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Abstract

The falling cat is modeled as jointed axial symmetric cylinders with arbitrary twist
under the condition of the vanishing total angular momentum. There are three steps to
the control of this model. The first step is a geometric setting on the configuration space
of this model. The configuration space is made into an $SO(3)$ bundle and endowed
with a connection together with a metric. The base space of this bundle is called the
shape space. The second is to formulate the falling cat in the Hamiltonian formalism
with the constraint of the vanishing total angular momentum. The last step is to
set up the falling cat as a port-controlled Hamiltonian system, which is defined on
the cotangent bundle of the shape space. A control is then designed according to the
standard procedure. The whole motion of the falling cat is obtained after integrating
the constraint equation of the vanishing total angular momentum.
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1 Introduction
A model of the falling cat was set up in [1], and is called the Kane-Scher model, which
was studied further in a geometric manner in [2] by Montgomery. In this article, the
Kane-Scher model is extended a bit to include the freedom of twist. Geometric setting
for the present model is in the line of [2], but the control inputs are designed in a
manner different from that in [2]. A point to make here is that control inputs are
torques. This article adopts the port-controlled Hamiltonian system (see [3]).

Three steps toward the control of the falling cat are as follows: (1) Geometry:
The configuration space for the falling cat is made into an $SO(3)$ bundle. A key idea
of somersault is the parallel translation associated with a connection on the $SO(3)$

bundle, which is linked with a first-order differential equation. (2) Mechanics: The
equations of motion, second-order differential equations, arise from a Lagrangian with
the constraint of the vanishing total angular momentum ( $i.e$ , parallel translation) along
with torque inputs applied. (4) Control: The Lagrangian system with constraint and
torques is translated into a port-controlled Hamiltonian system. The energy shaping
technique provides a method for designing controls.

2 Geometric setting

Figure 1: Jointed cylinders

Two identical axial symmetric cylinders are jointed together by a special type of
joint that will give no constraints on the relative motion of the cylinders other than
that they are jointed. The center-of-mass of the whole system is assumed to be fixed
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at the origin of $R^{3}$ . Let $\ell$ be the distance between the joint and the center-of-mass of
each cylinder. Then the configuration space of this model is given by

$X_{0}=\{(r_{1}, r_{2}, g_{1}, g_{2})\}\subset R^{3}\cross R^{3}\cross SO(3)\cross SO(3)$ , (1)

where
$r_{1}= \frac{\ell}{2}(g_{1}e_{3}-g_{2}e_{3})=-r_{2}$ , (2)

and where $e_{a},$ $a=1,2,3$ , are the standard basis vectors of $R^{3}$ . It is obvious that
$X_{0}\cong SO(3)\cross SO(3)$ .

Since $SO(3)$ acts freely on $X_{0}$ to the left, $X_{0}$ is made into an $SO(3)$-bundle over
$M:=X_{0}/SO(3)$ ;

$\pi$ : $X_{0}\cong SO(3)\cross SO(3)arrow M\cong SO(3)$ , $\pi(g_{1}, g_{2})=g_{1}^{-1}g_{2}$ . (3)

Let $q=e^{-\theta_{1}\hat{e}_{3}}e^{\psi\hat{e}_{1}}e^{-\theta_{2}\hat{e}_{3}}\in U\subset SO(3)\cong M$ , where $\hat{e}_{a}=R(e_{a})$ is the anti-symmetric
matrix defined through $R(e_{a})x=e_{a}\cross x$ and where the open subset $U$ is assigned by

$0<\psi<\pi$ , $0<\theta_{1}<2\pi$ , $0<\theta_{2}<2\pi$ .

Then, a local section $\sigma$ : $U\subset Marrow X_{0}$ is defined to be

$\sigma(q)=(\sigma_{1}(q), \sigma_{2}(q), k_{1}(q), k_{2}(q))$ , $\{\begin{array}{l}\sigma_{1}(q)=e_{2}\ell\sin\frac{\psi}{2},\sigma_{2}(q)=-e_{2}\ell\sin\frac{\psi}{2},k_{1}(q)=e^{-4}2e^{\theta_{1}\hat{e}_{3}}\hat{e}_{1},k_{2}(q)=e^{4\hat{e}_{1}}2e^{-\theta_{2}\hat{e}_{3}},\end{array}$ (4)

which is realized with the jointed cylinders shown in Fig.2.

Figure 2: The realization of the local section $\sigma(q)$
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It is to be noted that the angles $(\psi, \theta_{1}, \theta_{2})$ determine the shape of the jointed
cylinders. Since $\pi^{-1}(U)\cong U\cross SO(3),$ $x\in\pi^{-1}(U)\subset X_{0}$ is put in the form

$x=g\sigma(q)=(g\sigma_{1}(q), g\sigma_{2}(q), gk_{1}(q), gk_{2}(q))$ , $g\in SO(3)$ . (5)

In what follows, we introduce the inertia tensor, the total angular momentum,
the connection form, and the metric which are defined on the configuration space
$X_{0}\cong SO(3)\cross SO(3)$ .

We take parameters for axial symmetric cylinders as

$m$ $:=m_{1}=m_{2}$ , $A_{1}=A_{2}=$ diag $(I_{1}, I_{1}, \alpha I_{1})$ , $\alpha$ $:=I_{3}/I_{1}$ , $m\ell^{2}=\beta I_{1}$ . (6)

Then, the inertia tensor of the whole system is defined at $\sigma(q)$ to be

$A_{\sigma(q)}(v):=2m \sigma(q)\cross(v\cross\sigma(q))+\sum_{i=1}^{2}k_{i}(q)A_{i}k_{i}^{-1}(q)v$, (7)

where $\sigma$ $:=\sigma_{1}=-\sigma_{2}$ , and $v\in R^{3}$ . Written out, the local expression of the inertia
tensor is of the form

$A_{\sigma(q)}=2I_{1}(\begin{array}{lll}1+\beta sin^{2}\frac{\psi}{2} 0 00 cos^{2}\frac{\psi}{2}+\alpha sin^{2}\frac{\psi}{2} 00 0 sin^{2}\frac{\psi}{2}+\alpha cos^{2}\frac{\psi}{2}+\beta sin^{2}\frac{\psi}{2}\end{array})$ (8)

In general, the inertial tensor is expressed as

$A_{g\sigma(q)}=gA_{\sigma(q)}g^{-1}$ . (9)

The total angular momentum $\Lambda_{\sigma(q)}$ at $\sigma(q)$ is given by and written out as

$\Lambda_{\sigma(q)}$ $=$ $2m \sigma(q)\cross d\sigma(q)+\sum_{i=1}^{2}k_{i}(q)A_{i}R^{-1}(k_{i}(q)^{-1}dk_{i}(q))$

$=$ $\alpha I_{1}(\sin\frac{\psi}{2}(d\theta_{1}+d\theta_{2})e_{2}+\cos\frac{\psi}{2}(d\theta_{1}-d\theta_{2})e_{3})$ . (10)

The connection form is now defined at $\sigma(q)$ to be

$\omega_{\sigma(q)}$ $=$ $R(A_{\sigma(q)}^{-1}\Lambda_{\sigma(q)})$

$=$ $\frac{\alpha\sin\frac{\psi}{2}}{\cos^{2}\frac{\psi}{2}+\alpha\sin^{2}\frac{\psi}{2}}\frac{1}{2}(d\theta_{1}+d\theta_{2})R(e_{2})$

$+ \frac{\alpha\cos\frac{\psi}{\psi^{2}2}}{\sin^{2}\frac{\psi}{2}+\alpha\cos^{2}\frac+\beta\sin^{2}\frac{\psi}{2}}\frac{1}{2}(d\theta_{1}-d\theta_{2})R(e_{3})$. (11)

In general, the connection form is expressed as

$\omega_{g\sigma(q)}=Ad_{g}(g^{-1}dg+\omega_{\sigma(q)})$ . (12)
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It is to be noted that $x(t)\in X_{()}$ is vibrational or the total angular momentum for $x(t)$

vanishes if and only if $\omega_{x(t)}(\dot{x}(t))=0$ .
We now express $g\in SO(3)$ as

$g=e^{\chi_{2}\hat{e}_{2}}e^{\chi_{3}\hat{e}_{3}}e^{\chi_{1}\hat{e}_{1}}$ , $\hat{e}_{a}$ $:=R(e_{a})$ . (13)

The variables $\chi_{a},$ $a=1,2,3$ , are a kind of Euler angles, but not the same as the usual
ones. The ranges of $\chi_{a}$ are

$0\leq\chi_{1}\leq 2\pi$ , $0\leq\chi_{2}\leq 2\pi$ , $-\pi/2\leq\chi_{3}\leq\pi/2$ . (14)

In terms of the variables $\chi_{a}$ , the left invariant one-forms and vector fields on $SO(3)$

are respectively expressed as

$\{\begin{array}{l}\Phi^{1}=d\chi_{1}+\sin\chi_{3}d\chi_{2},\Phi^{2}=\cos\chi_{3}\cos\chi_{1}d\chi_{2}+\sin\chi_{1}d\chi_{3},\Phi^{3}=-\cos\chi_{3}\sin\chi_{1}d\chi_{2}+\cos\chi_{1}d\chi_{3},\end{array}$ (15)

$\{\begin{array}{l}K_{1}=\frac{\partial}{\partial\chi_{1}},K_{2}=\frac{\cos\chi_{1}}{\cos\chi_{3}}\frac{\partial}{\partial\chi_{2}}+\sin\chi_{1}\frac{\partial}{\partial\chi_{3}}-\tan\chi_{3}\cos\chi_{1}\frac{\partial}{\partial\chi_{1}},K_{3}=-\frac{\sin\chi_{1}}{\cos\chi_{3}}\frac{\partial}{\partial\chi_{2}}+\cos\chi_{1}\frac{\partial}{\partial\chi_{3}}+\tan\chi_{3}\sin\chi_{1}\frac{\partial}{\partial\chi_{1}}.\end{array}$ (16)

Introducing new local coordinates by

$\phi_{1}=\frac{1}{2}(\theta_{1}+\theta_{2})$ , $\phi_{2}=\frac{1}{2}(\theta_{1}-\theta_{2})$ , $(q^{\alpha})=(\psi, \phi_{1}, \phi_{2})$ , (17)

one can put the components of the connection form, $\omega_{g\sigma(q)}=\sum_{a}\omega^{a}Ad_{g}R(e_{a})$ , in the
form

$\omega^{1}=\Phi^{1}$ ,
$\omega^{2}=\Phi^{2}+\Lambda_{2}^{2}(q)d\phi_{1}$ , (18)
$\omega^{3}=\Phi^{3}+\Lambda_{3}^{3}(q)d\phi_{2}$ ,

where $\Phi_{a}$ are given in (15) and

$\Lambda_{2}^{2}(q)=\frac{\alpha\sin\frac{\psi}{2}}{\cos^{2}\frac{\psi}{2}+\alpha\sin^{2}\frac{\psi}{2}}$ , $\Lambda_{3}^{3}(q)=\frac{\alpha\cos}{\sin^{2}\frac{\psi}{2}+\alpha\cos^{2}\frac{\frac{\psi}{\psi^{2}}}{2}+\beta\sin^{2}\frac{\psi}{2}}$. (19)

The metric on $X_{0}$ , which is associated with the kinetic energy, is defined and ex-
pressed as

$ds^{2}$ $=$ $2mdr \cdot dr+\sum_{i=1}^{2}\Theta_{i}\cdot A_{i}\Theta_{i}$ (20)

$=$
$\sum_{\alpha,\beta}a_{\alpha\beta}da^{\alpha}dq^{\beta}+\sum_{a,b}A_{ab}\omega^{a}\omega^{b}$

, (21)
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where $r=r_{1}=-r_{2},$ $g_{i}^{-1}dg_{i}=R(\Theta_{i}),$ $g_{i}=gk_{i},$ $(q^{\alpha})=(\psi, \phi_{1}, \phi_{2})$ , and where

$(a_{\alpha\beta})=2I_{1}$diag $( \frac{1}{4}(1+\lambda\cos^{2}\frac{\psi}{2}),$ $\frac{\nu\cos^{2}\frac{\psi}{2}}{\cos^{2}\frac{\psi}{2}+\nu\sin^{2}\frac{\psi}{2}},$

$\frac{(1+\lambda)\nu\sin^{2}\frac{\psi}{\lambda 2}}{\sin_{2}^{24}+\nu\cos^{2}\frac{\psi}{2}+\sin^{2}\frac{\psi}{2}})(22a)$

$(A_{ab})=2I_{1}$diag $(1+ \lambda\sin^{2}\frac{\psi}{2},$ $\cos^{2}\frac{\psi}{2}+\nu\sin^{2}\frac{\psi}{2},$ $\sin^{2}\frac{\psi}{2}+\nu\cos^{2}\frac{\psi}{2}+\lambda\sin^{2}\frac{\psi}{2})$ . $(22b)$

Note that $A_{ab}$ are components of $A_{\sigma(q)}$ given in (8). The first term of the right-hand
side of (21) determines a metric on the shape space $M=X_{0}/SO(3)$ ,

$d \sigma^{2}=\sum_{\alpha,\beta}a_{\alpha\beta}dq^{\alpha}dq^{\beta}$
. (23)

3 A mechanical model
The Lagrangian associated with the metric (21) is expressed as

$L= \frac{1}{2}\sum_{\alpha,\beta}a_{\alpha\beta}\dot{q}^{\alpha}\dot{q}^{\beta}+\frac{1}{2}\sum_{a,b}A_{ab}\pi^{a}\pi^{b}$ , (24)

where $\pi=\sum\pi_{a}e_{a}$ is defined through

$R( \pi)=g^{-1}\dot{g}+\sum_{a}\sum_{\alpha}\Lambda_{\alpha}^{a}(q)\dot{q}^{\alpha}R(e_{a})$ . (25)

We apply torques given by
$\sum_{\alpha}v_{\alpha}(t)dq^{\alpha}$ . (26)

Then, the equations of motion for the falling cat are expressed as

$\frac{d}{dt}\frac{\partial L}{\partial\dot{q}^{\alpha}}-\frac{\partial L}{\partial q^{\alpha}}-\sum_{\beta}\frac{\partial L}{\partial\pi}\cdot\kappa_{\alpha\beta}\dot{q}^{\beta}+\frac{\partial L}{\partial\pi}\cdot(\pi\cross\lambda_{\alpha})=v_{\alpha}$ , (27a)

$\frac{d}{dt}\frac{\partial L}{\partial\pi}-\frac{\partial L}{\partial\pi}\cross\pi+\sum_{\alpha}\frac{\partial L}{\partial\pi}\cross\lambda_{\alpha}\dot{q}^{\alpha}=0$ , (27b)

where $\kappa_{\alpha\beta}=\sum_{c}\kappa_{\alpha\beta}^{c}e_{c}$ is the curvature tensor defined to be

$\kappa_{\alpha\beta}^{c}:=\frac{\partial\Lambda_{\beta}^{c}}{\partial q^{\alpha}}-\frac{\partial\Lambda_{\alpha}^{c}}{\partial q^{\beta}}-\sum_{a,b}\epsilon_{abc}\Lambda_{\alpha}^{a}\Lambda_{\beta}^{b}$, (28)

and where $\lambda_{\alpha}=\sum_{\alpha}\Lambda_{\alpha}^{a}e_{a}$ . Since the condition of the vanishing total angular mo-
mentum is described as $\pi=0$ , and since this condition is compatible with the above
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equation, the equations of motion with the constraint of the vanishing total angular
momentum take the form

$\frac{d}{dt}\frac{\partial L_{c}}{\partial\dot{q}^{\alpha}}-\frac{\partial L_{c}}{\partial q^{\alpha}}=v_{\alpha}$ , $L_{c}:=L|_{\pi=0}$ , (29)

which are viewed as reduced equations on $T(M)$ .
After finding a solution curve $(\psi(t), \phi_{1}(t), \phi_{2}(t)),$ $0\leq t\leq T$ , with suitably designed

torques $v_{a}(t)$ , we proceed to integrate the constraint equation,

$\pi=0\Leftrightarrow\frac{dg}{dt}=-g(\Lambda_{2}^{2}(q)\frac{d\phi_{1}}{dt}R(e_{2})+\Lambda_{3}^{3}(q)\frac{d\phi_{2}}{dt}R(e_{3}))$. (30)

This equation linear in $g$ will be solved to give $g(t)\in SO(3)$ with $g(O)=I$ . The
vibrational motion is then given by $x(t)=g(t)\sigma(q(t))$ , a realization of a somersault.

The reduced Lagrangian system $(T(M), L_{c})$ is now translated into a Hamiltonian
system $(T^{*}(M), H_{c})$ in a usual manner; the canonical one-form and the Hamiltonian
on $T^{*}(M)$ are defined to be

$\Theta_{0}=\sum_{\alpha}P_{\alpha}dq^{\alpha}$ , $P_{\alpha}= \frac{\partial L}{\partial\dot{q}^{\alpha}}$ , (31)

$H_{c}= \frac{1}{2}\sum_{\alpha,\beta}a^{\alpha\beta}P_{\alpha}P_{\beta}$ , $(a^{\alpha\beta})=(a_{\alpha\beta})^{-1}$ , (32)

respectively, and the Hamiltonian vector field $X_{H_{c}}$ is determined as usual through
$\iota(X_{H_{c}})d\Theta_{0}=-dH_{c}$ .

4 A port-controlled Hamiltonian system
Now the port-controlled Hamilton equations associated with (29) are given by

$\frac{dp}{dt}$ $=$ $X_{H_{c}}+ \sum_{\alpha=1}^{3}v_{\alpha}X_{\alpha}$ , $X_{\alpha}= \frac{\partial}{\partial P_{\alpha}}$ , (33a)

$y_{\alpha}$ $=$ $X_{\alpha}(H_{c})$ , (33b)

where $p\in T^{*}(M)$ , and where $y_{\alpha}$ are called system outputs.
A key idea of control in the port-controlled Hamiltonian system is energy shaping,

according to which we introduce a new Hamiltonian of the form

$\overline{H}=H_{c}+U(q)$ , $U(q)\geq 0$ . (34)

Then, new port-controlled Hamilton equations become

$\frac{dp}{dt}$ $=$ $X_{\overline{H}}+ \sum_{\alpha=1}^{3}\overline{v}_{\alpha}X_{\alpha}$ , (35a)

$\overline{y}_{\alpha}$ $=$ $X_{\alpha}(\overline{H})$ . (35b)
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These equations are equivalent to the old ones, if and only if

$X_{U}+ \sum(\overline{v}_{\alpha}-v_{\alpha})X_{\alpha}=0$ , (36a)
$\overline{y}_{\alpha}-y_{\alpha}=X_{\alpha}(U)$ . (36b)

If we choose the controls $\overline{v}_{\alpha}$ to be

$\overline{v}_{\alpha}=-\overline{y}_{\alpha}$ , (37)

the system becomes Lyapunov stable. In fact, the differentiation of $\overline{H}$ results in

$\frac{d\overline{H}}{dt}=X_{\overline{H}}(\overline{H})+\sum_{\alpha=1}^{3}\overline{v}_{\alpha}X_{\alpha}(\overline{H})=-\sum_{\alpha=1}^{3}X_{\alpha}(\overline{H})^{2}\leq 0$. (38)

Equations (36) and (37) are put together to determine the controls $v_{\alpha}$ as follows:

$v_{\alpha}=- \frac{\partial U}{\partial q^{\alpha}}-\frac{\partial H_{c}}{\partial P_{\alpha}}$ . (39)

With these controls, the state $(q(t), P(t))\in T^{*}(M)$ tends to an equilibrium state $(q_{\tau}, 0)$ ,
where $q_{\tau}\in M$ is a point at which $U$ takes the minimum value.

5 An example
A potential function is designed to be

$U=k_{1} \sin^{2}(\frac{\phi_{1}+\phi_{2}}{2})+k_{2}\sin^{2}(\frac{\phi_{1}-\phi_{2}}{2})+k_{3}\sin^{2}(\psi-\frac{4\pi}{5})$ , (40)

where $k_{\alpha}$ are constants. Note here that this potential function takes a minimum value
at $q_{\tau}=e^{\frac{4\pi}{5}\hat{e}_{1}}$ , which is the target shape that the falling cat will take after a vibrational
motion. We here choose the parameter values as follows:

$I_{1}= \frac{19}{12}$ , $\alpha=\frac{6}{19}$ , $\beta=\frac{48}{19}$ , $k_{1}=k_{2}=k_{3}=1$ . (41)

Now we can solve the port-controlled Hamilton equations with the control well de-
signed. If we find a solution $(q(t), P(t))$ , we can integrate the constraint equation (30)
along with the present $q(t)$ .

If the initial shape $q_{0}=q(O)$ is fixed, a family of solutions $q(t, K)$ will be found
numerically, where $K$ denotes initial momenta, $K=(P_{\alpha}(O))$ . We choose a sufficiently
large time $T$ such that $q(T)\approx q_{\tau}$ ,

$\phi_{1}(T)\approx-2\pi$ , $\phi_{2}(T)\approx 0$ , $\psi(T)\approx\frac{4\pi}{5}$ , $(\theta_{1}(T)=\theta_{2}(T)\approx-2\pi)$ . (42)

We wish to gain the rotation

$g(0)=I\mapsto g(T)\approx e^{\pi\hat{e}_{2}}$ (43)
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after completing a vibrational inotion $g(t, K)\sigma(q(t, K)),$ $0\leq t\leq T$ ;

$\chi_{1}(T, K)\approx O$ , $\chi_{2}(T, K)\approx\pi$ , $\chi_{3}(T, K)\approx O$ , (44)

where $g(t, K),$ $0\leq t\leq T$ , is a family of solutions to the constraint equation. To this
end, we have to solve numerically the equation

$g(T, K)=e^{\pi\hat{e}_{2}}$ (45)

for $K$ by Newton’s method.
The numerical solutions with $K$ thus found are shown in the following graphs.

The shape and the attitude are determined by $q(t)=e^{\chi_{2}(t)\hat{e}_{2}}e^{\chi_{3}(t)\hat{e}_{3}}e^{\chi_{1}(t)\hat{e}_{1}}$ , and $g(t)=$
$e^{-(\phi_{1}(t)+\phi_{2}(t))\hat{e}_{3}}e^{\psi(t)\hat{e}_{1}}e^{-(\phi_{1}(t)-\phi_{2}(t))\hat{e}_{3}}$ , respectively.
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Figure 3: The graph of $\psi(t)$ Figure 4: The graph of $\phi_{1}(t)$

Figure 5: The graph of $\phi_{2}(t)$

Figure 7: The graph of $\chi_{2}(t)$

Figure 6: The graph of $\chi_{1}(t)$

Figure 8: The graph of $\chi_{3}(t)$
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