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Abstract. The selfadjointness of A%+ k|z|~%(k € R) in L2(R") and the m-accretivity of
A? + k|z|™* (k € C) in L?(R") are established as applications of perturbation theorems
for nonnegative selfadjoint operators. The key lies in two new inequalities derived by
using two real or complex parameters.

1. Introduction and results

Let N € N. Then this paper is concerned with the selfadjointness of A2+ k|z|~* (when
k € R), and the m-accretivity of A2+ k|z|™* (when « € C) in the (complex) Hilbert space
L*(R"). Here A% and |z|~* are nonnegative selfadjoint operators in L2(R"), with domains
D(A?) := HY(R") and D(|z|™4) := {u € L3(RN); |z| *u € L?(RV)}, respectively.

First we consider the selfadjointness of A2 + k|z|™ (k € R). On the one hand, it is
worth noticing that the relation between simpler operators —A and |z|~2 is already known
as a model case. In [8] it has been proved that —A + t|z|~2 is m-accretive in LP(R") for
t > ao(p) and —A + ag(p)|z|~? is essentially m-accretive in LP(RN) (1 < p < o0), where
ao(p) is defined as

)= { Pp-D@p - NN,  21-NT)<p<oo,
ao(p) := —p~2(p — 1)(N — 2)2, l1<p<2(1-NT1).

In particular, if p = 2, then ag(2) = 471(4 — N)N and m-accretivity is replaced with
nonnegative selfadjointness. A proof of the selfadjointness in [7] is based on the inequality

Re (=Au, (|z)> + n71) ) > —ao(2)||(J2]? + n~ 1) u|?, u e HERY),

where (|z|?+n71)"! = |2|~2(1+n7!|z|~2)! is the Yosida approximation of |z|~2 (n € N).
On the other hand, there seems to be few works about the selfadjointness of higher order
elliptic operators. In [6] Nguyen discussed the selfadjointness of general even order elliptic
operators under several assumptions. However, his result cannot be applied to determine
the critical bound of k for the selfadjointness of A% + k|z|™4.

The first purpose of this paper is to establish the following
Theorem 1.1. Put A := A? and B := |z|™*. Let xo(N) be defined as

ky =112 — 3(N — 2)?, N <8,

(11) K'.()(N) = { 9
ky := —(N/16)(N — 8)(N2 —16), N >09.
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Then the following (i) and (ii) hold.
(i) If N < 8, then B is (A + kB)-bounded for k > ko(N) as

IBull < (k — Ko(N))THI(A+ £B)ull, u€ D(A+ «B):=D(A)ND(B),

and A + kB is nonnegative selfadjoint for & > ko(N). Moreover, A + ko(N)B is nonneg-
ative and essentially selfadjoint.

(ii) If N > 9, then B is A-bounded as

16
N(N —8)(N? — 16)|

(1.2) | Bu|| < |Au|, ue D(A) c D(B),

and A + kB is nonnegative selfadjoint for k > ko(N). Moreover, A+ ko(N)B is nonneg-
ative and essentially selfadjoint in L*(RY).

Next we shall find Q C C such that {A? + k|z|™%; k € Q} is a holomorphic family of
type (A) in the sense of Kato [4, Section VII.2]. We review it in a simple case.

Definition 1. Let X be a reflerive compler Banach space. Let Q2 be a domain in C and
{T(k); & € Q} a family of linear operators in X. Then {T'(k); k € Q} is said to be a
holomorphic family of type (A) if

(i) T'(k) is closed in X and D(T(k)) = D independent of k;
(ii) K — T'(k)u is holomorphic in Q for every u € D.
Kato [5] proved that {—A + k|z|™%; k € Q,} forms a holomorphic family of type (A)
in L2(R"), where
O ={{+ineC;n*>4(F~§)}, B:=(N-2)7"/4

Borisov-Okazawa [1] proved that {d/dz + «|z|™!; k € Q;} forms a holomorphic family of
type (A) in LP(0,00) (1 < p < 00), where

1
Q, = {neC : Rek > —17}, pl4+p =1

In both cases it is essential to find ¥; := €,°, the complement of 2; (7 = 1,2). Concerning
forth order elliptic operators, there seems to be no preceding work on holomorphic family
of type (A). So we clarify the region where A? + k|z|™* forms a holomorphic family of
type (A) and where A? + k|z|~* is m-accretive in L2(RY) (the definition of (regular)
m-accretivity will be given in Section 3). Our second result here is stated as follows.

Theorem 1.2. Let A and B be the same as in Theorem 1.1. Let ¥ be a closed convex
subset of C (see Figure 1) such that

. N? 2
Si={tt+imneCe<h, i <64(Vh—E+ (104N - )} (Vi —£+8) },
where the constant k; is defined in (1.1); replace ¥ with

64(k2 — §) (V1 — € + 8)? }
ki — €+ (N?/4— N —10) J’

2={€+in€C;§Sk2, 7’ <
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if N > 9 [the constant ko is also defined in (1.1)]. Then the following (i) and (ii) hold.
(i) B is (A + kB)-bounded for k € ¢, with

| Bu|| < dist(x,Z)7 (A + kB)u|l, u € D(A)N D(B),
and {A + kB; &k € £°} forms a holomorphic family of type (A) in L2(RV).

(ii) A + B is m-accretive on D(A) N D(B) for k € L° with Rex > —ag, A + kB
is regularly m-accretive on D(A) N D(B) for k € £° with Rex > —ap and A + kB is
essentially m-accretive in L2 (R") for k € 8L with Re k > —ap, where ag is defined as

0, N <4,
1.3 = N2
(13) o V-9 Nz

In particular, if kK € R, then m-accretivity can be replaced with nonnegative selfadjointness.

N =4 N=25
n

n

74

Figure 1: The images of ¥ for N = 4,5,8,9 and the value of —ay

The constant ag in (1.3) appears in the Rellich inequality

N(N—-4),
——— =]

(1.4) u|| < lAul, e H*RY).



14

In [3] Davies-Hinz have shown Hardy or Rellich type inequalities between (—A)™ and
|z|=?™ (m € N), and it helps us to construct the theory of the selfadjointness.

In Section 2 we review abstract theorems based on [8]. In Section 3 we prepare
abstract theorems based on Kato [5] (however, the assumption and conclusions are slightly
changed). In Section 4 we derive some new inequalities by using two real parameters and
prove Theorem 1.1 by applying abstract theorems prepared in Section 2. In Section 5 we
generalize inequalities obtained in Section 4 by using two complex parameters and prove
Theorem 1.2 by applying abstract theorems prepared in Section 3.

2. Perturbation theory toward Theorem 1.1

This section is a short review of the perturbation theory developed in 7] and [8] for
m-accretive operators in a Banach space. The following two theorems are the special
cases of those in [8].

Theorem 2.1 ([8, Theorem 1.6]). Let A and B be nonnegative selfadjoint operators in
a Hilbert space H. Let B, := B(1 + ¢B)~! be the Yosida approzimation of B. Assume
that there exists some ko > 0 such that

(2.1) Re(Au, B.u) > —ko||Beul|?, u € D(A).
Then B is (A + kB)-bounded for k > ko as
(2:2) I1Bull < (k — ko) *|(A + kBull, ue D(A+kB),

and hence A+ kB is closed in H for k > ko. Moreover, A+ kB is nonnegative selfadjoint
on D(A)N D(B) for k > ko > 0 and A + koB is nonnegative and essentially selfadjoint
n H.

Theorem 2.2 ([8, Theorem 1.7]). Let A, B and B, be the same as those in Theorem
2.1. Assume that there exists some mq, > 0 such that

(2.3) Re(Au, Bou) > my||Beu|?, u € D(A).
Then B is A-bounded as
(2.4) || Bu|| < ml"lllAuH, u € D(A) C D(B),

and A+kB is closed in H for k > —m,. Assume further that there erists some my > /m,
such that m%(Beu,u) < (Au,u), u € D(A), or equivalently

(2.5) ma||BY%(1 + eB)~Y%|| < ||AY?v||, v € D(AY?)

Then A + kB is nonnegative selfadjoint in H for k > —k;, and A — k1 B is nonnegative
and essentially selfadjoint in H.
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3. Perturbation theory toward Theorem 1.2

First we review some definitions required to state Theorems 3.1 and 3.5. Let A be a
linear operator with domain D(A) and range R(A) in a (complex) Hilbert space H. Then
A is said to be accretive if Re (Au,u) > 0 for every & € D(A). An accretive operator A is
said to be m-accretive if R(A+1) = H. An me-accretive operator A is said to be regularly
m-accretive if A satisfies for some w € [0, 7/2) that

Im (Au,u)| < (tanw)Re (Au,u), ue D(A).
Let A be m-accretive in H. Then .R(A + A) = H holds, with
I(A+ )Y < (ReA)™? Ve C with ReX > 0.
Therefore we can define the Yosida approximation {A.;e > 0} of A:
Ae = A(l +eA)™?

A nonnegative selfadjoint operator is a typical example of m-accretive operator, while a
symmetric m-accretive operator is nonnegative and selfadjoint (see Brézis [2, Proposition
VIIL.6] or Kato [4, Problem V.3.32]).

Next we consider the m-accretivity of A+ kB (k € C) where A and B are nonnegative
selfadjoint operators. Since m-accretive operators are closed and densely defined, we will
first find the set of kK € C where A + B is closed (and densely defined). Hence we can
connect the two notions of m-accretivity and holomorphic family of closed operators.

Theorem 3.1. Let A and B be nonnegative selfadjoint operators in H. Let ¥ C C, and
v : R — R. Assume that ¥ and v satisfy (v1)-(v4) and (45) :

(1) v is continuous and —~y is conver,

(v2) 7(n) = v(—n) forn € R,

(¥3)Z={{+ineC; {<v(n)},

(v4) —(Au, B.u) € & for u € D(A), ||Beu|| =1 for any e > 0,
(¥5)00<~v(0) & 0€eX.

Then the following (i) and (ii) hold.
(i) B is (A + &B)-bounded for k € X, with
(3.1) |Bu|| < dist(x,Z)7Y|(A + kB)u|,, u € D(A)N D(B),

and {A + kB; k € X°} forms a holomorphic family of type (A).

(ii) A + kB is m-accretive in H for k € £° with Rex > 0, A + kB is regularly m-
accretive in H for k € £° with Rek > 0 and A + kB 1is essentially m-accretive in H for
Kk € 0¥ with Rex > 0.

The proof of Theorem 3.1 is divided into several lemmas.

Lemma 3.2. The assertion (i) of Theorem 3.1 holds.
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Proof. Let k € ¢ and € > 0. To prove (3.1) we shall show that
(3.2) | Beu|| < dist (5, Z)7H|(A + &Be)ul, ue D(A).

Here we may assume that B.u = B(1 +eB)™'u # 0. Setting v := || Beul|~1u, we see that
v € D(A) and ||B.v| = 1. it then follows from (y4) that —(Av, B,v) € X. Since I is
closed and convex by (1), we have

0 < dist (k,Z) < |k + (Av, Bov)| = || Beul| "2 |((A + &B¢)u, Beu)|,

and hence || B.u||? < dist (s, Z)7!|((A+£Be)u, Beu)|. Now the Cauchy-Schwarz inequality
applies to give (3.2). Letting £ | 0 in (3.2) with v € D(A) N D(B) yields (3.1). The
closedness of A+ kB is a consequence of (3.1). This completes the proof of (i) in Theorem
3.1 O

Lemma 3.3. A + kB is m-accretive in H for k € ¥° with Rex > 0. In particular, if
Rek > 0, then A + kB is regularly m-accretive in H, with

(3.3) |Im ((A + kB)u,u)| < (tan | arg |)Re ((A + kB)u,u), u € D(A)N D(B).
Proof. Since the sum of accretive operators is also accretive, it suffices to show that
(3.4) R(A+xkB+X)=H, A>0

for k € ¢ with Rex > 0. Since A + kB, is also m-accretive (see [10, Corollary 3.3.3]),
for f € H and € > 0 there exists a unique solution u. € D(A) of approximate equation

(3.5) Au, + kBou, + Au, = f,

satisfying ||luc|]| < A7 f]| and hence ||Aue + kBeu.|| = || f — duc|| < 2}|f||. Therefore we
see from (3.2) that
| Beuee|| < 2dist (x, )£,

and hence ||Au.|| < 2(1+ |k|dist (x, Z)71)|| |- Thus ||uc||, || Auel| and || Beue|| are bounded
as € tends to zero. This implies that there exist convergent subsequences {u.,}, {Au.,}
and {B., u..} = {B(1 + €,B) 'u,,} for some null sequence {¢,}. Since A and B are
(weakly) closed, there exists u :=w-limp_.o ue,, € D(A) N D(B) such that

Au., —» Au and B, u,, —» Bu (n — oo) weakly;

note that u, — (1 + eB)™'u, = eB.u,. Letting n — oo in (3.5) with € = ¢, in the weak
topology of H, we obtain (3.4). The regular m-accretivity of A + kB for k € ¥¢ with
Re x > 0 follows to consider the numerical range of A + kB,

((A+ KB, u) = [ AY2ul]? + || BY2u)?
€ {a+kbeC;a>0,b>0}
C {z € C;|argz| < |argk|}, ue€ D(A)ND(B).

This proves (3.3). O
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Lemma 3.4. The closure of A+ kB is m-accretive in H for k € 0¥ with Rex > 0.

Proof. Let k € 0X with Rex > 0. First we note that A + kB is closable and its
closure is also accretive (cf. [10, Theorem 1.4.5]). Now (1) means that there exists
some (not unique in general) unit outward normal vector v of % at «. This implies that
Kk +tv € X° (¢t > 0), with the properties:

Re(k+1tv) >0, dist(k+tv,Z)=t¢t, t>0.

This implies that A + kB (k € 0X) is approximated by A + (k + v/n)B (k + v/n € £°)
with n € N. Since Rex + v/n > 0, we see that A + (k + (v/n))B is m-accretive (see
Lemma 3.3), that is, f € H there exists a unique solution u,, € D(A) N D(B) of

- (3.6) (A + xB)u, + (v/n)Buy, + Au, = Au, + (k + (v/n)) Bu, + M, = f,
satisfying
(3.7) lunll < A7 £H-

Now we can i)rove that ||(v/n)Bu,|| = n7!||Bu,|| < 2||f||. In fact, it follows from (3.1)
that

| Bus|| < dist (k +n" v, Z) (A + (5 + v/n) Bu,|| = n||f — dua|
< 2n||f]|-

This yields together with (3.6) that
(3.8) I(A+ &B)ua|| <4||f] VneN

To finish the proof we show that (v/n)Bu, converges to zero weakly in H. It follows from
(3.7) that for every v € D(B),

|((v/n) Bun, v)| = n7*|(un, Bv)| < n A7 f]| - |Bv|l = 0, n — oo.

Since D(B) is dense in H and n~!||Bu,|| is bounded, we can conclude that n~!Bu, — 0
weakly as n — oo. Now let {u,, } be a convergent subsequence of {u,} and put u :=w-
limg_ oo Un,. Then we have

(A+ &B)u,, = f — Mg, — (v/n)Bun,
— f — Au (kK — oo) weakly.

It follows from the (weak) closedness that u € D((A + «B)™) and

(A+&kB) u+du=f

This completes the proof of essential m-accretivity of A+xB for k € 60X withRex > 0. O

We can improve Theorem 3.1 in the case where B'/? is A/2-bounded.
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Theorem 3.5. Let H, A, B, B., ¥ and v be the same as those in Theorem 3.1 with
(v1)-(v4). Let ag > 0. Assume that Bi'* is AY2 bounded, with

(3.9) aol| B 2ull® < | AY%ul?,  u e D(AY?).

Assume further that ¥ and v satisfy (75)q, instead of (75)o:

(45)an —0 < 7(0).
Then the following (i) and (ii) hold.
(i) B is (A + kB)-bounded for k € ¥°¢, with

(3.10) 1Byl < dist(x,Z)"Y|(A + xB)ull, u € D(A)N D(B),

and {A+ kB; k € £°} forms a holomorphic family of type (A). In particular, if v(0) < 0,
then B is A-bounded with

(3.11) | Bu|| < dist(0,2)"||Aull, = € D(A) c D(B).

(ii) A+ kB is m-accretive in H for k € £° with Rek > —ag and A + kB is essentially
m-accretive in H for k € 90X with Rekx > —ay. Moreover, A+ kB is regularly m-accretive
in H for k € ¢ with Rek > —ag, with

(3.12) |Im ((A + kB)u,u)| < (tan|arg(x + ao)|)Re ((A + kB)u,u), u € D(A)ND(B).

Proof. (i) The closedness of A+ kB for xk € X° is a consequence of Theorem 3.1. Noting
that v(0) < 0 implies 0 € ¢, we see from (4) that if v(0) < 0, then

(3.13) || Beu|| < dist(0,Z)7 | Aul, € >0, u € D(A).

Letting € | 0 in (3.13) for u € D(A), we obtain (3.11).
(ii) Let f € H, A > 0 and « € X° with Rex > —ag. Then we consider the equation

(3.14) Au, + kB.u, + Aue = f.

In order to prove R(A+ «B+ A\) = H we only have to show that ||ue||, || Aue|| and || Beue||
are bounded as € tends to zero. (3.9) implies that A + xB, is accretive:

Re ((A + £Be)u,u) = ||AY2u||® + (Re k)| B} ?u|?
> (ap + Re t~:)||B§/2u.||2
> 0.

The accretivity of A + kB, yields that ||uc|]| < A7} fll. (41)-(~4) yield that there exists
¢ > 0 such that ||Au|| < ¢||f|| and ||Beue|l < ¢||f||- As in the proof of Theorem 3.1, we
obtain R(A + kB + A\) = H. In particular, if Rex > —ap, then the numerical range of
A + kB, together with (3.9), proves the regular m-accretivity of A + «B with (3.12). O
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4. Proof of Theorem 1.1

In order to prove Theorem 1.1 we need some inequalities in the real or complex Hilbert
space L2(R"). We review the following lemma proposed by Ozawa-Sasaki [9].

Lemma 4.1. [9, Theorem 1.1] Let 1 < p < oco. Ifv € LP(RY) and z - Vv € LP(RY),
fhen

(4.1) gnvn <z - V.

Here we give a simple proof of (4.1) when p = 2.

Proof. Let v € L?(R") and = - Vv € L2(R"). Integration by parts gives

N
(4.2) Re(v,z - Vv) = ——é—||1)||2.
Then the Cauchy-Schwarz inequality applies to give (4.1). O

Using two real parameters, we can obtain the following lemma which plays an impor-
tant role to derive some inequalities.

Lemma 4.2. If v € L3(R") and |z|?Av € L?*(RN), then |z||Vv| € L2(RY) and
4 2
43)  0< lalVo]* + iz - VolPIol — 2V | [ To|Plol? < iz Av] ol

Proof. Let v € L*(R") with |z|2Av € L*(R") and ¢;, c; € R. We start with the trivial
inequality
(4.4) 0< |Hx|2Av + iz - Vo + czv“2

e= ” |x|2A0”2 + cf”a: -Vo||? + c2||v)|?

+ 2c1Re(z - Vv, |2]|°Av) + 2coRe(|z]?Av, v) + 2c1c2Re(v, z - Vo).

Integration by parts gives

v 0%y
) 2 2
(4.5)  Re(z- Vv,|z]?Av) = Z Re/ lz|°z Tig— e 5 dx
7,k=1

N -
_ ov 0. OV ., 0% \ Ov
= —j;l RG/I;N (2-77_7'331;:% + |£E| 6jk£ + I.'EI xjaxamk)—a—;; dz

0 av

= —2||z - Vv||® - |||a:|V'u|| - = Z / |a:|2a'ja l dz

= =2||lz - Vv||® + —é—HITIVv” ,
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(4.6) (|Jz|*Av, v) Z/ || 1)—— dr
=—Z/ —.+2xkv)§—;cda:

= —|||x|Vv|l — 2(z - Vo, v).
In view of (4.2) and (4.6) we have
(4.7) Re(|z|?Av,v) = —|||z] Vo||* + N|lv||%.
Putting (4.2), (4.5) and (4.6) in (4.4), we have

(4.8) 0< ||ta:|2Av”2 + (2 — der)llz - V|2 + (Ner — 263) ||| Vv“2
+ co(cy + 2N — Ney)|lv|)2.

Minimizing the right-hand side of (4.8), i.e., setting ¢; = 2, ¢2 = ”|1:|V'v||’“’/||'u||2 for
v # 0, we can obtain the second inequality of (4.3). The first inequality of (4.3) can be
shown by completing the square as

2 2 N?
(1=l wol* = Niwl)” + aloll? (2 - Zol? = = llo]1?).
In fact, the nonnegativity of the second term is a consequence of (4.1). D
Lemma 4.3. Let € > 0. Then

(4.9) Re(A%u, (Jz|* + €) 7 u) > —ko(N)||(|z|* + &)~ u|)?, v € HY(RY),
(4.10) IAul® > ao(N)] (21> + €)~'ull?, u € H*RY), N > 5.

Here ko(N) and ap(N) are defined as

112 — 3(N — 2)2, N <38,
ro(NV) = fé(N 8)(N?—16), N >9,

The approximate Rellich inequality (4.10) is already shown in [7, Theorem 6.8] in 1982.
Here we can give another proof of (4.10).

Proof. First we shall prove (4.9). Put IP := (A%u, (|z|* + €)"'u) and v := (|z|* + )" u
for u € H4(RV). Then IP is written as

(4.11) IP = (A%((|z]* + €)v),v)
= (A((Jz]* + €)v), Av)
= (|z|*Av + 8|z|*z - Vv + 4(N + 2)|z|?v, Av) + €|| Av)|?
= (|z]?Av + 8z - Vv + 4(N + 2)v, |z|*Av) + €] Av]%.
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From (4.5) and (4.6) we have
(4.12) RelP > |||z*Av||” = 16|z - Vo[ — 8|||z| Vo||* + 4N (N + 2)||v}%.

Applying Lemma 4.2 to the first term of the right-hand side of (4.12) multiplied by ||v||?,
we have

[v]?ReIP > |||z|Vo||* = 12|z - Vo|?||v]|?
— 2(N + 4)|||z|Vo|||lv]|? + 4N (N + 2)||v]|*.
Since |z - Vv||2 < |||=| Vv”z} it follows that
(4.13) [0]?Re IP > |||z| Vo||* = 2(N + 10)|||z|Vo||||v]|? + 4N (N + 2)|jv|I*
= [zl Vo|l* = (¥ + 10) 2] " - [112 — 3V — 2)?] o]
Hence we obtain ReIP > —[112 — 3(N — 2)?]||v||®. In particular, if N > 9, then we see

from Lemma 4.1 that

2] Vo) — (N +10)[o]|? = [l& - Vol = (N + 10) lv]|?
> (N?/4~ N —10)||v|i?
> 0.

Applying this inequality to (4.13) implies
2 2
lol*Re 1P > [(S- = N = 10)ol?] " = [112 = 3V — 27}
N 2 4
=—| - TN -8 W - 16)]llv]l*

Therefore we obtain ReIP > —xo(N)||v||? which is nothing but (4.9).
Next we give a simplified proof of (4.10). Let v := (|z|?>+¢€)~!u for u € H?(R"M). Then
it follows from (4.2) that

Re( Au, (|z)? + €)7'u) = Re(—A(|z]*v + ev), v)
= Re(V(|z|*v + &v), Vv)
= Re(|z|*Vv + 2zv + €V, Vv)
2

= ||lz|Vo||” = Nllv||? + €[ Vo|)*.

Hence Lemma 4.1 implies
Re(—Au, (|2 + &)~ u) > ||z - Vv||> = N|v|?
N
> (V= 9]

Therefore the Schwarz inequality applies to give (4.10). O

Proof of Theorem 1.1. Let H := L*(R"N), A := A? with D(A) := H*R") and B := |z|™*
with D(B) := {u € H; |z|™%u € H}. Then we see that B, = |z|™4(1 +¢|z|™)"! = (|z|* +
€)~! for € > 0. Therefore Lemma 4.3 allows us to apply Theorem 2.1 with kg = ko(N) if
N < 8 and Theorem 2.2 with k; = —ko(IN) and ky = ap(N) if N > 9. D
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5. Proof of Theorem 1.2

In this section we generalize the inequalities obtained in Section 4. To see this we
propose the generalized discriminant of bi-form in Hilbert spaces.

Lemma 5.1. Let X be a complez Hilbert space with inner product (-,-)x and norm || - ||x.
Let p € X, c € R and let M be a selfadjoint operator in X. Assume that for every
¢ € D(M),

(5.1) (M¢,¢)x + 2Re(p,{)x +¢ = 0.

Then M is nonnegative and

(5.2) sup(M +¢) v, 0)x < c.
>0

In particular, if M is positive, then

(5.3) (Mo, 0)x < c

Proof. First we shall show that M is nonnegative. Considering {/||¢||x instead of (, it
suffices to show that (M¢,¢)x > 0 for ¢ € D(M) with ||{|[x = 1. Let ¢ € R with ¢ # 0.
Then it follows from (5.1) with { replaced with t( that

0 < t*(M¢,¢{)x + 2tRe (p,{)x +¢
< t*(M(, Q) x + 2t lellx + ¢

This is equivalent to
—2it| M lpllx — et < (M¢,O)x-

Letting |t| — oo yields that (M(,{)x > 0. Next we shall prove (5.2). Let M, := M +e¢.
Since M is nonnegative selfadjoint in X, we see that M. ! is well-defined as a bounded
symmetric operator with | M 1¢]|x < e7!||¢||x. Then (5.1) implies that

0< (M.(,¢)x +2Re(p,{)x +c
= (Mc(C+ M), ¢+ M7 o)x — (M7, 0)x +c.

Taking ¢ = —M g, we see that (M 1y, p)x < c for € > 0. Therefore we obtain (5.2).
In particular, if M is positive, then we can take € = 0. (]

Using two complex parameters, we can obtain the following lemma which is a strict
version of Lemma 4.1

Lemma 5.2. If v € L*(RN) and z- Vv € L*(R"), then
N2
(5.4) tm (v, 2 - Vo) < ol (llz - Voll? = = IIv]l?).
Proof. Let v € L2(R") with z - Vv € L?(R"). From the Schwarz inequality we have
(5.5) (v, 2 - Vo)I” < |lol?|lz - Voll®.
Combining (4.2) with (5.5), we obtain (5.4). O
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If X := C?, then Lemma 5.1 is regarded as a two-complex-parameter technique to
derive a new inequality.

Corollary 5.3. Let M be a Hermite matriz on C? :

M=(f 7),
Y a

where a, b € R and v € C. Assume that there are ¢ := (@, 3) € C? and c € R, satisfying
(5.1). Then it follows from (5.2) that

alal® +b|B|* — 2Re (aBy) < c(ab - |7]?).
Setting o := oy + o, B := By + 1Pz, v := Y1 + i72, one has

(5.6) aod + bB2 + cv3 + 2(c1 Bz + @22 + a2fem)
<abc+ 20181m — (ac? + bG? + cv?).

The following lemma together with Lemma 5.2 give a strict version of Lemma 4.2.
Lemma 5.4. If v € L}(RY) and |z|?Av € L*(RV), then |z||Vv| € L*(RN) and
(5.7) (Il 2 - 90, |a240) ~ |21 V0] *Im (v,2 - Vv)]”
<[tz - 9ol = 2ol  j1m (0,2 - o)1
x [llzl?20|*l1v]12 + 2N |2 o] *loll® — [[l21V0]|* - 4z - Volloll?].

Proof. Let v € L?*(RM) with |z|?Av € L?(R"). Then for ¢ = (¢;, ;) € C? we have an
inequality of the form (5.1):

0 < ||lz|?Av + Gi(z - V)v + C2v||2
= (MC, C)C2 + 2Re (‘P, C)C2 +c,

where ¢ = (@, B) := (((z - V)v, |z|2Av), (|z]2Av,v)), c:= |||$|2Av“ and

M (b 7) Iz - V)oll* (v, (z- V)v)
7 e/ @ V) Jelr )
Thus we obtain (5.6) as a consequence of Corollary 5.3. Now it is easy to see from (4.2),
(4.5) and (4.6) that

(5.8) o =Rea = iV-Z — 2b,

(5.9) B =RefB = Na -0,
N

(5.10) T =Refy = ——a,

2
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where b := HI:rIVvH2 It follows from (5.8)-(5.10) that the right-hand side of (5.6) equals

(b — (N?/4)a)(ac + 2Nab — b* — 4ab).
Multiplying (5.6) by a and using the equality B2 = 272, we have
(5.11) a?a? + 2a(B1 + 271) o2y + a(day + 4b + c)v3

<a(b— (N?*/4)a)(ac + 2Nab — b* — 4ab).
We see from (5.8)—(5.10) that the left-hand side of (5.11) equals
(acz — by2)? + (ac + 2Nab — b* — 4ab)~2,
which implies that
(aaz — byz)? < (ab— (N?/4)a® — 42)(ac + 2Nab — b% — 4ab).

This proves (5.7). (]
Lemma 5.5. Let u € H*(R") and € > 0. Let k; and k; be constants defined as

ky := 112 — 3(N — 2)?,

ky := ——%(N —~8)(N?2—-16), N >9.

Put IP := (A%, (|z|* + €)"'u) and a := ||(|z|* + ) u||®. Then
2
(5.12) (ImIP)? < 64v/a(v/Re P + kia + (10+N - NT) \/E) (VReTP +kia+ sﬁ)
If N > 9, then it is equivalent to
2

64./a(Re IP + kya) (\/—Re P ¥ Kia + Sﬁ)

N? '

\/———_ — — —
RelP + kia + ( N 10)+/a

Proof. Let v € H*(R™) and € > 0. Put v := (|z|* + €)"'u. Using the same notations as
in the proof of Lemma 5.4, we see that (5.7) is written as

(aaz “3’72)2 ~
5.14 L:= < ac+ 2Nab — b* — 4ab =: R.
(5.14) ab—(N2/4)a2—7§—ap+ a 4a R

Here we note (4.11) that

2

(5.13) (ImIP)? <

IP = |||z]*A0||* + 8((z - V), |z[>Av) + 4(N + 2)(v, |z|2Av) + €| Av]|%.
Since (2 = 27, it follows that

(5.15) ¢ = |||z?Av||* < ReIP + 16b + 85 — 4N(N + 2)a,

(5.16) az =1Im ((z - V)v, |z2A0) = %Im IP + (N + 2)7s.
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Applying (5.16) to L yields

a _ 2
(glm IP + (N 4+ 2)a — b)’Yz) _ (172 + c2)?

L= ,
a(b— (N?/4)a) — v3 co— 73
where
(5.17) co :=a(b— (N?/4)a) > 73,
(5.18) ¢ :=(N +2)a -,
(5.19) oy = %Im IP;

note that the inequality in (5.17) is nothing but (5.4). Since the quadratic equation
L(co — t?) = (e1t + c2)? has a real root ¢ = 7,, the discriminant 'is nonnegative:

(5.20) L(coL + coc? — c2) > 0.
It is clear that L > 0. If L > 0, then (5.20) yields
(5.21) L> (E/eo) - &.

If L =0, then v = —c3/c; and hence (5.17) yields that 0 > (¢3/cp) — 2. This means that
(5.21) holds for L > 0. Hence it follows from (5.17)—(5.19) and (5.21) that

a|lImIP|?
(5-22) L2 56— v /aya)

— (b— (N + 2)a)>.

On the other hand, since b < b, (5.14) and (5.15) yields

R <aRelP + 12ab + 2(N + 4)ab — b*> — 4N (N + 2)a?
(5.23) <a(kia + RelP) — (b— (N + 10)a)?,
where k; := (N + 10)2 — 4N(N + 2) = 112 — 3(N — 2)%. Since L < R, it follows from
(5.22) and (5.23) that

a|lmIP|?

61(b — N3aTd) (6— (N + 2)a)? < a(kia + ReIP) — (b — (N + 10)a)?.

(5.24)

Therefore we obtain

| Im IP|?
64(6 — (N2/4)a)

Now we see from (5.23) that

(5.25) —16(b — (N + 6)a) < kja + RelP =: K.

(b— (N+10)a)? < R+ (b— (N + 10)a)? < aK
and hence

(5.26) b<b<VaK + (N + 10)a.
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Applying (5.26) to (5.25), we obtain

|Im IP|?
64v/a[VK — ((N2/4) — N — 10)y/a]

This proves (5.12). Next note that N2/4 — N — 10 > 0 for N > 9. To obtain (5.13), we
have only to use the equality

< K + 16(VaK + 4a) = (VK + 8Va)>.

kia + RelIP
VK + ((N2/4) — N — 10)y/a
where k; = —N(N - 8)(N? — 16)/16. O

Proof of Theorem 1.2. Let H := L*(RV), A := A? with D(A) := H*(R") and B := |z|™*
with D(B) := {u € H; |z|™%u € H}. For u € D(A) and € > 0 take v := Beu =
(|z|* + €)~'u with v/a := ||v|]| = 1. Then set

VE — (N?/4) = N — 10)/a =

&€ +in:= —IP = —(Au, Beu).
If N <8, then £ < k; := 112 — 3(N — 2)2. In fact, we see from (4.9) that
—¢ =RelP > —[112 — 3(N — 2)? for v € H with ||v|| = 1.
Thus (5.12) (with ReIP = —¢,ImIP = —n,a = 1) allows us to apply Theorem 3.1 with

T={(+ineC; £ <k,n’ <on(§)}
v(n) +in € 90X (= v(0) = k; > 0),

where

on(€) =64V ki — €+ (10 + N — (N?/4))|(Vk1 — €+ 8)*, £ <.

In more detail 7 is given by

Y(n) = { kl’l Inl < 0w,
o (m?) <= n*=pn(r(m), Inl =N,

where Ny = Ven(k1) = vVminpy = 64\/10+N— (N2/4). In particular, if N > 5,
then the Rellich inequality (4.10)

(N/A)(N = Dl (jz* + &) ull < [|Aull, u e HX(RY)

applies to give (3.9) with ap := (N2?/16)(N — 4)%2. In fact, it follows for every u €
D(A) N D(B) that u € D(AY?) c D(BY?) and

_ - —2 |12
ao((|z]* + &) u, u) < ao(|z| Mu,u) = aonlxl 2u” < ||Aul|?® = (A%, u).

Thus we can apply Theorem 3.5 with those £, v and ay.
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If N > 9, then we have £ < ko := —(N/16)(N — 8)(N? — 16). In fact, it follows from
(4.9) that

—£& = RelP > (N/16)(N — 8)(N? —16) for v € H with |Jv| = 1.
Thus (5.13) allows us to apply Theorem 3.5 with ag := (N2/16)(N — 4)% and

Si={6+ineC; & <kyun <on(§)},
v(n) + in € 0L (= —ap < ¥(0) = k2 < 0).

where ) . 2
64(kz —&)(Vk1 — €+ 8 ,
en(§) == s 5)(21 ; y E< ke
Vki — €+ ((N2/4) — N — 10)
v is given by (1) := @' (n?). This completes the proof of Theorem 1.2. O
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