
SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS AND
THEIR ASSOCIATED NAMBU VECTOR FIELDS

NOBUTADA NAKANISHI

Department of Mathematics, Gifu Keizai University,
5-50 Kitagata, Ogaki-city, Gifu, 503-8550, Japan
e-mail address: nakanisi@gifu-keizai.ac.jp

ABSTRACT. From a point of view of Nambu-Poisson geometry, we consider
the condition when the associated Lagrange vector field with a given system
of ordinary differential equations becomes a Nambu vector field. As a result,
we know that this condition is deeply related to Jacobi’s last multiplier.

1. INTRODUCTION

Let $(\mathbb{R}^{n}, \eta)$ be the standard Nambu-Poisson manifold. Here $\eta$ is the standard
Nambu-Poisson structure, which is written as $\eta=\frac{\partial}{\partial x_{1}}\wedge\cdots\wedge\frac{\partial}{\partial x_{n}}$ for the standard
coordinates $x_{1},$ $\cdots,$ $x_{n}$ of $\mathbb{R}^{n}$ . Let $\Omega=dx_{1}\wedge\cdots\wedge dx_{n}$ be the standard volume form on
$\mathbb{R}^{n}$ . Then $\eta$ defines Nambu bracket $\{g_{1}, g_{2}, \cdots, g_{n}\}$ for any $g_{1},$ $g_{2},$ $\cdots,$ $g_{n}\in C^{\infty}(\mathbb{R}^{n})$

by $\{g_{1}, g_{2}, \cdots, g_{n}\}=\eta(dg_{1}, dg_{2}, \cdots, dg_{n})$ .
Since Nambu bracket is nothing but the Jacobian of $n$ functions $g_{1},$ $\cdots,$ $g_{n}$ , we

can define a Nambu vector field $X_{g_{1}\wedge\cdots\wedge g_{n-1}}$ by

(1) $X_{g_{1}\wedge\cdots\wedge g_{n-1}}(g)=\{g, g_{1}, \cdots, g_{n-1}\}$ ,

for any $g\in C^{\infty}(\mathbb{R}^{n})$ .
$\mathbb{R}^{n}:N$

ow let us consider the following system of ordinary differential equations on

(2) $\frac{dx_{1}}{f_{1}}=\frac{dx_{2}}{f_{2}}=.$ . . $= \frac{dx_{n}}{f_{n}}=dt$ ,

where each $f_{i}$ is a given function of $x_{1},$ $x_{2},$ $\cdots,$ $x_{n}$ . If there exist $n-1$ functions
$H_{1},$ $H_{2},$ $\cdots,$ $H_{n-1}$ of $x_{1},$ $x_{2},$ $\cdots,$ $x_{n}$ such that

(3) $\frac{dx_{i}}{dt}=f_{i}=\{x_{i}, H_{1}, H_{2}, \cdots, H_{n-1}\}$ ,

for $i=1,2,$ $\cdots,$ $n$ , then (2) (or (3)) is called a Nambu system. In this case, it is
easy to see that each $H_{j}$ is time-independent.

Let $X= \sum_{i=1}^{n}f_{i}\frac{\partial}{\partial x_{i}}$ be the associated vector field of (2). S.Codriansky et al. [1]
considered the following problem: Under what conditions does $X$ become a Nambu
vector field? P.Morando [5] studied the same problem as ours from the viewpoint
of differential geometry.

If $X$ is a Nambu vector field, the divergence of $X$ is clearly $0$ with respect to $\Omega$ .
And this is a necessary condition for $X$ to be a Nambu vector field. This condition
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is called Liouville condition for $X$ . Later on as one of our main results, we will
show that there exists a function $A$ such that the following system:

(4) $\frac{dx_{1}}{Af_{1}}=\frac{dx_{2}}{Af_{2}}=\cdots=\frac{dx_{n}}{Af_{n}}=\frac{dt}{A}$

becomes a Nambu system even if (2) is not a Nambu system. Put $Y= \sum_{i=1}^{n}$ A$f_{i} \frac{\partial}{\partial x_{i}}$ .
Since $Y$ is a Nambu vector field, its divergence vanishes. Hence a function $A$

becomes a Jacobi’s last multiplier. For details of Jacobi’s last multipliers, and for
related topics, see for example, M. $Cr\hat{a}\epsilon m\dot{a}reanu[2]$ and M. C. Nucci and P. G. L.
Leach [7].

Another main result is to show that there are no non-trivial Nambu vector fields
for certain autonomous linear differential equations. This is a generalization of the
result of S.Codriansky et al. [1].

The set of Nambu vector fields is contained in the Lie algebra $\mathcal{L}$ of infinitesimal
$\mathcal{L}au$

tomorphisms of Nambu-Poisson structure, but it does not become a subspace of

2. NAMBU-POISSON GEOMETRY

Though we should consider the problems stated in the Introduction on a general
Nambu-Poisson manifold, here we will confine ourselves to the standard Nambu-
Poisson manifold by taking into account Theorem 2.1 (the local structure theorem).
The details will be given at the end of this section.

Let us survey Nambu-Poisson geometry quickly. (See, for example, N. Nakanishi
[6]. $)$ Let $M$ be a smooth m-dimensional manifold and $C^{\infty}(M)$ the algebra of real-
valued $C^{\infty}$-functions on $M$ . We denote by $\Gamma(\Lambda^{n}TM)$ the space of sections from
$M$ to $\Lambda^{n}TM$ . Each element of $\Gamma(\Lambda^{n}TM)$ is simply called n-vector. Then each
n-vector $\eta$ defines a bracket of functions $g_{i}\in C^{\infty}(M)$ by

$\{g_{1}, \cdots, g_{n}\}=\eta(dg_{1}, \cdots, dg_{n})$ .

This bracket also defines the vector field $X_{g_{1}\wedge\cdots\wedge g_{n-1}}$ by

$X_{g_{1}\wedge\cdots\wedge g_{n-1}}(g)=\{g, g_{1}, \cdots, g_{n-1}\}$ , $g\in C^{\infty}(M)$ .

Let $Q= \sum f_{i_{1}}\wedge\cdots$ A $f_{i_{n-1}}$ be an element of the space $\Lambda^{n-1}C^{\infty}(M)$ . Then a vector
field $X_{Q}$ is also defined by the same manner as $X_{g_{1}\wedge\cdots\wedge g_{n-1}}$ . Such a vector field
$X_{Q}$ is called a Hamiltonian vector field. By abuse of language, we also denote by
$\mathcal{H}$ the space of Hamiltonian vector fields.

Definition 2.1. An element $\eta$ of $\Gamma(\Lambda^{n}TM),$ $n\geq 3$ , is called a Nambu -Poisson
structure of order $n$ if $\eta$ satisfies

$L_{X_{g_{1}\wedge\cdots\wedge g_{n-1}}}\eta=0$,

for any Hamiltonian vector field $X_{g_{1}\wedge\cdots\wedge g_{n-1}}$ . And a pair $(M, \eta)$ is called a Nambu-
Poisson manifold. The space of infinitesimal automorphisms of $\eta$ is written as $\mathcal{L}$ .
It is clear that $\mathcal{H}$ is an ideal of $\mathcal{L}$ .

This definition was proposed by L. Takhtajan [9] in 1994. If $n=2$ , this is nothing
but the definition of usual Poisson structure. (See, for example, [10]).
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Definition 2.2. If $Q$ is a monomial, say, $Q=g_{1}\wedge\cdots\wedge g_{n-1}$ , then $X_{Q}=$

$X_{g_{1}\wedge\cdots\wedge g_{n-1}}$ is called a Nambu vector field, and each function $g_{i}$ is called a Hamil-
$\mathcal{H}tonian$

. The set of Nambu vector fields is a subset of $\mathcal{H}$ , but it is not a subspace of

In studying the geometry of Nambu-Poisson manifolds, the following theorem,
which is called “local structure theorem” is fundamental. (See [3], [6].) Let $\eta(x)\neq$

$0,$ $x\in M$ . Then $\eta$ is said to be regular at $x$ , and $x$ is called a regular point.

Theorem 2.1. If $\eta$ is a Nambu-Poisson structure of order $n\geq 3$ , then for any
regular point $x$ , there exists a coordinate neighbourhood $U$ with local coordinates
$(x_{1}, \cdots, x_{n}, x_{n+1}, \cdots, x_{m})$ around $x$ such that

$\eta=\frac{\partial}{\partial x_{1}}\wedge\cdots\wedge\frac{\partial}{\partial x_{n}}$

on $U$ , and vice versa.

The most typical example of a Nambu-Poisson structure is

$\eta=\frac{\partial}{\partial x_{1}}\wedge\cdots\wedge\frac{\partial}{\partial x_{n}}$

defined on $\mathbb{R}^{m}$ , and it is called the standard Nambu-Poisson structure. The above
theorem means that a Nambu-Poisson manifold is locally considered to be the
standard Nambu-Poisson manifold $( \mathbb{R}^{m}, \eta=\frac{\partial}{\partial x_{1}}\wedge\cdots\wedge\frac{\partial}{\partial x_{n}})$ .

$d_{0}esnotbecomeaNambuvectorfi^{i=1}Ifm>n,avectorfieldX=\sum_{e1d}m.h_{i}\frac{\partial}{\partial x_{f^{i}}}withh_{k}\neq 0forsomen+l\leq k\leq mInact,supp_{oS}ethatXwouldbeaNambu$

vector field: $X=X_{g_{1}\wedge\cdots\wedge g_{n-1}}$ . Then for $k\geq n+1$ ,

$X(x_{k})= \{x_{k}, g_{1}, \cdots, g_{n-1}\}=\frac{\partial(x_{k},g_{1},.\cdot.\cdot.\cdot,g_{n-1})}{\partial(x_{1},,x_{n})}=0$ .

On the other hand, $X(x_{k})=h_{k}\neq 0$ . Hence this is the contradiction.
Therefore from now on we mainly consider the case $( \mathbb{R}^{n}, \eta=\frac{\partial}{\partial x_{1}}\wedge\cdots\wedge\frac{\partial}{\partial x})$ ,

because this is the only meaningful case, when we study whether a given $vec^{n}tor$

field is a Nambu vector field or not.

3. RESULTS

Now we give a generalization of the results of S.Codriansky et al. [1]. Let us
consider an n-th order autonomous differential equation:

(5) $x^{(n)}=F(x, x’, x", \cdots, x^{(n-1)})$ .

Put $x_{k}=x^{(k-1)}$ . Then (5) is rewritten as follows:

(6) $x_{1}=x_{2},$ $x_{2}’=x_{3},$ $\cdots,$ $x_{n}’=F(x_{1}, x_{2}, \cdots, x_{n})$ ,

or

(7) $\frac{dx_{1}}{x_{2}}=\frac{dx_{2}}{x_{3}}=\cdots=\frac{dx_{n}}{F}=dt$ .

The associated vector field $X$ is given by

(8) $X=x_{2} \frac{\partial}{\partial x_{1}}+x_{3}\frac{\partial}{\partial x_{2}}+\cdots+F\frac{\partial}{\partial x_{n}}$ .
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If $X$ satifies the Liouville condition, $F$ must depend only on $x_{1},$ $\cdots,$ $x_{n-1}$ . Moreover
we assume here that $F$ is a non-zero linear function, so $F$ is of the following form:

(9) $F=a_{1}x_{1}+a_{2}x_{2}+\cdots+a_{n-1}x_{n-1}$ , $a_{1},$ $\cdots,$ $a_{n-1}\in \mathbb{R}$ .

So from now on we study the following equation:

(10) $\frac{dx_{1}}{x_{2}}=\frac{dx_{2}}{x_{3}}=\cdots=\frac{dx_{n}}{a_{1}x_{1}+\cdots+a_{n-1}x_{n-1}}$ .

Then the characteristic equation of (5) is written as
(11) $r^{n}-b_{n-1}r^{n-2}-\cdots-b_{2}r-b_{1}=0$ .

Let $r_{i}(1\leq i\leq l)$ be the distinct roots of the characteristic equation (11). Then
the general solution of the differential equation (10) is given by the linear combina-
tion of $n$ linearly independent solutions $\alpha_{1},$ $\alpha_{2},$ $\cdots,$ $\alpha_{n}$ . Each of them has the form
$t^{k_{i}}e^{r_{i}t},$ $(0\leq k_{i}\leq s_{i})$ . Here $s_{i}+1$ is the multiplicity of $r_{i}$ . Another expression of $x$

is as follows:

(12) $x=x_{1}=c_{11} \alpha_{1}+c_{12}\alpha_{2}+\cdots+c_{1n}\alpha_{n}=\sum_{i=1}^{l}P_{i}(t)e^{r_{i}t}$,

where $c_{1j}$ are constants and each $P_{i}(t)$ is a polynomial of degree $s_{i}$ and $n=s_{1}+$

$s_{2}+\cdots+s_{l}+l$ .
Once $x_{1}$ is given by (12), we can calculate $x_{2},$ $\cdots,$ $x_{n}$ one after another. Each

$x_{j}$ is given by

(13) $x_{j}=c_{j1}\alpha_{1}+c_{j2}\alpha_{2}+\cdots+c_{jn}\alpha_{n}$ .

Hence by solving these equations with respect to $\alpha_{j}$ , we know that each $\alpha_{j}$ should
be expressed as a homogeneous linear function $L_{j}$ of variables $x_{1},$ $x_{2},$ $\cdots,$ $x_{n}$ . Using
the relations among $\alpha_{1},$ $\cdots,$ $\alpha_{n}$ , we can eliminate time-variable $t$ and we obtain
$(n-1)$ time-independent integrals. Then we use them to define $(n-1)$ Hamil-
tonians $H_{1},$ $H_{2},$ $\cdots,$ $H_{n-1}$ . Note that each $H_{j}(x_{1}, \cdots, x_{n})$ is a function of these
combinations of $L’ s$ .

The following lemma was first proved for the case of a linear vector field (8) sat-
isfying the condition (9), and after that H.Suzuki proved for a general homogeneous
linear vector field. The proof of the following lemma is due to H.Suzuki [8].

Lemma 3.1. Let $X$ be a homogeneous linear vector field. If $X$ is a Nambu vector
field with Hamiltonians $H_{1},$ $H_{2},$ $\cdots,$ $H_{n-1}$ , and if we write it by

(14) $X=X_{H_{1}\wedge H_{2}\wedge\cdots\wedge H_{n-1}}$ ,

then there exist $n-2$ homogeneous linear functions $\tilde{H}_{1},\tilde{H}_{2},$ $\cdots,\tilde{H}_{n-2}$ and a homo-
geneous quadratic function $\tilde{H}_{n-1}$ such that $X=X_{\tilde{H}_{1}\wedge\tilde{H}_{2}\wedge\cdots\wedge\tilde{H}_{n-1}}$ .

Proof. Put $w=i(X)\Omega$ . Then $w$ is a homogeneous linear $(n-1)$ form by our
assumption, where $\Omega$ is the standard volume form of $\mathbb{R}^{n}$ . Decompose each $H_{i}$ as
follows:

$H_{i}=H_{i}^{(0)}+H_{i}^{(1)}+\cdots$ ,

where $H_{i}^{(k)}$ denotes a homogeneous polynomial of degree $k$ . The constant term of
$w$ , which is denoted by $w^{(0)}$ , is given by

$w^{(0)}=dH_{1}^{(1)}$ A $dH_{2}^{(1)}\wedge\cdots$ A $dH_{n-1}^{(1)}$ ,
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and since $w^{(0)}=0$ , we know that $dH_{1}^{(1)},$ $dH_{2}^{(1)},$
$\cdots,$

$dH_{n-1}^{(1)}$ are linearly dependent.

Thus without loss of generality, we can write $dH_{n-1}^{(1)}$ as follows:

$dH_{n-1}^{(1)}=c_{1}dH_{1}^{(1)}+c_{2}dH_{2}^{(1)}+\cdots+c_{n-2}dH_{n-2}^{(1)}$ ,

where $c_{1},$ $c_{2}$ , –, $c_{n-2}$ are constants. Put $\overline{H}=H_{n-1}-c_{1}H_{1}-c_{2}H_{2}-\cdots-c_{n-2}H_{n-2}$ ,
then $w=dH_{1}\wedge dH_{2}\wedge\cdots\wedge dH_{n-2}\wedge d\overline{H}$ and $\overline{H}$ has no homogeneous linear part.
Hence if we put $\tilde{H}_{1}=H_{1}^{(1)},\tilde{H}_{2}=H_{2}^{(1)},$ $\cdots,\tilde{H}_{n-2}=H_{n-2}^{(1)}$ , and $\tilde{H}_{n-1}=\overline{H}^{(2)}$ ,
then $d\tilde{H}_{1}\wedge d\tilde{H}_{2}\wedge\cdots\wedge d\tilde{H}_{n-1}$ is equal to the linear part of $w=dH_{1}\wedge dH_{2}\wedge\cdots\wedge$

$dH_{n-2}\wedge d\overline{H}$ . Recall that $w$ itself is a homogeneous linear $n-1$ form. Thus we have
$w=d\tilde{H}_{1}\wedge d\tilde{H}_{2}\wedge\cdots\wedge d\tilde{H}_{n-1}$ , and this means that $X=X_{\tilde{H}_{1}\wedge\overline{H}_{2}\cdots\wedge\tilde{H}_{n-1}}$ . $\square$

Recall that $X$ satisfies $div(X)=0$ . Our first problem is: Under what conditions
can we find Hamiltonians $H_{1},$ $\cdots,$ $H_{n-1}$ so that $X$ satisfies $X=X_{H_{1}\wedge\cdots\wedge H_{n-1}}$ ?

First in the case of $n=2,3$ , we will try to find Nambu vector fields. If $n=2$ ,
the differential equation is given by

(15) $\frac{dx_{1}}{x_{2}}=\frac{dx_{2}}{a_{1}x_{1}}=dt$ .

Since $X=x_{2} \frac{\partial}{\partial x_{1}}+a_{1}x_{1}\frac{\partial}{\partial x_{2}}$ , we can easily find a Hamiltonian $H= \frac{1}{2}(x_{2}^{2}-a_{1}x_{1}^{2})$ ,
and it holds that $X=X_{H}$ .

The case of $n=3$ was investigated in [1]. The differential equation and the
associated vector field are given by

(16) $\frac{dx_{1}}{x_{2}}=\frac{dx_{2}}{x_{3}}=\frac{dx_{3}}{a_{1}x_{1}+a_{2}x_{2}}=dt$ ,

(17) $X=x_{2} \frac{\partial}{\partial x_{1}}+x_{3}\frac{\partial}{\partial x_{2}}+(a_{1}x_{1}+a_{2}x_{2})\frac{\partial}{\partial x_{3}}$ .

Suppose that $X=X_{H_{1}\wedge H_{2}}$ . By Lemma 3.1, we can assume

(18) $H_{1}=c_{11}x_{1}+c_{12}x_{2}+c_{13^{X}3}$ ,

(19) $H_{2}=c_{1}x_{1}^{2}+c_{2}x_{1}x_{2}+c_{3}x_{1}x_{3}+c_{4}x_{2}^{2}+c_{5}x_{2}x_{3}+c_{6}x_{3}^{2}$ .

Since $\frac{dH}{d}t\perp_{=0}$ , we have

(20) $c_{11}+c_{13}a_{2}=0,$ $c_{12}=0,$ $c_{13}a_{1}=0$ .

If $c_{13}=0$ , we would have $H_{1}=0$ . But this is not the case, so we must have $c_{13}\neq 0$ ,
and we have $a_{1}=0$ . If we take $c_{11}=1$ , then we obtain $H_{1}=x_{1}- \frac{x}{a}g2^{\cdot}$

Similarly, since $H_{2}$ is also time-independent, we have

(21) $2c_{1}+c_{3}a_{2}=0,$ $c_{2}=0,$ $c_{2}+c_{5}a_{2}=0$ ,

(22) $c_{3}+2c_{4}+2c_{6}a_{2}=0,$ $c_{5}=0$ .

So if we take $c_{1}=0$ and $c_{4}=-a_{2}2$ , we obtain $H_{2}= \frac{1}{2}(a_{2}x_{2}^{2}-x_{3}^{2})$ . $(H_{2}$ is also obtained
directly from (16) since we already know that $a_{1}=0.$ ) As the result, in the case of
$n=3$ , we must have $a_{1}=0$ and $X=X_{H_{1}\wedge H_{2}}$ .

Next as a generalization of the results of S.Codriansky et al. [1], we show that
there does not exist a Nambu vector field if $n\geq 4$ .
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Theorem 3.2. For the system of autonomous ordinary differential equations

(23) $\frac{dx_{1}}{x_{2}}=\frac{dx_{2}}{x_{3}}=\cdots=\frac{dx_{n}}{a_{1}x_{1}+\cdots+a_{n-1}x_{n-1}}=dt$ ,

let $X=x_{2^{\frac{\partial}{\partial x_{1}}}}+ \cdots+(a_{1}x_{1}+\cdots+a_{n-1}x_{n-1})\frac{\partial}{\partial x_{n}}$ be the associated vector field.
Then if $n\geq 4,$ $X$ does not become a Nambu vector field.
Proof. Suppose that $n\geq 4$ and that there exist $n-1$ Hamiltonians $H_{1},$ $\cdots H_{n-1}$

such that $X=X_{H_{1}\wedge\cdots\wedge H_{n-1}}$ . By Lemma 3.1, $H_{i},$ $(1\leq i\leq n-2)$ can be denoted
by

(24) $H_{i}=c_{i1}x_{1}+c_{i2}x_{2}+\cdots+c_{i,n-1}x_{n-1}+c_{in^{X}n}$ .

Since $dH_{i}/dt=0$ , we must have

(25) $0=c_{i1}x_{2}+\cdots+c_{i,n-1}x_{n}+c_{in}(a_{1}x_{1}+\cdots+a_{n-1}x_{n-1})$ .

This is equivalent to

(26) $a_{1}c_{in}=0,$ $c_{i1}+a_{2}c_{in}=0$ , $\cdot$ $c_{i,n-2}+a_{n-1}c_{in}=0,$ $c_{i,n-1}=0$ .

If $c_{in}=0$ , we would have $c_{i1}=c_{i2}=\cdots=c_{in}=0$ and $H_{i}=0$ . Hence it must hold
that $c_{in}\neq 0$ , and that $a_{1}=0$ . This means that $H_{i}$ has the following form:

(27) $H_{i}=c_{i1}x_{1}+\cdots c_{i,n-2}x_{n-2}+c_{in}x_{n},$ $(1\leq i\leq n-2)$ .

Since $i(X)\Omega$ contains the term $x_{n-2}dx_{1}\wedge\cdots\wedge dx_{n-4}\wedge dx_{n-2}\wedge dx_{n-1}\wedge dx_{n}$ , so
does $i(X_{H_{1}}\wedge\cdots A H_{n-1})\Omega$ . Recalling that $H_{1},$ $\cdots,$ $H_{n-2}$ are linear functions which
do not contain the term $x_{n-1}$ by (27) and that $H_{n-1}$ is a quadratic function, we
know that $H_{n-1}$ must contain the term $x_{n-2}x_{n-1}$ . On the other hand, the condition
$dH_{n-1}/dt=0$ implies that the coefficient of $x_{n}^{2}$ is $0$ and hence also implies that the
coefficient of $x_{n-1}^{2}$ is $0$ in the expression of $dH_{n-1}dt$ . This means that the term
$x_{n-2}x_{n-1}$ is not contained in the expression of $H_{n-1}$ . This is the contradiction. $\square$

Let us show another differential equation which becomes a Nambu system only
for special cases.

Proposition 3.3. Let $F$ be a homogeneous polynomial of degree $k,$ $k\geq 2$ , which
is defined on $\mathbb{R}^{3}$ . Then the differential equation

(28) $\frac{dx_{1}}{x_{2}}=\frac{dx_{2}}{x_{3}}=\frac{dx_{3}}{F}$

becomes a Nambu system if and only if $F=ax_{1}^{k-1}x_{2},$ $(a\in \mathbb{R})$ . In this case, the
following $H_{1}$ and $H_{2}$ are the desired Hamiltonians:

$\{\begin{array}{ll}H_{1} =x_{3}-\frac{a}{k}x_{1}^{k},H_{2} =x_{1}x_{3}-\frac{1}{2}x_{2}^{2}-\frac{a}{k+1}x_{1}^{k+1}.\end{array}$

And the associated Nambu vector field is given by

(29) $X=x_{2} \frac{\partial}{\partial x_{1}}+x_{3}\frac{\partial}{\partial x_{2}}+ax_{1}^{k-1}x_{2}\frac{\partial}{\partial x_{3}}=X_{H_{1}\wedge H_{2}}$.

Proof. We give here outline of proof. Let the associated vector field $X$ be a Nambu
vector field: $X=X_{H_{1}\wedge H_{2}}$ . Then $X$ satisfies the Liouville condition, we have
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$\partial F/\partial x_{3}=0$ . Put $F=a_{1}x_{1}^{k}+a_{2}x_{1}^{k-1}x_{2}+a_{3}x_{1}^{k-2}x_{2}^{2}+\cdots+a_{k}x_{1}x_{2}^{k-1}+a_{k+1}x_{2}^{k}$ . Let
$\Omega=dx_{1}\wedge dx_{2}\wedge dx_{3}$ be the standard volume form on $\mathbb{R}^{3}$ . Since it holds:

$i(X)\Omega=i(X_{H_{1}\wedge H_{2}})\Omega=dH_{1}\wedge dH_{2}$

$=x_{2}dx_{2}\wedge dx_{3}+x_{3}dx_{3}\wedge dx_{1}+Fdx_{1}\wedge dx_{2}$ ,

the coefficients of $dH_{1}\wedge dH_{2}$ are linear with respect to $x_{3}$ . Hence we can put
$H_{1}=f_{0}+x_{3}f_{1},$ $H_{2}=g_{0}+x_{3}g_{1}+x_{3}^{2}g_{2}$ , where $f_{0},$ $f_{1},$ go, $g_{1}$ and $g_{2}$ are polynomial
functions of $x_{1}$ and $x_{2}$ . $H_{1}$ is time-independent, so we have

(30) $0= \frac{dH_{1}}{dt}=x_{3}^{2}\frac{\partial f_{1}}{\partial x_{2}}+x_{3}(\frac{\partial f_{0}}{\partial x_{2}}+x_{2}\frac{\partial f_{1}}{\partial x_{1}})+Ff_{1}+\frac{\partial f_{0}}{\partial x_{1}}x_{2}$.

By comparing the coefficients of $x_{3}^{2}$ and $x_{3}$ , we obtain that $F=ax_{1}^{k-1}x_{2}$ . (Here we
put $a=a_{2})$ . Substituting this $F$ into the given differential equation, we can easily
determine $H_{1}$ and $H_{2}$ . $\square$

Let us show that we can find a function $A$ such that $AX$ becomes a Nambu
vector field for a non Nambu vector field $X$ . The following theorem is essentially
due to C.G.J.Jacobi (See for example [7]).

Theorem 3.4. Let $( \mathbb{R}^{n}, \eta=\frac{\partial}{\partial x_{1}}\wedge\cdots\wedge\frac{\partial}{\partial x_{n}})$ be the standard Nambu-Poisson
manifold, and let

(31) $\frac{dx_{1}}{f_{1}}=\frac{dx_{2}}{f_{2}}=\cdots=\frac{dx_{n}}{f_{n}}=dt$

be the system of ordinary differential equation (ODE for short) on $(\mathbb{R}^{n}, \eta)$ , where
$f_{i}=f_{i}(x_{1}, \cdots, x_{n}),$ $(1\leq i\leq n)$ are given functions on $\mathbb{R}^{n}$ . Suppose that the system
(31) has $n-1$ time independent integrals $H_{1},$ $\cdots,$ $H_{n-1}$ which are functionally
independent one another. Then there exists a function $A$ such that the following
ODE:

(32) $\frac{dx_{1}}{Af_{1}}=\frac{dx_{2}}{Af_{2}}=\cdots=\frac{dx_{n}}{Af_{n}}=\frac{dt}{A}$

becomes a Nambu system. Put $Y= \sum_{j=1}^{n}$ A $f_{j} \frac{\partial}{\partial x_{j}}$ . Then $Y$ becomes a Nambu vector
field and $Y$ is expressed as $Y=Y_{H_{1}\wedge\cdots\wedge H_{n-1}}$ .

Proof. Since $H_{i}$ is time-independent, we have

(33) $0= \frac{dH_{i}}{dt}=\sum_{j=1}^{n}\frac{\partial H_{i}}{\partial x_{j}}\frac{dx_{j}}{dt}=\sum_{j=1}^{n}\frac{\partial H_{i}}{\partial x_{j}}\cdot f_{j}$ .

Put $a_{ij}=\partial H_{i}/\partial x_{j}$ , and moreover put

$\tilde{a}_{j}=(\begin{array}{l}a_{1j}a_{n-1,j}\end{array})$ .

Since $H_{1},$ $\cdots,$ $H_{n-1}$ are functionally independent, we can assume without loss of
generality that rank $T=n-1$ , where $T=(\tilde{a}_{1}, \cdots,\tilde{a}_{n-1})$ .
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Since (33) is equivalent to the following:

$(\tilde{a}_{1}\cdots\tilde{a}_{n-1})\cdot(\begin{array}{l}f_{1}f_{2}f_{n-1}\end{array})=-f_{n}\tilde{a}_{n}$ ,

we get the following relation:

(34) $f_{j}=(-1)^{n-j} \frac{f_{n}}{\det T}\cdot\det(\tilde{a}_{1}\cdots\tilde{a}_{j-1}\tilde{a}_{j+1}\cdots\tilde{a}_{n}),$ $1\leq j\leq n-1$ .

Define a function $A$ by $A=(-1)^{n-1} \frac{\tilde{A}}{f_{n}}$ , where $\tilde{A}=\det T$ . Then we have

(35) $\det(\tilde{a}_{1}\cdots\tilde{a}_{j-1}\tilde{a}_{j+1}\cdots\tilde{a}_{n})=f_{j}\cdot\frac{\det T}{f_{n}}\cdot\frac{1}{(-1)^{n-j}}=(-1)^{j-1}$ $A$ $f_{j}$ .

Using the relation (35), the following holds:

$dH_{1}\wedge dH_{2}\wedge\cdots\wedge dH_{n-1}$

$=\det(\tilde{a}_{2}\cdots\tilde{a}_{n})dx_{2}\wedge\cdots$ A $dx_{n-1}$

$+\det(\tilde{a}_{1}\tilde{a}_{3}\cdots\tilde{a}_{n})dx_{1}\wedge dx_{3}\wedge\cdots\wedge dx_{n}$

$+\cdots+\det(\tilde{a}_{1}\cdots\tilde{a}_{n-1})dx_{1}\wedge\cdots\wedge dx_{n-1}$

$=Af_{1}\cdot dx_{2}\wedge\cdots\wedge dx_{n}-Af_{2}\cdot dx_{1}\wedge dx_{3}\wedge\cdots\wedge dx_{n}$

$+\cdots+(-1)^{n-1}$ $A$ $f_{n}\cdot dx_{1}\wedge\cdots\wedge dx_{n-1}$ .

Put $Y= \sum_{j=1}^{n}$ A $f_{j} \frac{\partial}{\partial x_{j}}$ . Let $\Omega=dx_{1}\wedge\cdots\wedge dx_{n}$ be the standard volume form of
$\mathbb{R}^{n}$ . Then

(36) $i(Y)\Omega=dH_{1}\wedge\cdots$ A $dH_{n-1}=i(Y_{H_{1}\wedge\cdots\wedge H_{n-1}})\Omega$ .

Thus we get $Y=Y_{H_{1}\wedge\cdots\wedge H_{n-1}}$ . $\square$

Corollary 3.5. Let $X= \sum_{j=1}^{n}f_{j}\frac{\partial}{\partial x_{j}}$ be the associated vector field with the ODE
system (31). Then $X$ becomes a Nambu vector field $\iota.e.,$ $X=X_{H_{1}\wedge\cdots\wedge H_{n-1}}$ with
respect to the new Nambu-Poisson structure $\tilde{\eta}=\frac{1}{A}\cdot\eta$ . In particular, $X$ is a Nambu
vector field if and only if we can find $(n-1)$ Hamiltonians $H_{1},$ $\cdots,$ $H_{n-1}$ such that
$A=1$ .

Remark 3.1. In the given system of ODE (31) of Theorem 3.4, assume that each
$f_{i}=f_{i}(x_{1}, \cdots, x_{n})$ is a function of $C^{1}$ -class. Then it is well-known that (31) has $n$

general solutions with $n$ arbitrary constants $C_{1},$ $\cdots,$ $C_{n}$ :

(37) $\{\begin{array}{ll}x_{1}= \phi_{1}(t, C_{1}, \cdots, C_{n}),x_{n}= \phi_{n}(t, C_{1}, \cdots, C_{n}).\end{array}$

By eliminating a variable $t$ from the above relations (37), $n-1$ functions $H_{1},$ $\cdots,$ $H_{n-1}$

are obtained, which are time-independent and functionally independent one an-
other.
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4. EXAMPLES

1. Let us consider a 6-dimensional ODE system:

(38) $\frac{dx_{1}}{x_{4}}=\frac{dx_{2}}{x_{5}}=\frac{dx_{3}}{x_{6}}=\frac{dx_{4}}{0}=\frac{dx_{5}}{0}=\frac{dx_{6}}{0}=dt$ .

This is an ODE system of motion of free particles. The associated vector field

$X=x_{4} \frac{\partial}{\partial x_{1}}+x_{5}\frac{\partial}{\partial x_{2}}+x_{6}\frac{\partial}{\partial x_{3}}$

satisfies the Liouville condition, but $X$ is not a Nambu vector field.
Five integrals of (38) are easily obtained:

(39) $H_{1}=x_{1}x_{5}-x_{2}x_{4}$ , $H_{2}=x_{2}x_{6}-x_{3}x_{5}$ , $H_{3}=x_{4}$ , $H_{4}=x_{5}$ , $H_{5}=x_{6}$ .

Using the above five integrals, we have

$(\begin{array}{lllll}-x_{4} 0 -x_{2} x_{1} 0x_{6} -x_{5} 0 -x_{3} x_{2}0 0 1 0 00 0 0 1 00 0 0 0 1\end{array})$ $(\begin{array}{l}x_{5}x_{6}000\end{array})=-x_{4}\cdot(\begin{array}{l}x_{5}0000\end{array})$ .

Put

$T=(x_{0}0^{6}0$ $-x_{5}0000$ $-x_{2}0001$ $-x_{3}x_{1}001$ $x_{0}00^{2}1)$ .

Since $\tilde{A}=\det T=x_{4}x_{5}$ , we have $A=f_{1}/\tilde{A}=x_{5}$ . Hence by Theorem 3.4, $Y=AX$
becomes a Nambu vector field on $( \mathbb{R}^{6}, \eta=\frac{\partial}{\partial x_{1}}\wedge\cdots A \frac{\partial}{\partial x_{6}})$ , and $Y=Y_{H_{1}\wedge\cdots\wedge H_{5}}$ . Or
equivalently, $X$ becomes a Nambu vector field on $( \mathbb{R}^{6}, \frac{1}{x_{5}}\eta)$ .

2. S.Codriansky et al.[l] studied the following 3-dimensional ODE system:

(40) $\frac{dx_{1}}{x_{2}}=\frac{dx_{2}}{x_{3}}=\frac{dx_{3}}{a_{1}x_{1}+a_{2}x_{2}}=dt$ .

The associated vector field is

$X=x_{2} \frac{\partial}{\partial x_{1}}+x_{3}\frac{\partial}{\partial x_{2}}+(a_{1}x_{1}+a_{2}x_{2})\frac{\partial}{\partial x_{3}}$ ,

and they found that $X$ becomes a Nambu vector field if and only if $a_{1}=0$ .
Here we consider the case: $a_{1}=1$ and $a_{2}=0$ . So the given system is not a

Nambu system, and is given by

(41) $\frac{dx_{1}}{x_{2}}=\frac{dx_{2}}{x_{3}}=\frac{dx_{3}}{x_{1}}=dt$ .

Then the solutions of (41) are given by

$\{\begin{array}{l}x_{1} =c_{1}e^{t}+c_{2}e^{\omega t}+c_{3}e^{\omega^{2}t},x_{2} =c_{1}e^{t}+c_{2}\omega e^{\omega t}+c_{3}\omega^{2}e^{\omega^{2}t},x_{3} =c_{1}e^{t}+c_{2}\omega^{2}e^{\omega t}+c_{3}\omega e^{\omega^{2}t},\end{array}$

where $\omega$ is a cube root of 1 which is not 1.
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Using $x_{1},$ $x_{2}$ and $x_{3}$ , we get the following two integrals:

$\{\begin{array}{ll}H_{1} =\frac{1}{\omega-1} . \frac{(x_{1}+x_{2}+x_{3})^{\omega}}{\omega x_{1}+x_{2}+\omega^{2}x_{9}},H_{2} =\frac{1}{\omega-1} . \frac{(x_{1}+x_{2}+x_{3})^{\omega}}{\omega x_{1}+\omega^{2}x_{2}+x_{3}}.\end{array}$

Since
$T=(_{\partial H_{2}}^{\partial H_{1}}/\partial x_{1}\partial x_{1}$ $\partial H_{2}\partial H_{1}/\partial x_{2}\partial x_{2)}$

we have

$\tilde{A}=\det T=\frac{1-\omega^{2}}{\omega}\cdot\frac{x_{1}}{(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}-3x_{1}x_{2}x_{3})^{2}}$ .

Thus

$A= \frac{\tilde{A}}{x_{1}}=\frac{1-\omega^{2}}{\omega\cdot(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}-3x_{1}x_{2}x_{3})^{2}}$ .

Then by Theorem 3.4, $Y=AX$ becomes a Nambu vector field: $Y=Y_{H_{1}\wedge H_{2}}$ on a
manifold $( \mathbb{R}^{3}, \eta=\frac{\partial}{\partial x_{1}}\wedge\frac{\partial}{\partial x_{2}} A \frac{\partial}{\partial x_{3}})$ . Equivalently $X$ becomes a Nambu vector field:
$X=X_{H_{1}\wedge H_{2}}$ on a manifold $( \mathbb{R}^{3}, \frac{1}{A}\eta)$ .

Remark 4.1. The differential system (41) is not a Nambu system, and the associated
vector field $X=x_{2} \frac{\partial}{\partial x_{1}}+x_{3}\frac{\partial}{\partial x_{2}}+x_{1}\frac{\partial}{\partial x_{3}}$ is not a Nambu vector field with $div(X)=0$ .
But $X$ is a Hamiltonian vector field in our sense:

(42) $X=X_{G_{1}\wedge G_{2}+H_{1}\wedge H_{2}+K_{1}\wedge K_{2}}\in \mathcal{H}$,

where $G_{1}= \frac{1}{2}x_{3}^{2},$ $G_{2}=x_{1},$ $H_{1}= \frac{1}{2}x_{2}^{2},$ $H_{2}=x_{3},$ $K_{1}=^{a_{2}}\lrcorner x_{1}^{2}+a_{2}x_{1}x_{2},$ $K_{2}=x_{2}$ .
This fact is guaranteed by the following proposition. (See [6].)

Proposition 4.1. Let $(M, \eta)$ be an m-dimensional Nambu-Poisson manifold with
non-vanishing $\eta$ of order $m$ . Then $\mathcal{L}/\mathcal{H}$ is isomorphic to $H_{dR}^{m-1}(M)$ .

3. Let us consider the $2D$ isotropic harmonic oscillator. It is defined by

(43) $\frac{dx_{1}}{-x_{3}}=\frac{dx_{2}}{-x_{4}}=\frac{dx_{3}}{x_{1}}=\frac{dx_{4}}{x_{2}}=dt$ .

It is easy to find 3 Hamiltonians:

$\{\begin{array}{ll}H_{1} =x_{1}x_{4}-x_{2}x_{3},H_{2} =\frac{1}{2}(x_{1}x_{2}+x_{3}x_{4}),H_{3} =\frac{1}{2}(x_{1}^{2}+x_{3}^{2}-x_{2}^{2}-x_{4}^{2})\end{array}$

The associated vector field $X=-x_{3} \frac{\partial}{\partial x_{1}}-x_{4}\frac{\partial}{\partial x_{2}}+x_{1}\frac{\partial}{\partial x_{3}}+x_{2}\frac{\partial}{\partial x_{4}}$ is not a Nambu
vector field. The matrix expression corresponding to (33) in Theorem 3.4 is:

$(\begin{array}{lll}x_{4} -x_{3} -x_{2}\frac{1}{2}x_{2} \frac{1}{2}x_{1} \frac{1}{2}x_{4}x_{1} -x_{2} x_{3}\end{array})$ $(\begin{array}{l}-x_{3}-x_{4}x_{1}\end{array})=-x_{2}\cdot(\begin{array}{l}x_{1}\frac{1}{2}x_{3}-x_{4}\end{array})$ .

Hence we have $A=- \frac{1}{2}(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2})$ . Thus we obtain the Nambu vector field
$Y=AX=Y_{H_{1}\wedge H_{2}\wedge H_{3}}$ on $(\mathbb{R}^{4}, \eta=dx_{1}\wedge dx_{2}\wedge dx_{3}\wedge dx_{4})$ . Or equivalently we have
$X=X_{H_{1}\wedge H_{2}\wedge H_{3}}$ on $( \mathbb{R}^{4}, \frac{1}{A}\eta)$ .
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4. The differential equation

$\frac{dx_{1}}{x_{2}}=\frac{dx_{2}}{x_{1}}=\frac{dx_{3}}{x_{3}}=dt$

is not a Nambu system. In fact, the associated vector field $X=x_{2} \frac{\partial}{\partial x_{1}}+x_{1}\frac{\partial}{\partial x_{2}}+$

$x_{3^{\frac{\partial}{\partial x_{3}}}}$ does not satisfy the Liouville condition. We can easily find two Hamiltonians:
$H_{1}= \frac{1}{2}(x_{1}^{2}-x_{2}^{2})$ , and $H_{2}=\underline{x}\mapsto+xx_{3}$ . Following the necessary procedures of Theorem
3.4, we have the last multiplier $A=\underline{x}\propto_{x_{3}}^{+x}$ . Then $Y=AX=Y_{H_{1}\wedge H_{2}}$ is a Nambu
vector field on $(\mathbb{R}^{3}, \eta=dx_{1}\wedge dx_{2}\wedge dx_{3})$ , and $div(Y)=0$ .
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