of weak external electric and magnetic fields [11]. Figure 4 shows the
joint spectrum and the image of the corresponding classical energy-momentum map for the integrable
approximation for this problem for some specific values of external orthogonal fields. The analysis of
the joint quantum lattice clearly indicates the presence of doubly pinched torus as a singular fiber.
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Figure 4: Joint spectrum of two $coi\iota iiIi\iota itiIig$ quantum operators for effective Hamiltonian describing
splitting of an $r\iota$-shell of the hydrogen atoni $i_{11}$ the presence of two orthogonal static electric and
niagnetic fields [11]. The parameters of external fields are cliosen to demonstrate: (Left)-the presence
of an isolated singular fiber (doubly piiiche( $1$ torus); (Right)-the presence of two-component region on
tlie energy inoinentiiin inap. Points in lower triangular region are. $i_{I1}$ fact. (loubly degenerate. Their
splitting is seen in the near separatrix region.

2 Monodromy and redistribution of energy levels
In order to see an interesting relation betweeii monodromy and the phenomenon of the redistribution of
energy levels between different energy bands the following simple niodel problem is extremely useful.
To write it explicitly let $\iota\iota s$ introduce two kind of dynamic variables: orbital angular momentum
$N=$ $(N_{x} , N_{y}. N_{\approx})$ and spin $S=(S_{x}, S_{y}, S_{z})$ . We asssunie now that $N^{2}$ and $S^{2}$ are fixed (are integrals
of inotion) and we take into account two coinpetitive interactions: spin-orbit coupling $\gamma Ns_{a11}d$ spin-
external magiietic field iiiteraction $(1 -\gamma)S_{z}$ . The resulting Hainiltoiiian depends on one control
paranieter $\gamma$ :

$H=(1-\gamma)$ $S$. $+\gamma(N\cdot S)$ . (1)

From the classical mechanics point of view this problein has two degrees of freedom with classical
phase space being the product of two two-dimensional spheres $S^{2}\cross S^{2}$ . Each sphere $S^{2}$ is defined in
the respective 3-space $(S_{x}, S_{y}, S_{z})$ and $(N_{x}, N_{y}, N_{z})$ as $S_{x}^{2}+S_{y}^{2}+S_{z}^{2}=|S|^{2},$ $N_{x}^{2}+N_{y}^{2}+N_{z}^{2}=|N|^{2}$ .
Both $N$ and $S$ geiierate each a standard so(3) algebra, so that

$\{N_{\alpha}, N_{\beta}\}=\epsilon_{\alpha\beta\gamma}N_{\gamma}$ ; $\{S_{\alpha}, S_{\beta}\}=\epsilon_{\alpha}S_{\gamma}$ ; $\{N_{\alpha}, S_{\beta}\}=0$ .

One integral of motion, $J_{\approx}=N_{z}+S_{z}$ is due to the presence of axial symmetry of the problem.
Together with energy, this gives coinpletely integrable problem with compact phase space. The axial
symmetry can be reinoved by means of singular reduction [8]. The singular reduction is necessary
because the action of the $SO(2)$ symmetry group on $S^{2}\cross S^{2}$ classical phase space has four fixed points
[59]. The reduction leads to a family of reduced phase spaces $P_{J}$ parametrized by the value of $J_{z}$ .
Several members in this family $P_{J}$ are singular spaces and exactly these singular spaces are of primary
interest for the study of Hamiltonian monodromy [59].

From the quantum mechanics point of view we can interpret the saine problem in the case of
quantum number of spin $S=1/2$ as a two state probleni with the internal structure of each state
being associated with $N_{\alpha}$ dynamic variables and giving consequently two energy bands. To reach
physically reasonable description it is sufFcient to suppose that the splitting of energy levels within
each band is sniall coinpared to energy separation between bands. In an equivalent way we can speak
about “slow” subsystem and “fast“ subsystem. It is natural to associate the slow subsystem with the
$N_{\alpha}$ dynamic variables and the fast subsystem with the $S_{\alpha}$ dynamic variables. The slow motion is
responsible for the internal structure of bands. The big $N$ value leads to a large number of quantum
states within the band. The fast motion is responsible for formation of bands themselves. Taking
$S=1/2$ results in existence of only two bands.
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Figure 5; Redistribution of energy levels between energy bands under variation of one control param-
eter for model Hamiltonian (1) for $S=1/2,$ $S=1$ , and $S=3/2$ cases and $N=4$ .

Two natural limits, namely $\gamma=0$ and $\gamma=1$ , correspond to extremely simple Hamiltonians,
possessing each two degenerate energy levels. Each degenerate energy level represents collapsed energy
band. At the same time, an important feature is the difference between the number of quantum levels
in bands when one compare the $\gamma=0$ and the $\gamma=$ llimits. Two bands at $\gamma=0$ include each
$(2N+1)$ quantum levels, while at $\gamma=1$ one bands includes $(2N+2)$ and another $(2N)$ energy
levels. The immediate conclusion is: the variation of the control parameter $\gamma$ from $0$ to 1 results
in the redistribution of energy levels between bands. The presence of axial symmetry allows one to
find exact solution of quantum problem in the case of $S=1/2$ and arbitrary $N$ and $\gamma$ because the
symmetry enables one to split the complete problem into several two-dimensional matrix problems
corresponding to different irreducible representations of axial symmetry group. Figure 5 shows the
phenomenon of the redistribution of energy levels between bands under the variation of one control
parameter.

The transformation between uncoupled and coupled angular momenta explains easily the distri-
bution of energy levels between bands in two limiting cases. Nevertheless, the problem (1) has much
more general meaning. Initially this problem was suggested to relate the redistribution phenomenon
with the formation of so called diabolic points in the semi-quantum model [56]. The semi-quantum
model means that “fast” variables are treated as quantum ones, while “slow” variables are considered
as purely classical. In semi-quantum approach, the initial complete quantum Hamiltonian becomes
matrix Hamiltonian with its matrix elements being functions of classical variables and the dimension
of the matrix being defined by the number of quantum states taken into account. The redistribution
phenomenon was conjecturally related in [56] with the modification of the topological invariant, Chern
number. But it is only after more than ten years that this conjecture was mathematically justified
[26, 27] and the mathematical model relating the redistribution phenomenon and the modification
of Chern classes of corresponding vector bundles constructed within the semi-quantum model was
formulated and even generalized to problems with higher dimensional space of slow variables [28].
The general idea is to describe the quantum K-state system together with the classical compact re-
duced phase space responsible for the internal structure of isolated bands as a complex vector bundle
of rang $K$ . The base of this vector bundle is the classical reduced phase space for “slow” classical
variables. Over each point of this base the complex fiber is the space of quantum eigenfunctions asso-
ciated with given classical manifold. It turns out that Chern classes of vector bundles have very clear
physical interpretation in terms of the number-of-state function of the band [26, 27]. This relation
was demonstrated in details for vector bundles over $CP_{1}\sim S^{2}$ but the corresponding analysis for
higher-dimensional base spaces is not yet fully explored.

In order to see the relation of the redistribution phenomenon with the monodromy, we need to
treat the same problem (1) within purely classical approach [59, 32]. As soon as the problem is
completely integrable we can easily construct the image of the energy momentum map and analyze
its evolution along with the variation of the control parameter $\gamma$ between two limits corresponding to
different distribution of energy levels between bands.
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Figui $e^{1}():()_{11}alitati_{V(}1$ iiiodification of the iiiiage of EM $111_{\dot{C}}\iota I$ ) due to Hainiltonian Hopf bifurcations.
Left and iight: two siinplest integrable tori $($ fibrations over $S^{2}\cross S^{2}$ classical pha.se $s1)_{C}^{r}\iota ce$ correspoiiding
to $\iota\iota n(ouI)le(1$ and $(o\iota\iota 1)1e(1$ angular inonienta: $A,$ $B$ , C. D- critical values correspondiiig to singular $S^{0}$

fibers: regular points (Il the bo$\iota iil(lary$ correspond to $S^{1}$ fibers; regular internal points are regular $T^{2}$

fibers. ]$\backslash Ii(1(1le$ : Appearance of an isolate$(1$ critical value iiiside the field of regular values. Critical
vvlue $B$ corresponds to pinclied $tor\iota is$ .

Two liiniting $cas^{\backslash }es$ correspond to iniages of energy inomentum map which differ among themselves
by tlie location of singular values on the boundary of the iinage (see figure 6, left and right). The
continuous transforniatioii between \dagger hese two limiting cases under variation of the control paranieter
$\gamma$ forces one of tlie singular values (naniely point $B$ in figure 6) to go from the upper boundary to the
lower bouiidary. On its way from one boundary fo another the singular value becomes an isolated
$(ritic\cdot al$ value (figure 6, niiddle) which corresponds to pinched torus. Appearance and disappearance
of fhe pinched torus occurs when the point $B$ leaves (or returns to) the $bo\iota indary$. This qualitative
transformation of the iinage of the energy-monientuni map is due to Hamiltonian Hopf bifurcation
[71. $21|$ . Froin the other side, the inodification of band structure (redistribution phenomenon) requires
the qualitative transforniafion of the energy-niomentum image (which is called also a bifurcation
diagram) and this should be done by going through the region of the parameter $\gamma$ values associated
with the presence of $aI1$ isolated critical valiie, an$(1$ consequently witb the presence of Hamiltonian
iiionodroniy. As it is shown in [59], the interval $\triangle\gamma$ of valiies of control paranieters corresponding to
tlie presence of an isolate$(1$ critical value becomes very narrow $(\triangle\gamma\ll 1)$ in the case of $S\ll N$ , i.e. in
the semi-quantum limit.

3 Monodromy as defect of lattices
The visualization of monodromy on the joint quantum spectrum of two commuting quantum observ-
ables by looking at the evolution of $aI1$ elementary cell going around singularities of corresponding
classical bifurcation diagram [59] provokes imniediately a question $abo\iota it$ possible relation between
singularities of integrable Hamiltonian fibrations and defects of regular lattices [74, 73, 55]. Descrip-
fion of different defects of periodic structures is a rather popular subject in solid state and soft matter
phvsics [50, 41, 42]. Unfortunately, the most typical solid state defects, like dislocations or discli-
nation, do not result in the same organization of lattice around a defect as an organization of joint
quantum spectruni around generic singularity associated with classical (pinched torus) singular fiber.
Nevertheless, we can follow the general idea of the defect description which is based on the “cut
and glue” construction of the defect starting from the regular lattice in order to find the geometric
representation of singularities of classical toric fibrations on quantum state lattices.

The representation of the “elementary monodromy” defect consists of removing from the regular
lattice a specially chosen solid wedge and identifying points on two boundaries of the so obtained
cut. This construction is shown in figure 7 represented in a local action variables. The crucial points
of this construction are: values of local action variables at two boundaries of the cut are different,
but the directions of “constant action” lines remains the same; the number of removed points from
each reduced subspace with fixed action value is a linear (piece-wise) function of the value of this
integral. The last property reflects the Duistermaat-Heckman statement [19, 36] about the piece-wise
polynomial behavior of the volume of the reduced phase space.

Another possibility of the representation of the “elementary monodromy” defect is based on making
a cut along the so called “eigenray” [66]. The eigenray is uniquely defined and after making the cut
the values of local actions on two boundaries remain the same but the direction of “constant local
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Figure 7: Construction of the “eleinentary inonodroniy” defect starfing from the regular $Z^{2}$ lattice.
Respective points lying on two boundaries of the reinoved wedge (left subfigure) are to be identified.
This gives the lattice with defect (right subfigure). Dark grey quadt angles show fhe evolution of an
elementary lattice cell along a closed path surrounding tlie defect point.

$\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$

$\bullet$ $\bullet$

$\bullet$ $\bullet$

$\prod$

$\bullet$ $\bullet$.
$\bullet$

Figure 8: Construction of 1 : 2 rational lattice defect. Left: Elementary cell does not pass. Right:
Double cell passes. unambiguously.

action” lines should be changed after crossing the cut. Although unique choice of the cut gives some
advantages, the modification of the direction of “constant action” lines after crossing the cut make
more difficult the analysis of the evolution of the elementary cell when crossing the cut.

The construction of the defect by removing a solid wedge leads to quite natural generalizations of
the elementary monodromy defect. Instead of removing the solid wedge associated with elementary
monodromy defect we can try to remove some fractional part of this wedge. This leads to two serious
modifications. First of all, the points on two boundaries of the cut are not completely identical now and
such construction should lead to line defect rather than to point defect as in the case of “elementary
monodromy”. Next point: the number of removed states from the regular lattice consists, in such a
case, of two contributions, linear and oscillatory, depending on the fraction. Such quasi-polynomial
dependence of the number of state function is known to be typical for problems with resonances
[58, 51]. Formal construction of an example of 1 : 2 defect associated with removing exactly a half of
the solid wedge eliminated in the case of elementary monodromy is shown in figure 8. The specific
feature of such defect is the fact, that the result of crossing such a defect by an elementary cell
depends on the place where the cell crosses the cut. We can remove this ambiguity if we use instead
of an elementary cell a double cell. From the point of view of standard Hamiltonian monodromy
interpretation such construction suppose that instead of initial lattice (first homology group) we
should use only sublattice (subgroup of index two in the case of 1 : 2 fractional defect). Working
only with subgroup, we have standard integer monodromy. At the same time, working with complete
lattice we have new phenomenon, named fractional monodromy. The mathematical formulation of the
fractional monodromy notion was done in [54, 55]. The completely new feature which appears together
with introduction of fractional monodromy is the possibility to analyze the monodromy for contours
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$\lambda=0.5$

Figure 9: Coupling of angular inonienta lea$(ling$ to $frac\cdot tional$ nioilodroinv. Effective Hamiltonian is
given }$)yE(1\cdot(2)$ .

whicli cross singularities (codiniension 1 strata forined by singular fibers). A typical singular fiber
in the case of fractional monodroiny is a (iirle$(1$ torus. showii in figure 2, $b$ . Different niatheniatical
aspects of fractional iiioiio$(lroiIiy$ notion are discussed in [53, 22, 29, 65].

The first example of concrete matheinatical model leading fo fractional Hamiltonian monodromy
[54] used two non-linearlv coupled oscillafors with 1 : $(-2)$ resonance and with higher order terms
wliich were introduced to ensure the coiiipactness of the $redtl(ed_{I)}1iasespa(e$ . Simple concrete model
of angular inonieiifa $(o\iota\iota])1i_{Il}g$ , siinilar to inodel (1) was analyzed in [37]. Tlie coupling between two
angular inoinenta $N_{(\rangle}$ and $S_{c\nu}$ sininlate the 1 : 2 resonaii( $e$ between vibrational $iIio(les$ :

$H_{\lambda}= \frac{1-\lambda}{|S|}S_{z}+\lambda(\frac{1}{|S||N|}S_{z}N_{z}+\frac{1}{2|S||N|^{2}}(N_{-}^{2}S_{+}+N_{+}^{2}S_{-}))$ . (2)

The joint spectruiii $I$) $atterii$ corresponding to Haniiltoniaii (2) and to the intermediate value of
(oiitrol paranieter $\lambda=0.5$ is sliown in figure 9. It clcarlv sliows the presence of singular line with the
end point (coinpare with figure 1, b). The fractional monodroiny follows directly froin the figure 9
by $comI)ariilg$ tlie forni of the initial and final double cells and expressing the result of the double cell
evolution in terms of elernentary $c\cdot\in$

} $11$ transforination. More physical exaniples showing the presence
of fractional iiionodroiny $i_{11}$ such siinple quantum svstein as hydrogen atoni in external electric and
niagnetic fields can be found in [24, 23].

4 $3D$-systems and monodromy

Extension of monodroiny analysis froni $2D$ to higher dimensional problems changes first of all the
dimeiisionality of the subspace of (ritical values on the bifurcatioii diagram (on the image of the
energy-momentum map). The codiniension of the generic singular fiber (pinched torus) responsible
for the elementary moiiodromy is equal to 2. This ineans that for $3D$-systems we have typically the
whole lines (or rays) of singular values. Very interesting example of three-degree-of-freedom system
with Hamiltonian monodromy is given by a resonant swing-spring (or elastic pendulum) [46, 47, 38,
20]. This is a tliree degree of freedom system (figure 10) with doubly degenerate swinging and non-
degenerate springing and with the ratio 1 : 1 : 2 between harnionic frequencies. This problem is
practically identical to the fanious Fernii resonance problem in CO2 molecule which assumes exact
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Figure 10: Swing-spring with 1:1:2 resonance (left) is a model of Fermi resonance in CO2 molecule.
Among four vibrational degrees of freedom of CO2 molecule the symmetric stretching and doubly
degenerate bending are in 2:1 resonance, whereas the antisymmetric stretching is out of resonance
and can be effectively removed by normalization.

Figure 11: Image of the energy momentum map for the 1 : 1 : 2 resonant oscillator system with axial
symmetry (and without detuning). Full $3D$-image, typical constant-n section and fibers.

1 : 1 : 2 resonance between doubly degenerate bending and symmetric stretching vibrations of CO2
molecule.

The CO2 molecules is naturally a quantum system. Thus the quantum version of swing-spring has
an interesting physical meaning. The problem becomes integrable if we introduce the polyad quantum
number (the total action for three harmonic oscillators in resonance in the classical model) as a good
approximate quantum number. Axial symmetry of the problem together with energy conservation give
three necessary integrals of motion. Three dimensional bifurcation diagram is presented in figure 11
[10, 30]. Line of singular values situated inside the “cone” of allowed values of the energy momentum
map is responsible for nontrivial monodromy.

Corresponding quantum state lattice can be reconstructed from regular lattice by introducing
simultaneously three elementary monodromy defects with different orientation (figure 12).

The transformation of the elementary cell going around the line of singular values is shown in
details in figure 13. It is easy to verify that the cumulative effect of these three defects gives the
monodromy matrix which belongs to the same class of conjugated elements of $SL(3, Z)$ as the “ele-
mentary monodromy“ matrix. This nontrivial example shows utility of defect representation through
solid wedge removing and the monodromy matrix calculation through evolution of an elementary cell.
An interesting continuation of the present analysis of this quantum problem is the study of the plane
switching phenomenon, observed in classical swing-spring [46, 47, 38], for quantum problem [61].

The above analysis of the CO2 model (or swing-spring) was done under the assumption of the
exact resonance condition 1 : 1 : 2. At the same time a physically reasonable model should take into
account the exact resonance condition between two degenerate by symmetry modes (1: 1 resonance)
and allow small detuning for 1 : 2 ratio between stretching and bending vibrations. It is clear from
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Figure 12: Quantum lattice with several elemeiitary monodromy defects reproducing the joint spec-
trum for 1 : 1 : 2 resonant oscillators whose classical bifurcation diagram is shhown in figure 11.

Figure 13: Details of the cell transformation during its transportation around line defect for quantum
lattice with defects shown in figure 12.

Figure 14: Hamiltonian systems with detuned 1:1:2 resonance. Manifestation of bidromy. Represen-
tation of the section of energy-momentum map in the case when detuning is more important (left)
and when the resonance is more important (right).
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Figure 15: Essential part of the three-dimensional image of the energy-momentum map for 1 : 1 : 2
resonant swing spring [60]. Two connected components of the inverse image of the energy-momentum
map are present in the region ABA’OC of the $3D$-bifurcation diagram. See text for further explana-
tions.

simple qualitative arguments that in the case of relatively large detuning (as compare to splitting
of 1 : 1 : 2 polyads) the $n=$ const ( $n$ is a polyad quantum number) section of the image of the
energy-momentum map should have a form of a triangle with three vertices corresponding to $S^{1}$ fibers
(figure 14, left). At the same time, in the limit of negligible detuning the same $n=$ const section
has the form shown in figure 14, right, possessing an isolated singular value. Taking the $n$ as control
parameter, it is reasonable to suppose that for small $n$ the detuning should be large as compared to
the splitting of the $n$ shell, whereas for large $n$ the splitting of $n$ shell is more important because the
detuning is largely independent on $n$ and splitting grows rapidly with $n$ . Thus, we conclude that with
increasing $n$ we should observe the Hamiltonian Hopf bifurcation. Careful analysis of the problem [60]
shows that near the bifurcation point the image of the energy-momentum diagram becomes rather
complicated (see figure 15).

The new region appears on the bifurcation diagram where two independent components of the
inverse image of the energy momentum map are present. (This is the ABA’OC region.) Moreover
the global topological organization of components is quite special. Namely, starting on one connected
component within the region ABA’OC, going out of this region through the $ABA’C$ face and returning
back through any of two side faces $AOC$ or $A’OC$ , we can return back to the same point of the
bifurcation diagram without crossing any singular tori but we finish the way on another connected
component.

This peculiar situation was named the bidromy in [60]. This situation was found to be rather
general, but little known. The illustration of the same type of global organization of connected
components is shown on the example of integrable problem with two degrees of freedom in figure 16.
Instead of standard bifurcation diagram this figure shows the so called unfolding surface which allows
us to distinguish connected components of the inverse image of the energy-momentum map. Further
details are given in [60, 25, 16].

5 Dynamical manifestation of monodromy
In his discussion [64] of the paper on the monodromy of swing-spring and CO2 molecule [10] Ian Stewart
formulates as the most tantalizing the possibility of detecting quantum monodromy experimentally.

67



Figure 16: A single-slieet cell $\iota\inf_{0}]_{(}1ing$ surface for the image of an energy nionientum niap with one
self-overlapping lower cell: tlie inverse inap can have one (point a) or two (points $b’$ and $b”$ ) connected
components. The path $b’ab”$ illustrates how it is possible to start on one connected component and
going only through regular tori return back to the same point of bifurcation diagram but to another
connected coniponeiit.

The analogy between quanfum Schr\"odinger cat and a classical falling cat turning himself upside down
used $t_{)}y$ Stewart is not quite direct, but the idea to realize soiite time dependent physical process with
the result showing directly the presence of monodromy and allowing even to measure the monodroiny
experiinentally is obviously quite challenging.

All previous attenipts with finding manifestation (or fingerprints) of nionodromy in quantum sys-
teins was mainly related to the analysis of patterns formed by cominon eigenvalues of mutually com-
muting quantum operators. Such study reflects essentially the “static” character of quantum inon-
odroniy. In order to look for inanifestation of monodromy during dynamic, time dependent processes
we need first of all to forinulate what kind of processes we need to realize and what kind of quantities
we need to observe. The firsf step in this direction was done in [14, 15]. The authors use a very
simple integrable probleni with inonodromy: a particle in a circular billiard with an axially symmetric
potential of the form $U(r)=-ar^{2}$ . Energy, $E$ , and angular monientum, $l$ , are two integrals of motion
for this statioiiary problem. The iinage of the classical energy-inoinentum niap has a singular value
at $(E=0, l=0)$ point of bifurcation diagram. In order to see the “dynamical“ manifestation of
monodromy for this classical problem it is suggeste$(1$ to realize the time-dependent processes consist-
ing of modification the energy, $E=E(t),$ $an(1$ the angular monientum of the system, $l=l(t)$ , in
such a way that the parametric curve $(E(t), l(t))$ during the time interval $t_{0}\leq t\leq t_{f}$ makes a closed
path in the energy-momentum plane surrounding the singularity. We leave for a moment the question
how to realize such a perturbation of the system and under what conditions we still can speak about
energy and inomentum as of integrals of motion even under presence of perturbation. We start with
niore iiitriguing question about the physical quantity which we need to observe in order to detect
the presence of monodromy. The suggestion is to observe (instead of just one particle) the evolution
of a number of particles inoving in the same potential and perturbation and having different initial
positions compatible with the saine initial energy and angular momentum. From the formal point of
view we can imagine a $n\iota imber$ of vehicles starting to niove in a given billiard with a given potential
and subjected to a given perturbation. We can choose the initial conditions in such a way that all
vehicles are placed at different points on one radial line between inner and outer turning points defined
by the given initial energy and having $l=0$ . We organize a perturbation in such a way that at each
instant all vehicles have the saine instantaneous energy and angular momentum values which follow
the required $(E(t), l(t))$ dependence in the $(E, l)$ plane. To force all vehicles to follow in a synchronize
way through the same $(E, l)$ points (i.e. to ensure that all particles belong to the same torus at any
given time) is not an easy task. It is probably more easier to realize the same traffic with real vehicles
by distributing in advance to all drivers the prescription where and when they should be located. But
the result of this hypothetical evoliition of a number of particles (or vehicles) is quite spectacular. It
can be seen in figure 17 [15].

We need to compare the loop of initial conditions of a number of particles with the loop formed
by all particles at the time when all particle finish their evolution in the $(E, l)$ plane and return to
the initial $(E, l=0)$ point of the bifurcation diagram. Curiously, at the final moment all the particles
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Figure 17: Dynamical evolution of the loop of initial condition of particles in circular billiard with
$U\sim-r^{2}$ potential [15], as an alternative to falling cat analogy to Hainiltonian monodroiny [64].

are distributed along a loop which encircles the central region of the billiard, forbidden for motion at
final energy.

The topological nontrivial transformation of the loop of initial conditions for a series of particles
into another topologically different loop of final positions is a direct consequence of the presence of
monodromy for the problem considered.

How to realize such a processes and more precisely how to ensure the needed synchronized motion
of different particles remains still an open problem. Nevertheless, the new idea, which seems to be
important, is the possibility to look for the manifestation of monodromy by studying the behavior of
an ensemble of particles. In fact, the big number of particles is not quite important for observation of
monodromy. Even a pair of particles gives important information [15].

Note, that falling cat on the figure 17 is given just to refresh the analogy suggested by Stewart in
[64].

6 Sign of monodromy

In order to discuss more general defects and more general monodromy matrices which can eventually
appear in different problems we need first to be a little more precise about equivalence relation between
different monodromy matrices and about the correspondence between monodromy matrices, topology
of corresponding singular fibers, and defect construction. First, we repeat that monodromy matrices
should be considered equivalent if they belong to the same class of conjugated elements of the $SL(2, Z)$

group (or $SL(n,$ $Z)$ in the case of n-degrees of freedom systems). At the same time even in the case of
$SL(2, Z)$ and $SL(3, Z)$ we can find a strange difference. For two degrees of freedom systems the two
quite simple monodromy matrices

$(\begin{array}{ll}1 01 1\end{array})$ , $(\begin{array}{ll}1 0-1 1\end{array})$ (3)

belong to different classes of conjugated elements within the $SL(2, Z)$ group. We name these matrices
positive and negative elementary monodromy matrices. It is important to note that only one class
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Figure 18: Comparison of elementary defects of different sign represented by removing or adding a
wedge.

$c\cdot orresI)onds$ to an elementary toric singularity, the pinched torus. Its representation as a defect of
a regular lattice corresponds to removing a wedge from the lattice and to identifying the wedge
boundaries as it is shown in figure 7. Froni the point of view of “cut an$(1$ glue” construction of defects,
we could stiggest the following procedure to create the defect with negative elementary monodromy
matrix. Namely, after makiiig a cut we can introduce the solid wedge into the lattice (instead of
removing it) and identify the boundaries of the wedge with boundaries of the cut of the initial regular
lattice (figure 18). Two patterns obtained by removing solid wedge and by adding the same solid
wedge are $e_{\dot{\mathfrak{c}}Ei}ily$ distinguishable. It is sufficient to calculate the nuniber of states as a function of one
of integrals of motion. To do that, let us start by taking a part of initial regular lattice, where we
want to reniove or to add solid we$(lge$ . We always can chose this part in such a way that the number
of states is a linear (even a constant) function of the value of integral of motion. After removing solid
we$(lge$ , the nuniber of states becomes always a convex function of the integral of the motion with the
discontinuity of the slope indicating the position of the defect [19, 32, 70]. In contrast, if we add solid
wedge the nuniber of state function becomes a concave function, again with the discontinuity of the
slope indicating the position of the defect.

At the same time in the case of three degree of freedom completely integrable systems the two
monodromy matrices

$(\begin{array}{lll}1 0 01 1 00 0 1\end{array})$ , $(\begin{array}{lll}l 0 0-l 1 00 0 l\end{array})$ (4)

belong to the same class of conjugated elements of $SL(3, Z)$ group. Nevertheless, from the point of
view of defect construction by “cut and glue” procedure, changing two-dimensional lattice to three
dimensional one is just a trivial extension to the third dimension. We can easily construct the line
defect by removing a $3D$-solid wedge, or by adding a $3D$-solid wedge. The corresponding patterns are
clearly distinguishable, while their monodromy matrices belong to same conjugacy class of $SL(3, Z)$
group and are, consequently, equivalent.

The conclusion of this comparison is: the monodromy matrix does not characterize completely
the defect. One can imagine that as soon as we suggest for Hamiltonian systems the impossibility
of existence of defects obtained by adding solid wedge, the elementary monodromy matrices with
opposite sign cannot appear as a matrix characterizing the singularities of Hamiltonian systems. But
the situation is slightly more complicated.

We need to allow for general Hamiltonian system the existence of multiple elementary singularities
of the same sign and equivalently the simultaneous existence of many equivalent defects of regular
lattice which all belong to the same class of conjugated elements of $SL(2, Z)$ group but have their
simplest normal form in different bases. It is known [57, 13, 12], that an arbitrary matrix in $SL(2, Z)$
can be constructed as a cumulative monodromy matrix for a closed path surrounding multiple ele-
mentary focus-focus singularities, characterized each by elementary monodromy matrix of the same
sign. In particular, by using 12 elementary monodromy singularities of the same sign and by choosing
properly the basis for each of elementary monodromy matrix, we can find that monodromy matrix
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Figure 19: Example of the pattern impossible for Hamiltonian systems due to non-convexity of the
image of the energy-momentum map.

Figure 20: Cumulative effect of multiple (11) elementary defects [73].
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( $(^{\backslash }111(11\uparrow\dot{\subset}t1\iota\cdot(1(\backslash f(\backslash (ts_{\dot{c}}\iota r()$ ai $i$ anged in $b\iota\iota(1_{1}$ a way fhat $t1_{1(}\backslash$ cumulative iiionodroiiiv inatrix has tlie sign
opposit $t^{\backslash }$ to $t1_{1t^{\backslash }}$ norinal ( $\dot{\mathfrak{c}}tst^{\tau}$ . Tlie saine iiioiio( $lioiiiy$ iuatrix could be $1$ ) $r((1\iota 1(ed$ by oiic elementary
defect ( orresponding to $\dot{(}\iota(1(1i_{I1}b)$ a solid we( $lge$ to tlie latticc. It is $t1(^{1}ar$ tliat tlie monodroiiiy inatrix
itself caiinot cliai $a(\uparrow$ erize ( $(1111)1_{C\uparrow\langle}\backslash 1vtlic^{\backslash }$ siiigularitv, or the (lefe( $t$ of the latti( $e^{J}$ . In or$(ler$ to iniprove
flie sifuation we $C\dot{c}111\dot{\mathfrak{c}}1(1(1$ additional topological invariant cliaracterizing siiigularities or defects.

Let us ( $(1111)_{(}\iota 1(Y$ the evolution of the eleinentary $c\cdot e^{1}11$ along a closed path surrounding the singularity
a,s sliowii in figures 19 an( $120$ . During its $(irc\cdot\iota\iota lar$ path, the eleinentary cell on figure 20 realizes an extra
$2\pi$ rotatioii arouiid ifself within fhe energy-moinentrmi plane as coinpared with tlie evolution of the
eleiiientary ( $(^{\backslash ]1}$ in figure $1^{(}J$ . Tlius we can suggest fl $1(\backslash$ nuinber of $2\pi$ rotations of $aI1$ eleinentary cell as
an ($t(1(litiollal$ invariant of the ((llto’ $\iota$ r $aii(1$ of tlie siiigularity surrounded bv this coiitour. Actually the
autlioi does not know $c^{)}xa111$ ] $)]_{(}\backslash eb$ of $I)liys](ally$ relevant clyiiaiiii $($ systeins which has singularities leading
to $11t11^{r_{J}}-/(1ro$ nuinber of $2\pi$ rotations of $\zeta^{\backslash ]\backslash }(1Ile^{1}11\uparrow arv(el1$. An interesting inathematical example was
$r(r(ell\uparrow lya\iota 1_{\dot{C}}\iota 1v/e^{Y}(1$ by Bolsinov, Dullin. Veselov [4], wbo liave studie($1geo(lesic$ How OIl Sol-manifolds.
Theii particular exaiiiple of sucli inanifold (whicli is a $T^{2}$ torus bundle over a circle witb hyperbolic

gluing $niaI$ ) $)$ leads to monodroniy $\Gamma t^{1}I$)$reseiitc^{1}d$ by the byperbolic niatrix $(\begin{array}{ll}1 11 2\end{array})$ . This niatrix belong

to $t$ he class of so (alle$(1$ cat inaps”, which according to [13] can be realized as a monodrorny matrices
$()f$ a closed patli $(^{2}n(i_{\Gamma(}\cdot 1i_{ll}g12$ specially oriente$(1$ elenientary singularities. At the sanie tirne this
inonodroinv niatrix caii be (oiistru( $te(1$ as a cuinulative effect of two eleinentarv defects, one positive
$aii(1$ one negative [73]. Two $suc\cdot 11$ coiistructioiis differ again by $2\pi$ rotation of the elenientary cell during
its wav aro$tlI1(1$ tlie singularity. It should be noted that iiioiiodroniy $\dot{\zeta}\iota ssoc\cdot iatecl$ with singularity of a
geodesic flow on Sol-inanifold leads to $2\pi$ rotation, while the defect coiistructed froin one positive and
one negative eleinentary defects leads to zero number of $2\pi$ rotations. An interesting open question is:
wbat kirid of physical systems can inanifest the presence of singularities characterized by a non-zero
nuinber of $2\pi$-rotations of an eleinentary $c\cdot ell’$

The siinplest $(lynamic\cdot al$ system whicli can allow the appearance of defects with nonzero number
of $2\pi$ rotations of the elemeiitary cell should allow the presence of at least 12 elenientary monodromy
defects. Looking at the list of alinost toric syinplectic four-manifolds [66, 45] the most interesting
candidate is a K3 surface [31]. It appears as a total space of alniost toric fibration over two-dimensional
$S^{2}$ base space with 24 elementary singularities. This meaiis that dynainic system with K3 phase space
can be relevaiit as possible local inodel of nontrivial non-elenientary singularities associated with new
topological invariant, naniely $2\pi$ rotation of the elementary cell along a closed path surrounding the
singularity. In order to demonstrate the interest in such dynamic models we turn below in the next
section to completely different examples of biological systems exhibiting so called spiral phyllotaxis
phenomenon, which nevertheless seem to be quite related to discussed up to now monodromy and
specific pattern formation.

Another interesting point related to the sign of nionodromy matrix and to the sign of defect is the
topological characterization of corresponding singular fiber. An elementary focus-focus singularity of a
two degree of freedom Hamiltonian system is associated with a singular fiber which is a singly pinched
torus. From the topological point of view a singly pinched torus is a sphere with one transversal
self-intersection point with positive signature. As it is pointed by Matsumoto [48], there are two
possibilities for such transversal self-intersection point. The signature of the self-intersection point
can be positive or negative. In order to define whether the self-intersection is positive or negative,
we need to start by defining a two-dimensional reference frame on a regular point of a fiber and to
construct the $4D$-reference frame at the self-intersection point by moving initial $2D$-frame to critical
point in two different non-equivalent ways. If the so defined $4D$-frame corresponds to positive volume,
the self-intersection is positive. If the volume of the $4D$-space calculated with this $4D$-frame is negative,
the self-intersection is negative. What kind of dynaniic system can lead generically to singular fiber
which is a sphere with one transversal self intersection point of negative signature remains an open
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Figure 21: SunHower with easily eye-guided 34left and 55 right spires (parastichies) and similar lattice
fornied by 13left and 21 right spires together with an elementary cell going around central singularity
and exhibiting monodromy showing $2\pi$ rotation of the cell. To see better the rotation of the cell, two
vertices of all cells are marked by lefters $a$ and $b$ .

question [75].

7 Monodromy and sunflower
The notion of monodromy can be related to problems which are quite far from the classical Hamiltonian
integrable systems, or model quantum molecules. The idea of such a generalization is based on the
relation between defects of regular patterns and the monodromy. Namely, many defects of regular
lattices which appear in solid state physics can be considered as a cumulative result of a number
of elementary monodromy defects and can be treated as some complicated non-elementary defects
from the point of view of monodromy defects. It is clear that the choice of “elementary bricks” is
not unique. Even though the mathematical description of defects in solid state physics and in toric
fibrations related to dynamical Hamiltonian systems, or in other models turns out to be similar, the
relevance of these mathematical constructions should be confronted to physical reality.

We can try to generalize the mathematical description of defects in terms of elementary monodromy
defects and to look from this point of view for typical singularities (defects) of almost regular patterns
appearing in different domains. The general idea behind this is to find interpretation of defects in
terms of natural “elementary ones” and to specify the generic most frequently appearing defects and
to find a possible explanation of their appearance.

Regular patterns with defects can appear not only in solid state, with each point being associated
with an atom or molecule, but in more complex systems like plants with regular patterns being
associated with leaves or seeds, reflecting the morphogenesis or the plant development [67, 68]. The
most striking example of such a regular pattern formation is the phyllotaxis, intriguing scientists
working in different fields even quite far from biology. Let us just cite Leonardo da Vinci, Kepler,
Bravais, Turing, $C$oxeter, .. [1].

The phenomenon of phyllotaxis describes the morphology of many botanical objects [39]. It ex-
ists in the arrangement of repeated units such as leaves around a stem in various plants, seeds of
a pine-cones or of a sunflower, scales of a pineapple, etc. The most widely known is the spiral
phyllotaxis [40, 62, 63] associated in a major part of cases with lattices formed by left hand and
right hand spirals whose number are found to be consecutive numbers in the Fibonacci sequence
1, 1, 2, 3, 5, 8, ..., $a_{k},$ $a_{k+1},$ $a_{k+2}=a_{k}+a_{k+1},$ $\ldots$ . The interdisciplinary character of the phyllotaxis phe-
nomenon is clearly seen on the example of pattern formation by drops of ferro-fluids in a magnetic
field [17] or by flux lattices in superconductors [44].

Here we would like to bring attention of researchers to another aspect of phyllotaxis patterns
which was not noted and discussed earlier up to our knowledge, namely its relation to monodromy of
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lattices with defects an$(1$ to singularities (Hamiltonian nionodroiiiy) of integrable dyiiamical systeins
or integrable fibrations in general.

Figure 21 shows real sun-flower with its easily seen spires formed by seeds. There are 55 right
and 34left spires. Locally seeds form an alinost regular lattice which can be continued along a closed
path surrounding the center of the flower. Siinilar lattice is reproduced on figure 21, right using
another Fibonacci pair of right (21) and left (13) spires. Taking an elementary cell of this lattice and
moving it around the center it is easy to see that the elementary cell returns to its original position
after making a $2\pi$ rotation around itself. This means that the lattice formed by sunflower seeds has
a singularity leading to trivial (identity) monodromy matrix and to $non- trivial2\pi$ rotation of the
elementary cell with the direction of rotation corresponding to “normal” rotation. This means that
the central singularity can be represented as a union of 12 “normal” elementary monodromy defects,
arranged in such a way that they produce global identity monodromy matrix.

The choice of the sign of the monodromy defect observed for a wide range of botanic patterns
seems to be rather fundamental property similar in the spirit to the left-right asymmetry and time
irreversibility. A number of interesting questions naturally arise provoked by this supposition. Can
the evolution of the plants be modeled by a dynamical system with the source being associated with
a generic singularity characterized by an identity monodromy and positive $2\pi$ self-rotation? Does the
sign of self-rotation reflect specific properties of the system?
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