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LP well-posedness for the complex Ginzburg-Landau equation
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1 Introduction

This note is based on a joint work with Prof. Naoki Tanaka (Shizuoka University).
We consider the initial-boundary value problem for the complex Ginzburg-Landau

equation:

g—’t‘ C A+ ip)Au+ (s 4 )i —yu =0, (z,£) € Q x (0,00),
(CGL) u(z,t) = 0, (z,t) € 8 x (0, 00),

u(z,0) = up(x), z € 0N

Here Q is a general domain in RY (N > 1) with smooth boundary 8Q, A > 0, k > 0,
w, v,y € R, and ¢ = +/—1. The complex Ginzburg-Landau equation with ¢ = 4 was
derived to describe the destabilization of plane shear flow and the instability problem in
nonlinear chemical kinetics. The general case (¢ > 2) has been studied as a model for
turbulent dynamics. For details we refer to [1].

Our aim in this note is to show the time global well-posedness for (CGL) in LP().
The weak or strong global well-posedness for (CGL) has been studied by many authors.
We refer to (2, 3, 4, 6, 7, 8, 9, 10, 11] and references therein. Among them, Ginibre-
Velo [4] established the global well-posedness for (CGL) in LP(R”) and locally uniform
LP(RY) spaces under the assumptions that p > 2,

lul/A <2v/p—1/lp—2]|, (1.1)
2<g<2+2p/N. | (1.2)

It should be remarked that Yokota and Okazawa [11] studied (CGL) for up € L2() N
L?(?). They proved the unique existence of strong solution to (CGL) and the continuous
dependence on its initial data in L?(2) under the assumptions that p > 2,

lul/> < 2+/p—1/lp -2,
2<qg<2+2p/N.

Our main result is an extension of one of the results of [4].



39

Main Theorem. Assume p € (1,00), (1) and (2). Then for each ug € LP(2) there
exists a unique solution u(-;ug) to (CGL) in the class

C([0,00); LP(£2)) N C*((0, 00); LP(2)) N C((0, 00); WP () N Wy P ().

Moreover, the following continuous dependence of solutions on their initial data holds:
for each 7 > 0 and r > 0 there exists M (7,r) > 0 such that

lu(t; uo) — u(t; do)llr < M(7,7)l|luo — dollz»
for t € [0, 7] and uo, Go € LP(R2) with ||uol|r < 7 and ||Gollzr < 7.

Our approach to (CGL) is quite different from that of [4]. First we rewrite (CGL) as
an abstract semilinear Cauchy problem

u'(t) = Au(t) + Bu(t) (t > 0), u(0) = ug

in a Banach space X = LP(§2). Then we apply a characterization theorem for semigroups
of locally Lipschitz operators associated with the above Cauchy problem obtained by [7]
to prove our main theorem.

2 Characterization theorem for semigroups of locally Lip-

schitz operators

In this section we introduce semigroups of locally Lipschitz operators and recall the
characterization theorem for them.
We consider a semilinear Cauchy problem

u'(t) = Au(t) + Bu(t) (t > 0), u(0) =up € D (SP; o)

in a Banach space (X, || - ||). Here A is the infinitesimal generator of an analytic (Cp)
semigroup {7°(t) | t > 0} on X satisfying the condition below:

(A) There exist constants M > 1 and w4 < 0 such that |T'(t)|| < Me~4t for ¢t > 0.

Let a € (0,1) and let Y be the Banach space D((—A)*) equipped with the norm
lzlly = ||[(—A)%z||x for z € D((—A)*). Let D be a subset of X and let ¢ be a proper
lower semicontinuous functional from X into [0, 00] such that D(p) = D and for each
r >0, Cr := D, NY is dense in D,, where D, = {z € X;p(z) < r} for r > 0. Let
C = DNY. The operator B from C into X is assumed to satisfy the following conditions:

(B1) For each r > 0 the operator B is continuous from C, into X.

(B2) For each r > 0 there exists Mg(r) > 0 such that

|Bzllx < Mp(r)(1+ ||zlly) forz € C. (2.1)
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Now we give the definition of semigroups of locally Lipschitz operators.

Definition 2.1. A one-parameter family {S(t);t > 0} of locally Lipschitz operators

from D into itself is called a semigroup of locally Lipschitz operators on D with respect
to the functional ¢ if the following three conditions are satisfied:

(S1)  S(0)z = z for £ € D, and S(t + s)z = S(t)S(s)z for s,t > 0 and z € D.

(S2) For each z € D, S(-)z : [0,00) — X is continuous.

(S3)  For each 7 > 0 and 7 > 0 there exists M (7,7) > 0 such that

IS(t)x — S(t)yll < M(7,7)||lz —y|| for z,y € D, and t € [0, 7].

The characterization theorem is stated as follows:

Theorem 2.2. ([7, Proposition 2.4 and Theorem 3.5]) Let ag > 0. The following two
statements (i) and (ii) are equivalent:

(i) There ezists a semigroup {S(t);t > 0} of locally Lipschitz operators on D with
respect to ¢ such that for x € D, S(t)z € C fort > 0, BS(t)z € C((0,00); X) N
L},.(0,00; X) and S(t)z satisfies the integral equation

t
Stz =T(t)z + / T(t — s)BS(s)zds fort >0,
0

and the growth condition

o(S(t)x) < e*p(z) forz € D andt> 0.

(ii)  The following three conditions are satisfied:

(ii-1)

There exist T > 0 and a family {V,(-,-,:);7 > 0} of nonnegative functionals
on [0,7] x X x X such that

(V1) for eachr >0 and z, y € D., Vi(-,z,y) : [0,7] — [0,00) is continuous,

(V2) for each v > 0 there exists L(r) > 0 such that

Vr(t,z,y) — Ve(t, 2,9)| < L(r)(llz — 2llx + ly — dllx)
for (t,z,y), (t,2,9) € (0,7] x X x X,
(V3) for each r > 0 there exist M (r) > m(r) > 0 such that
m(r)llz —yllx < Vi(t,z,y) < M(r)llz — ylix

for (t,z,y) € [0,7] x D, x D;.
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(1i-2)  For each r > 0 there exist R > r and w > 0 such that
Iix}rlli‘})nf(VR(t + h,J(h)z, J(h)y) — Vr(t,z,y))/h < WwVg(t,z,y)
for (t,z,y) € [0,7) x Cr x C, where
t
J)w=T>0t)w+ / T(s)Bwds forw e C andt > 0.
0 .
(ii-3)  There exists by € (0,1) such that to each x € C and € > 0 there correspond
6 € (0,¢], z5 € C and z5 € Y satisfying
zs = J(8)z + 25, llzsllx <eb,  |lzslly < ed™,
(p(zs) — (z))/8 < aop(z) +e.

Moreover, for each x € D, S(t)x is continuously differentiable on (0,00) in X, AS(t)x
is continuous on (0,00) in X, and S(t)z satisfies (SE;z) for t > 0, if the operator B
satisfies that for each p > 0 there exists Lg(p) > 0 such that

IBu— Bu|lx < Lp(p)llu—vlly foru,veC and |lully <p, [lvlly < p. (2.2)

3 Outline of the Proof of Main Theorem

In order to prove our main theorem, we first rewrite (CGL) as an abstract Cauchy
problem (SP;up) in X = LP()) and then apply the characterization theorem. In what
follows K stands for various constants.

Let X = LP(Q) and [lu|lx = ||u||zr for u € X. Then, the operator A defined by

Au= (A +ip)(Au—u)  for u € D(A) = W2P(Q) N W, P(Q)

is the generator of an analytic (Cp) semigroup {T'(z)} on X such that T'(2) is analytic in
the sector |arg z| < wp and ||T'(t)||x < e for t > 0, where w, = tan™1(2y/p — 1/|p—2|).

In what follows we assume that ¢ > 2. By (1.1) we can choose p such that p < p <
p+g-—2

lul/A <2vB-1/1p - 2|, (3.1)

6= (N/2)(1/p—1/(B(g— 1)) < L. (3.2)
Let 8 = (N/2)(1/p — 1/5) and 6 = (1/5— 1/p+2/N)"*(1/5 — 1/(p(g — 1))). Then it is
easily seen that 3, 6, 84 (¢ — 1)8(1 — B) € (0,1). The Gagliardo-Nirenberg inequality
implies that D(A) C LP(2) N LP9—1)(Q) N LA@-1)(Q). Choose a € (0, 1) satisfying

f<a<l and B+ (g-1)001-0)<a<l (3.3)
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Let D = LP(Q) N LP()). We define a lower semicontinuous functional ¢ : X — [0, oo]
by @(u) = |lull}, + llullf; if w € D and ¢(u) = oo otherwise. Let Y = D((—A)¥). We
introduce a nonlinear operator B defined by

Bu=—(k+)[ul?2u+ (A +ip+7)u forue D(B)=C (=DnNY). (3.4)

Then (CGL) is rewritten as a semilinear Cauchy problem (SP;up). The operators A and
B have the properties below.

Lemma 3.1. For s € {p,p}, the following are valid.

(i) The operator A generates an analytic semigroup {T'(t);t > 0} on X such that
IT(t)v|lLs < e M||v||zs forve D, t>0.
(ii) The Banach space Y is continuously embedded in D N LPO~1(Q) N LP4~-1)(Q).
(iii) For each r > 0 there exists Mp(r) > 0 such that

|Bvllze < Mp(r)(1 + |lvlly) forve Cr.

(iv) For each p > 0 there exists Lg(p) > 0 such that

|Bv — Bo||s < Lp(p)llv—dlly forv, o € C with |lvlly <p, [0y < p.

(v) The domain of A is continuously embedded in L*+972(Q) and it holds that
Re (Av + Bu, [o]*"?v) + |l 235 = vllvlizs <0
for v € D(A) N W2H(Q) N WP (Q), where (w, 2) = [ w(z)2(z) dz.
(vi) There ezist constants a > 0 and b > 0 such that
Re (Au + Bu — (Af + Ba), ju — 4P~ (u — 4))
< (a + b(llulfiie% + a7l lu — all,  for u,@ € D(A).

Let 7 > 0 and define a family {V;.(-,,-);7 > 0} of nonnegative functions on [0, 7] x
X x X by

Va(t, u,v) = exp((6/xp)((lullx AP+ (follx ATYP)P)(llu = vllx A (2r/7))

for (t,u,v) € [0,7] x X x X, where b is a positive number satisfying Lemma 3.1 (vi) and

¢ An=min(§,n) for {,n € R.
By applying Theorem 2.2, we obtain the following proposition.
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Proposition 3.2. There exists a semigroup {S(t);t > 0} of locally Lipschitz operators
on D with respect to ¢ satisfying the following:

(i) For up € D, S(-)up € C([0,00); X) ﬂ(?’l((O, 00); X) N C((0, 00); D(A)).

(il) For ug € D, u(t) = S(t)ug gives a C! solution to (SP;ug) satisfying

. t .
()] +pﬁ/ PV ju(s) |04 97 2 ds < e |luollP fort>0.  (3.5)
0

(iii) Forug € D andt >0, ||S(t)uoll < e*||uoll and [|S(t)uollzs < e|luollLs -
(iv) For T >0 andr > 0 there exists M., > 0 such that

1S(t)uo — S(t)doll < Mrrlluo — doll
for t € [0, 7] and wo, 1o € D with ||uol| < r and ||do|| < 7.

By Proposition 3.2 (iv), we observe that the family {S(¢);t > 0} can be uniquely
extended to a semigroup {§(t);t > 0} of locally Lipschitz operators on X. We have
only to show that for each ug € X = LP(Q), §(t)uo gives a C! solution to (SP;up). Let
up € X. Since u(t) = S(t)uo also satisfies the inequality (3.5), we see that S(t)up €
LP(Q)NLP+I-2(Q) for a.e. t > 0. This fact ensures that there exists a decreasing sequence
{t.} of positive numbers such that lim,_,c t, = 0 and S(tn)uo € LP(Q)NLP(Q) for n > 1.
Since §(t)u0 = S(t — tn)§(tn)uo for t > t,, §(t)uo gives a global C! solution. O
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