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1. Introduction
In this note, we study the Cauchy problem of the $KdV$ equation:

$\{\begin{array}{ll}\partial_{t}u+\partial_{x}^{3}u=\partial_{x}(u^{2}), u:[-T,T]\cross \mathbb{R}arrow \mathbb{R} or \mathbb{C},u(0, x)=u_{0}(x). \end{array}$ (1)

This is a survey of the author’s papers [13, 14], and we refer to them for detailed
discussion.

The $KdV$ equation was originally derived by Korteweg and de Vries [15] as a model
for the propagation of shallow water waves along a canal. It appears in various phases
of mathematical physics; see [7] for a number of applications. It is also well-known
as one of the simplest PDEs that have complete integrability.

We shall consider local and global well-posedness of (1) with initial data given in
Sobolev spaces $H^{s}(\mathbb{R})$ defined via the norm

$\Vert\phi\Vert_{H}$

。
$(R)^{;=}\Vert\langle\cdot\}^{s}\hat{\phi}\Vert_{L^{2}(R)}$ ,

where
$\wedge$

denotes the Fourier transform and $\langle\cdot)$ $:=(1+|\cdot|^{2})^{1\prime 2}$ . We say the Cauchy
problem is locally well-posed in $H^{s}$ if for any initial datum $u_{0}\in H^{s}$ , there exists a
time of local existence $T=T(\Vert u_{0}\Vert_{H^{t}})>0$ and the solution in $C([-T, T];H^{s})$ which
is unique in some sense and depends continuously on the datum. If the above $T$ can
be chosen arbitrarily large, we say the Cauchy problem is globally well-posed in $H^{s}$ .
Note that it does not make any differences whether we take $[-T,T]$ or $[0, T]$ as the
interval of local existence, because the $KdV$ equation has time reversal symmetry.

Our main results are the local well-posedness of (1) and the global well-posedness
of real-valued (1) in $H^{-3\prime 4}(\mathbb{R})$ .

We now review the iteration method for proving the local well-posedness and clarify
the meaning of a ‘solution’ to the Cauchy problem.

First, we replace the Cauchy problem with the corresponding integral equation via
the Duhamel formula,

$u(t)=e^{-t\partial_{x}^{3}}u_{0}+ \int_{0}^{t}e^{-(t-t’)\partial_{x}^{3}}\partial_{x}(u(t’)^{2})dt’$, $t\in[-T,T]$ , (2)

where $\{e^{-t\partial_{x}^{3}}\}_{t\in R}$ denotes the linear propagator defined by $e^{\overline{-t\partial_{x}^{3}}}\phi(\xi):=e^{it\xi^{3}}\hat{\phi}(\xi)$ .
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We then put the right hand side of (2) $\Phi_{u_{0}}(u)(t)$ and try to show that $\Phi_{u_{0}}$ is a
contraction map on a certain Banach space $S_{T}^{s}$ embedded in $C([-T, T];H^{s})$ . Note
that the operator $\Phi_{u_{0}}$ is for now defined only on smooth functions (with enough
decay at spatial infinity). For instance, if we consider negative regularities $s<0$ , we
will fail to define the quadratic nonlinear term for all $u\in C([-T, T];H^{s})$ . Thus, it
is important to find a function space $S_{T}^{s}$ so that the domain of $\Phi_{u_{0}}$ can be extended
appropriately to all functions in this space.

For the contractiveness of the operator $\Phi_{u_{0}}$ , the following linear and bilinear esti-
mates are basically needed:

$\Vert e^{-t\partial_{x}^{3}}u_{0}\Vert_{S_{T}^{\epsilon}}\leq C\Vert u_{0}\Vert_{H^{S}}$ , $\Vert\int_{0}^{t}e^{-(t-t’)\partial_{x}^{3}}\partial_{x}(u(t’)v(t’))dt’\Vert_{S_{T}^{s}}\leq C\Vert u\Vert_{S_{T}^{s}}\Vert v\Vert_{S_{T}^{\epsilon}}$ .

Once these estimates are established with a Banach space $S_{T}^{s}$ in which smooth func-
tions are dense, definition of the Duhamel term in $\Phi_{u_{0}}$ will be extended to the whole
$S_{T}^{s}\cross S_{T}^{s}$ in the unique continuous sense. Then, we consider a function $u$ as a solution
to the Cauchy problem if $u$ satisfies the equation $u=\Phi_{u_{O}}(u)$ in $S_{T}^{s}$ . It is easy to
verify that such a solution is the unique limit in $S_{T}^{s}$ of smooth solutions starting from
initial data smoothly approximating the original datum $u_{0}$ in $H^{s}$ .

The above two estimates are actually enough to show that $\Phi_{u0}$ is contractive on
$\{u\in S_{T}^{s}|\Vert u\Vert_{S_{T}^{\epsilon}}\leq 2C\Vert u_{0}\Vert_{H^{\epsilon}}\}$ if $u_{0}$ is sufficiently small. We thus obtain a solution
as the unique fixed point of $\Phi_{u_{0}}$ , and the Lipschitz continuous dependence of solutions
on data also follows naturally. Note that the $KdV$ equation has the scaling invariance,
that is, the scaling transform

$u(t, x)$ $\mapsto$ $u^{\lambda}(t, x)$ $:=\lambda^{-2}u(\lambda^{-3}t, \lambda^{-1}x)$ , $\lambda>0$

maps a solution of (1) to the solution with initial datum $u_{0}^{\lambda}(x):=\lambda^{-2}u_{0}(\lambda^{-1}x)$.
Since we have

$\Vert u_{0}^{\lambda}\Vert_{H^{s}(\mathbb{R})}=O(\lambda^{-3’ 2-\min\{0,s\}})$

as $\lambdaarrow\infty$ , the problem for general initial data is reduced to solving the equation on
the time interval [-1, 1] for any sufficiently small data as long as we treat $s>-3/2$ .
From now on, we consider the case $T=1$ .

We have seen that the linear solution $e^{-t\partial_{\alpha}^{3}}u_{0}$ is defined clearly through the spatial
Fourier transform; however, it is instructive to compute the space-time Fourier trans-
form of the linear solution. The result for a smooth $u_{0}$ is $c\delta(\tau-\xi^{3})\hat{u_{0}}(\xi)$ , where $\delta$

denotes the Dirac delta function. We find a remarkable property of the linear solution
that it is supported in the space-time frequency space on the cubic curve $\{\tau=\xi^{3}\}$ .

In order to take advantage of the space-time Fourier transform in the context of
nonlinear equations, we need to deal with a solution as a function on the entire space
$\mathbb{R}^{2}$ rather than on the space-time slab [-1, 1] $\cross \mathbb{R}$ . Therefore, we introduce a $C^{\infty}$
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bump function $\psi$ on $\mathbb{R}$ satisfying $\psi\equiv 1$ on [-1, 1] and $supp\psi\subset[-2,2]$ , and then
seek a solution to the global-in-time integral equation

$u(t)= \psi(t)e^{-t\partial_{x}^{3}}u_{0}+\psi(t)\int_{0}^{t}e^{-(t-t’)\partial_{x}^{3}}\partial_{x}(u(t’)^{2})dt’$ , $t\in \mathbb{R}$ ,

instead of the previous local-in-time equation. A. simple computation implies that
the space-time Fourier transform of the truncated linear solution $\psi(t)e^{-t\partial_{x}^{3}}u_{0}$ with
a smooth $u_{0}$ is equal to $\hat{\psi}(\tau-\xi^{3})\hat{u_{0}}(\xi)$ , which is now a smooth function mainly
supported near the cubic curve (in fact it is rapidly decreasing in the variable $\tau-$

$\xi^{3})$ . As long as the nonlinear equation can be thought of as a perturbation of the
linear equation, it is expected that the nonlinear solution also concentrates near the
characteristic hypersurface.

From this point of view, it is quite natural to introduce the Bourgain spaces $X^{s,b}$ ,
or the Fourier restriction spaces, defined as the completion of space-time Schwartz
functions with respect to the norm

$\Vert u\Vert_{X^{s,b}}:=\Vert\langle\xi\rangle^{s}\langle\tau-\xi^{3}\rangle^{b}\tilde{u}(\tau, \xi)\Vert_{L_{\tau,\zeta}^{2}}$ ,

where $\tilde{u}$ denotes the space-time Fourier transform of $u$ . If the real parameter $b$ is
greater than 1/2, then the continuous embedding $X^{s,b}arrow C(\mathbb{R};H^{s})$ holds. In this
case, $X^{s,b}$ effectively captures functions supported in frequency near the cubic curve
from the space $C(\mathbb{R};H^{s})$ . Note also that $X^{s,b}$ can be regarded as the product Sobolev
spaces twisted by the linear evolution; in fact, we have

$\Vert u\Vert_{X^{\iota,b}}=\Vert e^{t\partial_{x}^{3}}u(t)\Vert_{H_{t}^{b}(H_{x}^{*})}$.

The Bourgain spaces $X^{s,b}$ , named after J. Bourgain who introduced it to study the
nonlinear Schr\"odinger and $KdV$ equations [2, 3], provided substantial progress in the
well-posedness theory for a wide variety of nonlinear dispersive equations. Especially,
it is a quite powerful tool to establish the local well-posedness in Sobolev spaces with
very low (perhaps negative) regularities.

If the space $X^{s,b}$ is used for the resolution space $S^{s}$ , the estimates required to make
$\Phi_{u_{O}}$ contractive will be described as

$\Vert\psi(t)e^{- t\partial_{x}^{3}}u_{0}\Vert_{X^{s,b}}\leq C$ II $u_{0}11_{H^{s}}$ , (3)

$\Vert\psi(t)\int_{0}^{t}e^{-(t- t’)\partial_{x}^{3}}\partial_{x}(u(t’)v(t’))dt’\Vert_{X^{\epsilon,b}}\leq c\Vert u\Vert_{X^{\text{。},b}}\Vert v\Vert_{X^{\text{。},b}}$. (4)

We usually divide the second estimate (4) into the linear Duhamel estimate

$\Vert\psi(t)\int_{0}^{t}e^{-(t-t’)\partial_{x}^{3}}F(t’)dt’\Vert_{X^{\epsilon,b}}\leq C\Vert F\Vert_{x*,b-1}$ (5)
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and the bilinear estimate

$\Vert\partial_{x}(uv)\Vert_{X^{s,b-1}}\leq C\Vert u\Vert_{X^{s,b}}\Vert v\Vert_{X^{\epsilon,b}}$ . (6)

The choice of auxiliary space $X^{s_{2}b-1}$ for nonlinearity seems natural if we recall that
the parameter $b$ denotes the regularity with respect to the differential operator $\partial_{t}+\partial_{x}^{3}$ ,
and that the solutions $u=(\partial_{t}+\partial_{x}^{3})^{-1}\partial_{x}(u^{2})$ should be in $X^{s,b}$ .

Then, it is enough for the local well-posedness in $H^{s}$ to establish the estimates (3),
(5), and (6). It turns out that two linear estimates (3) and (5) hold for any $s\in \mathbb{R}$

with appropriate values of $b$ ; see [8] for instance. In contrast, the bilinear estimate (6)
is known to fail for any $b$ if we consider regularities below a certain threshold. This
fact suggests that if the data become rougher, the nonlinear effect will get stronger
and the nonlinear equation will behave less as a perturbation of the linear equation.
Therefore, the bilinear estimate (6) controlling nonlinearity is directly connected to
the well-posedness and plays a crucial role in the iteration argument.

2. Previous results and the main theorem
The Cauchy problem (1) has been extensively studied. We first recall that Kenig,

Ponce, and Vega [11] established the bilinear estimate (6) for $s>-3/4$ with some
$b>1/2$ , which implies the local well-posedness of (1) in the corresponding regularity.
Their local result was improved to the global well-posedness in $H^{s}(\mathbb{R})$ with $s>-3/4$
in the real-valued case by Colliander, Keel, Staffilani, Takaoka, and Tao [6]. The
proof was based on the I-method, which we shall review in Section 5.

It is natural to try to verify the bilinear estimate for $s\leq-3/4$ if one wishes to
obtain the well-posedness for that regularity. However, it is known that (6) fails for
any $b\in \mathbb{R}$ if $s\leq-3/4$ ([11, 17]). Moreover, when $s<-3/4$ the data-to-solution map
for (1) fails to be uniformly continuous as a map from $H^{s}$ to $C_{t}(H_{x}^{s})$ ([12, 4]). This
result does not necessarily imply the ill-posedness of the Cauchy problem, but the
iteration method would naturally provide the Lipschitz continuity, so it will not work
for regularities $s<-3/4$ . It is an important open problem whether the local well-
posedness with a merely continuous data-to-solution map holds in these regularities.

We now focus on the case $s=-3/4$ . As seen above, this is the critical regularity for
the iteration method (but far above the scaling critical regularity $s=-3/2$). Since
we do not have the bilinear estimate in $X^{-3’ 4,b}$ , we have to iterate in a different
space, or abandon the direct iteration method, to obtain well-posedness in $H^{-3\prime 4}$ .

The latter approach was taken in [4]. They obtained the local-in-time result for (1)
in $H^{-3’ 4}(\mathbb{R})$ by combining (slightly modified) Miura transform with the correspond-
ing local well-posedness for the modified $KdV$ equation in $H^{1’ 4}(\mathbb{R})$ obtained in [10].
The Cauchy problem of the modified $KdV$ equation,

$\{\begin{array}{ll}\partial_{t}v+\partial_{x}^{3}v=\pm\partial_{x}(v^{3}), v : [-T, T]\cross \mathbb{R}arrow \mathbb{R},v(0, x)=v_{0}(x), \end{array}$ (7)
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is also well-studied and linked with the $KdV$ equation through the Miura transform;
if $v$ is a smooth solution to (7), then $u$ $:=c_{1}\partial_{x}v+c_{2}v^{2}$ with suitable constants $c_{1},$ $c_{2}$

solves the $KdV$ equation. Since the Miura transform acts roughly as a derivative,
many results for $KdV$ have counterparts for modified $KdV$ at one higher regularity;
for instance, the regularity threshold for validity of the iteration method is $s=1/4$ ,
exactly one higher than $s=-3/4$ for $KdV$ .

We point out that the above result for $KdV$ in $H^{-3’ 4}$ is relatively weak, compared
with that for $s>-3/4$ . Firstly, the uniqueness of solutions was obtained only in
the image of the Miura transform. In fact, for the case.$s>-3/4$ it was shown that
solutions are unique in $X^{s,b}$ . Since the Miura transform is a nonlinear mapping, we
find it not so easy to analyze the structure of its image, or verify whether a given
function is in its image or not. Secondly, we do not have the control of their local
solutions in a function space well adapted to the I-method, such as $X^{s,b}$ . This is why
the global well-posedness for real-valued (1) in $H^{-3\prime 4}(\mathbb{R})$ was left open.

Iilrom this point of view, it is quite interesting to investigate the strong local well-
posedness for (1) in $H^{-3\prime 4}(\mathbb{R})$ by the iteration method. Our main result precisely
deals with this issue. Of course, we have to change the working space from $X^{-3\prime 4,b}$ .
We shall constmct a Banach space $X$ as the working space $S^{-3’ 4}$ , which is some
Besov-like generalization of the Bourgain space $X^{-3\prime 4,1\prime 2}$ with slight modification
in low frequency. See the definition in the next section. The space $X$ possesses the
bilinear estimate similar to (6), but fails to be embedded into $C(\mathbb{R};H^{-3\prime 4})$ , which
forces us to introduce an auxiliary space $Y$ defined by the norm

$\Vert u\Vert_{Y}:=\Vert\langle\xi\}^{-3’ 4}\tilde{u}\Vert_{L_{\zeta}^{2}(L_{\tau}^{1})}$.

This space $Y$ has also appeared in a number of previous works (originally in [8]). For
these spaces we have the following bilinear estimate:

Proposition 1. We have

$\Vert\langle\partial_{t}+\partial_{x}^{3}\rangle^{-1}\partial_{x}(uv)\Vert_{X}+\Vert\langle\partial_{t}+\partial_{x}^{3}\rangle^{-1}\partial_{x}(uv)\Vert_{Y}\leq C\Vert u\Vert_{X}\Vert v\Vert_{X}$ ,

where $\langle\partial_{t}+\partial_{x}^{3}\rangle^{-1}$ is the space-time Fourier multiplier corresponding to $\langle\tau-\xi^{3})^{-1}$

A standard iteration argument then implies our main theorem.

Theorem 1. The Cauchy problem (1) (real-valued or complex-valued) is locally well-
posed in $H^{-3’ 4}(\mathbb{R})$ . In particular, solutions are unique in $X$ to be defined in Section 3.

We remark that the uniqueness in the above theorem is precisely as follows: the
solutions of (1) on the time interval $[-T,T]$ are unique in the class $X_{1-T,T]}$ , where
for an interval $I$ we define the space $X_{I}$ as the restriction to the time interval $I$ of
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functions in $X$ , which is equipped with the restricted norm

$\Vert u\Vert_{X_{I}}$ $:= \inf\{\Vert U\Vert_{X}|U\in X,$ $U(t)=u(t)$ for $t\in I\}$ .

We also use this restricted norm for a global-in-time function $u$ under the convention
of $\Vert u\Vert_{X_{I}}:=\Vert u|_{t\in I}\Vert_{X_{I}}$ .

This theorem combined with the I-method yields the global results. Since our
function space $X$ is very close to the usual Bourgain space $X^{s,b}$ (in fact satisfies the
embedding $X^{-3\prime 4,b}arrow Xarrow X^{-3’ 4,1’ 2}$ for any $b>1/2$), proof is almost identical
with the case of $X^{s,b}$ for $s>-3/4$ .

Theorem 2. The real-valued Cauchy problem (1) is globally well-posed in $H^{\sim 3\prime 4}(\mathbb{R})$ .

Note that these global results do not hold for the complex-valued case. In fact,
several finite-time blow-up solutions have been discovered. For instance, see [1] and
references therein.

In the next section, we will discuss how to construct the space $X$ which yields
the crucial bilinear estimate. The proof of Proposition 1 is quite complicated, so we
refer to [13] for it. In Section 4, we will show outline of the proof for Theorem 1,
especially for the uniqueness of solutions. Section 5 will be devoted to a review of
the I-method. We will omit the details for the proof of Theorem 2 and refer to [6].
In the last section, we will recall a recent result by Guo [9] and compare it with ours.

3. Construction of the working space
Let us recall some counterexamples to the bilinear estimate in $X^{-3\prime 4,b}$ ,

$\Vert\partial_{x}(uv)\Vert_{x-3/4,b-1}\leq C\Vert u\Vert_{x-3/4,b}\Vert v\Vert_{x-3\prime 4,b}$ , (8)

and then see how to modify the Bourgain spaces so that these examples may be
suitably controlled.

We first prepare some notations for convenience. Let us fix a smooth function
$q_{0}:\mathbb{R}arrow[0,1]$ which is equal to 1 on $[-5/4,5/4]$ and supported in $[-85,85]$ . For
$N>0$ and $j=1,2,$ $\ldots$ , define

$q_{N}(\xi):=q_{0}(\dot{N})-q_{0}(N)$ , $p_{0}:=q_{0}$ , $p_{j}:=q_{2^{j}}$ ,

and then denote the Fourier multipliers with respect to $x$ corresponding to $q_{0},$ $q_{N},$ $p_{0}$ ,
and $p_{j}$ by $Q_{0},$ $Q_{N},$ $P_{0}$ , and $P_{j}$ , respectively. Note that $\{P_{j}\}_{j=0}^{\infty}$ is an inhomogeneous
Littlewood-Paley decomposition, and that QN with $N>0$ is the frequency-localizing
operator satisfying $suppq_{N}\subset\{\frac{5N}{8}\leq|\xi|\leq\frac{8N}{5}\},$ $q_{N}\equiv 1$ on $\{\frac{4N}{5}\leq|\xi|\leq\frac{5N}{4}\}$ .

We begin with the following examples.
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Proposition 2 ([11]). Let $b\in \mathbb{R}$ , then there exists $c>0$ such that the following holds.
(i) For any $N\gg 1$ , there exist $u_{N},$ $v_{N}$ satisfying $Q_{N}u_{N}=U_{N}$ , $QNVN=v_{N}$ , and

$\Vert Q_{0}\partial_{x}(u_{N}v_{N})\Vert_{X^{-3\prime 4,b-1}}\geq cN^{\S b-\S}\Vert u_{N}\Vert_{x-3/4,b}\Vert v_{N}\Vert_{X^{-3/4,b}}$ .

(ii) For any $N\gg 1$ , there exist $u_{N},v_{N}$ satisfying $Q_{N^{U}N}=U_{N},$ $Q_{0}v_{N}=v_{N}$ , and

$|1\partial_{x}(u_{N}v_{N})\Vert_{x- 3’ 4,b- 1}\geq cN^{\S\# b}\langle N\}^{-}$

’ 11 $u_{N}\Vert_{X-3\prime 4,b}$ II $v_{N}$ I $x- 3\prime 4,b$
.

This proposition says that (8) fails to hold for $b>1’ 2$ (from $(i)$ ), and for $b<1/2$
(from (ii)). These examples are sketched in Figure 1. We observe that the example
in (i) consists of high-frequency functions supported in the frequency space along the
curve $\tau=\xi^{3}$ , and their product (or, in frequency, their convolution) is concentrated
near the frequency origin (thus in the low-frequency region). We call such interac-
tions high-high-low. On the other hand, the example in (ii) is the interaction between
functions of high frequency and low frequency, which produces a high-frequency com-
ponent near the curve, so we call it high-low-high interaction.

The bilinear estimate (8) also fails in the case $b=1/2$ , but the divergence order is
logarithmic in $N$ rather than power in $N$ as Proposition 2.

Proposition 3 ([17]). Let $0<\alpha<1/2$ , then there exists $c>0$ such that the following
holds: For any $N\gg 1$ , there exist $u_{N},$ $v_{N}$ satisfying $QNUN=u_{N},$ $Q_{N}v_{N}=v_{N}$ , and

$\Vert Q_{0}\partial_{x}(u_{N}v_{N})\Vert_{X^{-3/4,-1\prime 2}}\geq c(\log N)^{\alpha}\Vert u_{N}\Vert_{x-3/4,1/2}\Vert v_{N}\Vert_{x-3\prime 4,1/2}$.

As sketched in Figure 2, this example of high-high-low type is much more com-
plicated than the previous one. We point out that the high-frequency function is
supported also in the region distant from the curve $\tau=\xi^{3}$ in contrast to the coun-
terexamples in Proposition 2. In fact, $u_{N}$ consists of $\epsilon\log N$ components dyadi-
cally supported away from the curve $(0<\epsilon\ll 1)$ . Each of these components $u_{N_{2}j}$

$(1\leq j\leq\epsilon\log N)$ , which has some positive $X^{-3\prime 4,1\prime 2}$ norm $a_{j}$ , interacts with $v_{N}$ and
outputs the component, whose norm is Il $\partial_{x}(u_{N_{2}j}v_{N})||_{x-3/4,-1/2}>a_{j}\sim\Vert V_{N}||_{X^{-3/4,1/2}}$ , at
almost the same part of the low-frequency region $\{|\xi|\leq 1\}$ . The norm of the total
output is then at least 11 $v_{N} \Vert_{x-3’ 4,1/2}\sum a_{j}$ , while the norm of $u_{N}$ is equal to the $\ell^{2}$

sum of those of $u_{N,j}’ s;\Vert u_{N}\Vert_{X^{-3’ 4,1/2}}\sim(\sum a_{j}^{2})^{1\prime 2}$. Putting $a_{j}=j^{\alpha-1}(0<\alpha<1’ 2)$

for instance, we have the divergence of $O((\log N)^{\alpha})$ .
We have seen that the bilinear estimate in $X^{-3’ 4,b},$ (8), fails for any $b\in \mathbb{R}$ , and that

the divergence in the case $b=1/2$ is logarithmic, better than the other cases. There-
fore, we shall start from $X^{-3\prime 4,1\prime 2}$ and modify it to endure the nonlinear interaction
described in Proposition 3.

In the analysis with the Bourgain spaces, in fact, logarithmic divergences of non-
linear estimates often occur in such a limiting regularity. One standard way to avoid
this is the $\ell^{1}$ -Besov modification (in the temporal direction) of the Bourgain spaces.
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(i) High-high-low interaction

(ii) High-low-high interaction

Figure 1. Two typical nonlinear interactions described in Proposition 2. In
the context of the bilinear estimate (8) for $b\neq 1/2$ , they produce some power
divergences in $N$ .
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Figure 2. The example of high-high-low interaction described in Proposition 3,
which breaks the bilinear estimate in $X^{-3\prime 4,1\prime 2}$ with logarithmic divergence.

This is similar to the space $B_{2,1}^{1/2}(\mathbb{R})$ as a modification of $H^{1\prime 2}(\mathbb{R})$ , which has many
good properties such as the embedding into the space of bounded continuous func-
tions. $\ell^{1}$-Besov structure is also convenient for the summation of dyadic frequency
pieces: For example, if we have a frequency-localized bilinear estimate

$\Vert B(P_{j}u, P_{k}v)\Vert\leq C\Vert P_{j}u\Vert\Vert P_{k}v\Vert$

for some bilinear operator $B$ , then the bilinear estimate

11 $B(u,v)$ Il $\leq C\Vert u\Vert\Vert v\Vert$

immediately follows from the triangle inequality and the $\ell^{1}$ nature of the norm.
Such Besov-type Bourgain spaces were used first in the context of the wave map

equations ([18]), and have appeared in a number of literature.
In our context, the $\ell^{1}$ -Besov Bourgain spaces $X^{s,b,1}$ is defined by the norm

$\Vert u\Vert_{X^{\epsilon,b,1}}:=(\sum_{j=0}^{\infty}2^{2sj}(\sum_{k=0}^{\infty}2^{bk}\Vert p_{j}(\xi)p_{k}(\tau-\xi^{3})\hat{u}\Vert_{L_{\tau,\zeta}^{2}})^{2})^{1\prime 2}$

The usual $X^{s,b}$ norm is equivalent to the above norm with the $\ell_{k}^{1}$ sum replaced by
$\ell_{k}^{2}$ . We see that $X^{s,b,1}$ is slightly stronger than $X^{s,b}$ .

Note that the counterexample in Proposition 3 can be well controlled if we measure
the high-frequency function in $X^{-3\prime 4,1\prime 2,1}$ instead of $X^{-3’ 4,1’ 2}$ . When we work at
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$\overline{X^{-3\prime 4,1’ 2+\epsilon}X^{-3\prime 4,1\prime 2-\epsilon}X^{-3\prime 4,1’ 2}X^{-3\prime 4,1’ 2,1}X_{*}}$

high-high-low $Prop2(i)N^{\alpha}$ $(\log NProp3^{\alpha}$ $f_{rop4(i)}^{\log N)^{\alpha}}$

Prop 2 (ii)
high-low-high $N^{\alpha}$

$i_{r\circ p4}^{\log N}/ii$

)
$\alpha$

$f_{rop4}^{1oN}l_{ii)}^{\alpha}$

Table 1. Various divergences in the bilinear estimates for $s=-3/4$ .

the bottom regularity, similar issues may arise, and the space $X^{s,1\prime 2,1}$ is considered
generally as a good substitute for $X^{s,1’ 2}$ . However, $\cdot$ for the $KdV$ case, we can not
restore the bilinear estimate in $X^{-3’ 4,b}$ by just making the $\ell^{1}$ -Besov modification;
counterexamples are given in the following Proposition 4, which is our second main
result. That seems to be the main reason why this problem of much interest had
been left open since the bilinear estimate for $s>-3/4$ was established in [11].

Proposition 4. Let $0<\alpha<1/2$ , then there exists $c>0$ such that the follosving holds:
(i) For any $N\gg 1$ , there exist $u_{N},$ $v_{N}$ satisfying $Q_{N}u_{N}=u_{N}$ , $QNVN=v_{N}$ , and

$\Vert Q_{0}\langle\partial_{t}+\partial_{x}^{3}\rangle^{-1}\partial_{x}(u_{N}v_{N})\Vert_{x-3/4,1/2,1}\geq c(\log N)^{\alpha}\Vert u_{N}\Vert_{x-3/4,1/2,1}\Vert v_{N}\Vert_{x-3/4,1/2,1}$ .

(ii) For any $N\gg 1$ , there exist $u_{N},$ $v_{N}$ satisfying $Q_{N}u_{N}=u_{N_{J}}Q_{0}v_{N}=v_{N}$ , and

$\Vert\langle\partial_{t}+\partial_{x}^{3}\}^{-1}\partial_{x}(u_{N}v_{N})\Vert_{x-3\prime 4,1/2,1}\geq c(\log N)^{\alpha}\Vert u_{N}\Vert_{x-3/4,1/2,1}\Vert v_{N}\Vert_{x-3/4,1/2}$,

11 $\langle\partial_{t}+\partial_{x}^{3}\}^{-1}\partial_{x}(u_{N}v_{N})\Vert_{x- 3/4,1/2}\geq c(\log N)^{\alpha}\Vert u_{N}\Vert_{x- 3/4_{i}1/2}\Vert v_{N}\Vert_{X-3/4,1/2}$ .
(i) shows that the $X^{-3\prime 4,12,1}$ norm is too strong in low frequency to control the

high-high-low interaction. Then, it seems natural to consider the space $X_{*}$ defined
via the norm

$\Vert u\Vert_{X}$. $:=\Vert P_{0}u\Vert_{x-3/4,1/2}+\Vert(1-P_{0})u\Vert_{x-3/4,1/2,1}$ ,

which has the stronger structure $X^{-3’ 4,1\prime 2,1}$ in high frequency and the weaker struc-
ture $X^{-3’ 4,1’ 2}$ in low frequency. However, the first estimate in (ii) says that this
space is too weak in low frequency to control the high-low-high interaction. The
same example also re-proves that (8) with $b=1/2$ does not hold. Thus, we can sum
up the divergences in bilinear estimates for the regularity $s=-3/4$ as Table 1.

To overcome this difficulty, we have to take a real look at these counterexamples,
which are described in Figure 3.

For (i), $\epsilon\log N$ components of the function $u_{N}$ are all supported near the curve
$\tau=\xi^{3}$ , unlike the example given in Proposition 3. Thus, the stronger $X^{-3\prime 4,1’ 2,1}$

norm of $u_{N}$ is still given by the $\ell^{2}$ sum. On the other hand, we see that the output
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(i) Logarithmic divergence of the bilinear estimate in $X^{-3\prime 4,1\prime 2,1}$ (high-high-low)

(ii) Logarithmic divergence of the bilinear estimate in $X_{*}$ or $X^{-3’ 4,1\prime 2}$ (high-low-high)

Figure 3. Counterexamples to the bilinear estimates given in Proposition 4.

78



Figure 4. The ‘middle-frequency’ region $D$ .

components are supported in the low-frequency region between $N^{-1\prime 2}$ and 1, and also
dyadically separated with respect to $\tau-\xi^{3}$ . Thus, the norm of the output amounts
to the $\ell^{1}$ sum if we employ the $\ell^{1}$-Besov structure in low frequency. We remark that
all the $\ell_{k}^{p}$ norms are equivalent if a function is restricted near the curve $\tau=\xi^{3}$ since
there is no summation over $k$ in such a case, and that the modification from $\ell_{k}^{2}$ to $\ell_{k}^{1}$

has an effect only when a function is supported away from the curve.
For (ii), the low-frequency function $v_{N}$ has $\epsilon\log N$ components between $0$ and

$N^{-1’ 2}$ , and its $X^{-3’ 4,1’ 2}$ norm is given by the $\ell^{2}$ sum. We see that outputs of the
interaction of these components with $u_{N}$ fall onto almost the same frequency position
near the curve. Therefore, the norm of the output is the $\ell^{1}$ sum, no matter which
structure we use in high frequency.

It is worth noting that these serious interactions come from different parts of the
low-frequency region separated by the fuzzy boundary $|\xi|\sim N^{-1’ 2}$ . Note also that
both of them are supported along the line $\tau=3N^{2}\xi$ . This suggests that we may use
$X^{-3’ 4,1’ 2}$ in the middle frequency region

$D:=\{(\tau, \xi)\in \mathbb{R}^{2}||\xi|<1,$ $|\tau|>|\xi|^{-3}\}$ ,

and use $X^{-3\prime 4,1\prime 2,1}$ in very low frequency $\{|\xi|<1\}\backslash D$ ; see Figure 4. In fact, it turns
out that the high-high-low interaction can be controlled in very low frequency even if
we assume the stronger structure $X^{-3\prime 4,1’ 2,1}$ there, and that the high-low-high can
be still controlled under the weaker structure $X^{-3\prime 4,1’ 2}$ in middle frequency.

Our working space $X$ is defined by

$\Vert u\Vert_{X}:=\Vert P_{D}u\Vert_{x-3\prime 4,1/2}+\Vert(1-P_{D})u\Vert_{x-314,112,1}$ ,

79



where $P_{D}$ is the frequency-localizing operator to the set $D$ . For this $X$ we can
establish the desired bilinear estimate, Proposition 1.

4. Local well-posedness

In addition to the bilinear estimate, the following linear estimates are verified.

Lemma 1. We have the following estimates

$\Vert e^{-t\partial_{x}^{3}}u_{0}\Vert_{X_{|\sim 1,1[}}+\sup_{-1\leq t\leq 1}\Vert e^{-t\partial_{x}^{3}}u_{0}\Vert_{H^{-3/4}(R)}\leq C\Vert u_{0}\Vert_{H^{-3\prime 4}(R)}$ ,

$\Vert\int_{0}^{t}e^{-(t-t’)\partial_{x}^{3}}F(t’)dt’\Vert_{X_{|-1,11}}+\sup_{-1\leq t\leq 1}\Vert\int_{0}^{t}e^{-(t-t’)\partial_{x}^{3}}F(t’)dt’\Vert_{H^{-3/4}(R)}$

$\leq C\Vert\langle\partial_{t}+\partial_{x}^{3}\rangle^{-1}F\Vert_{X}+\Vert\langle\partial_{t}+\partial_{x}^{3}\}^{-1}F\Vert_{Y}$ .

Proof is much easier than the bilinear estimate (see [13]). Remark that the time-
restricted norm plays the same role as the cutoff function in the estimates (3), (5).

From Proposition 1 and Lemma 1, we can iterate the equation in the space $X_{1-1,1]}\cap$

$C([-1,1];H^{-3’ 4}(\mathbb{R}))$ and obtain Theorem 1 except for the uniqueness; note that these
estimates only imply the uniqueness in a small ball of the working space.

It remains to extend the uniqueness to the whole working space. Recall that in
the case $s>-3/4$ , Kenig, Ponce, and Vega [11] showed the uniqueness of solutions
in $X^{s,b}$

$[-T,T]$ ’ essentially using the following stronger bilinear estimate: There exists
$\alpha=\alpha(s)>0$ such that

$\Vert\partial_{x}(\psi(\frac{t}{\delta})u\cdot\psi(\frac{t}{\delta})v)\Vert_{X^{e,b}}\leq C\delta^{\alpha}\Vert u\Vert_{X^{\epsilon.b}}\Vert v\Vert_{X^{\epsilon,b}}$ (9)

for any $\delta\in(0,1]$ .
If (9) is valid, then we can derive the uniqueness in $X_{[-T,T]}^{s,b}$ as follows. Let $u,$ $v\in$

$X_{1-T,T]}^{s,b}$ be two solutions of the integral equation on a time interval $[-T, T]$ with the
same initial datum $u_{0}$ . Then, $\psi(t/\delta)u$ and $\psi(t/\delta)v$ solve the equation on $[-\delta’, \delta’]$ ,
where $\delta’=\min\{\delta, T\}$ . Therefore, we have

$u(t)-v(t)= \int_{0}^{t}e^{-(t-t’)\partial_{x}^{3}}\partial_{x}[(\psi(\frac{t’}{\delta})u(t’))^{2}-(\psi(\frac{t’}{\delta})v(t’))^{2}]dt’$

on $[-\delta’, \delta’]$ . We see from (5) and (9) that

$\Vert u-v\Vert_{X_{|-\delta’.\delta’|}^{\epsilon,b}}\leq C\delta^{\prime\alpha}\Vert u+v\Vert_{X_{11}^{s,b}}\Vert u-v\Vert_{X_{|-\delta’,\delta’|}^{s,b}}-\delta’,\delta’$

for $\delta’\in(0,1]$ . Since $\Vert u+v\Vert_{X_{|-\delta\delta|}^{\epsilon,b}},,’\leq\Vert u||_{X_{|-T,T|}^{s,b}}+\Vert v\Vert_{X_{|\sim T,T|}^{\epsilon,b}}$ , we can choose $\delta$ so
small that $C\delta^{\prime\alpha}\Vert u+v\Vert_{X_{|-\delta\delta 1}^{*,b}},,’\leq 1/2$ . If $T=\delta’$ , we have the desired uniqueness. In
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the case $T>\delta’=\delta$ , the uniqueness in $X_{[-T,T]}^{s,b}$ will be obtained by repeating this
procedure.

In our context, however, estimate like (9) is not available. One of the reasons
for this is the criticality of the problem; in fact, the exponent $\alpha(s)$ given in (9)
tends to $0$ as $sarrow-3/4$. We employ the argument of Muramatu and Taoka [16],
who considered the local well-posedness for nonlinear Schr\"odinger equations with
quadratic nonlinearities. In this argument, the following fact is essential:

$\lim_{\deltaarrow 0}\Vert u\Vert_{Z_{|-\delta,\delta l}}=0$ (10)

for $u\in z_{1-T,T]}$ with some $T>0$ satisfying , $u|_{t=0}=0$ , where $Z;=X\cap$
$C(\mathbb{R};H^{-3/4}(\mathbb{R}))$ . For the proof of (10), we refer to [16, 13].

Let $u,$ $v\in Z_{1-T,T]}$ be as above. Using Lemma 1 and Proposition 1, we see that

$\Vert u-v\Vert_{Z_{|-\delta\delta[}},,’\leq C\Vert u+v\Vert_{Z_{|-\delta\delta J}},,’\Vert u-v\Vert_{Z_{|-\delta\delta l}},,$
”

so it suffices to make $\Vert u+v\Vert_{Z_{|-\delta\delta)}},,$’ small. We split it between $\Vert u+v-$

$2e^{-t\partial_{x}^{3}}u_{0}\Vert_{Z_{|-\delta\delta 1}},,$

’ and $2\Vert e^{-t\partial_{x}^{3}}u_{0}\Vert_{Z_{|-\delta\delta l}},,’$ . Then, the first one can be arbitrarily small
with the aid of (10), since $u+v-2e^{-t\partial_{x}^{3}}u_{0}|_{t=0}=0$ . On the other hand, Lemma 1
bounds the second term by $C\Vert u_{0}\Vert_{H^{-3/4}}$ , so we can make it small by the scaling
argument, and then obtain the uniqueness in $Z_{1-\delta’,\delta’]}$ for sufficiently small $\delta$ . The
desired uniqueness follows after repeating it.

5. Global well-posedness and the I-method
Here, we briefly review the argument in [5], which established the global well-

posedness in $H^{s}(\mathbb{R})$ for $s>-3/10$ , to see the essence of the I-method.
In general, global well-posedness is obtained by pasting the local results. However,

the basic local result, which gives the existence time $\delta\sim\Vert u_{0}\Vert^{-\alpha}$ with some $\alpha>0$

and the estimate $\sup_{-\delta\leq t\leq\delta}\Vert u(t)\Vert\leq C\Vert u_{0}\Vert$ , is not sufficient by itself, because in
each step, the initial datum may grow exponentially and provide the exponentially-
decaying existence time. Therefore, we need some a priori estimate on the growth
of the solution which bounds the data uniformly in each step; see Figure 5. For
instance, the $L^{2}$ conservation of the real-valued $KdV$ solution together with LWP in
$L^{2}$ immediately yields GWP of (1) in $L^{2}$ in the real-valued setting.

However, when we consider negative Sobolev regularities, there is no conservation
law or a priori estimate on the $H^{s}$ norm of solutions. We now introduce an almost
conserved quantity which controls the time of local existence in place of the $H^{s}$ norm.

Let $N\gg 1$ and $s<0$ . We define $I=I_{s,N}$ as the spatial Fourier multiplier with
the symbol $m_{s,N}(\xi)=m_{s}(|\xi|/N)$ , where $m_{s}(r)$ : $\mathbb{R}_{+}arrow \mathbb{R}_{+}$ is a smooth monotone
function which equals 1 for $r\leq 1$ and $r^{s}$ for $r\geq 2$ . We have $C^{-1}\Vert\phi\Vert_{H^{\epsilon}}\leq$ II $I\phi\Vert_{L^{2}}\leq$

$CN^{-s}\Vert\phi\Vert_{H^{s}}$ . Furthermore, the following variant of local well-posedness holds.
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$\bullet$ Local results $\neq$ global solutions in general.

$\Vert u(T_{n+1})\Vert_{H}$ . $\leq C\Vert u(T_{n})\Vert_{H}.$ , $\delta_{n}\sim\Vert u(T_{n})\Vert_{H}^{-\alpha}$

$\frac{1\delta_{01}\delta_{11}\delta_{2|}}{||||,T_{1}T_{2}T_{3}}$

. . .
$\tau_{*}^{1}|\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots..\rangle t$

$0=T_{0}$

$\bullet$ Local results $+a$ priori $estimate\Rightarrow$ global solutions.

$\Vert u(T_{n})\Vert_{H^{s}}\leq C(u_{0})$ , $\delta_{n}\sim\delta=\delta(u_{0})>0$

$||||||||\ovalbox{\tt\small REJECT}^{\backslash }|\delta|\prime t$

$0=T_{0}$ $T_{1}$ $T_{2}$ $T_{3}$ $T_{4}$

Figure 5. A priori estimate and global solutions.

Lemma 2 ([5]). Let $s>-3/4$ . Then, there exists $b>12$ such that for any
$u_{0}\in H_{f}^{s}$ a solution $u(t)\in C([-\delta, \delta];H^{S})$ to (1) exists on $[-\delta, \delta]$ with $\delta\geq c\Vert Iu_{0}\Vert_{L^{2}}^{\sim\alpha}$

and satisfies $\Vert Iu\Vert_{X_{|-\delta,\delta 1}^{0,b}}\leq C\Vert Iu_{0}\Vert_{L^{2}}$ . Here $c,$ $C$ , and $\alpha$ are some positive constants
independent of $N$ .

Another important feature of the operator $I$ is almost $consen$)$ation$ of $||Iu(t)||_{L^{2}}$ .

Lemma 3 ([5]). Let $u(t)$ be a real-valued solution to the $KdV$ equation on the time
interwal $[-\delta, \delta]$ . Then, for any $\epsilon>0$ and $b>1/2$ there exists $C>0$ independent of
$N$ such that

$\Vert Iu(t)\Vert_{L^{2}}^{2}\leq\Vert Iu(0)\Vert_{L^{2}}^{2}+CN^{-3/4+\epsilon}\Vert Iu\Vert_{X_{|-\delta,\delta l}^{0,b}}^{3}$

$for-\delta\leq t\leq\delta$ .

It follows from Lemmas 2 and 3 that if $s>-3/4$ and the real-valued initial datum
$u_{0}$ satisfies $\Vert Iu_{0}\Vert_{L^{2}}\leq 1$ , then we can iterate the local theory $O(N^{3\prime 4-\epsilon})$ times until
the norm $\Vert Iu(t)\Vert_{L^{2}}$ becomes greater than 2. We thus obtain solutions at least up to
$t=O(N^{3/4-\epsilon})$ from such initial data.

For general data, we utilize the scaling argument. If the datum satisfies
$\Vert Iu(0)\Vert_{L^{2}}\leq M$ , then we first rescale it so that

$\Vert Iu^{\lambda}(0)\Vert_{L^{2}}\leq CM\lambda^{-3’ 2-s}N^{-s}=1$ $\Leftrightarrow$ $\lambda\sim(MN^{-s})^{2\prime(3+2s)}$ ,

and solve the equation from the rescaled datum. Rescaling back to the original one,
we obtain a solution up to the time $t=O(\lambda^{-3}N^{3\prime 4-\epsilon})$ . Therefore, we can solve
the equation on an arbitrarily large time interval, by taking $N$ sufficiently large,
if $\lim_{Narrow\infty}\lambda^{-3}N^{3\prime 4-\epsilon}=\infty$ . This condition is equivalent to $-6s’(3+2s)<34$ , or
$s>-3/10$ , and the global well-posedness for these $s$ follows.
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To show the global results in $H^{-3\prime 4}$ , we have to add some correction terms to the
almost conserved quantity $\Vert Iu(t)\Vert_{L^{2}}$ and improve the decay with respect to $N$ in
Lemma 3. See [6] for details.

6. Remark
Recently, Guo [9] obtained the same well-posedness results independently. The

function space in the work of Guo [9] is identical with our space in high frequency.
The only difference is in low frequency $\{|\xi I \leq 1\}$ ; the space in [9] has the maximal
function norm $\Vert P_{0}u\Vert_{L_{x}^{2}(L_{t}^{\infty})}$ , while our space is defined by

$\Vert P_{D}u\Vert_{X^{0,1/2}}+\Vert P_{0}(1-P_{D})u\Vert_{X^{0,1/2,1}}$ $(+\Vert P_{0}u\Vert_{L_{t}^{\infty}(L_{x}^{2})})$ .

These structures share some common properties; for instance, both are weaker than
$X^{-3’ 4,1\prime 2,1}$ for the high frequency part and stronger than $C(H^{-3’ 4})$ . However, there
is no inclusion relation between two spaces.

On the other hand, in contrast to the space in [9] defined on the physical space $\mathbb{R}_{t,x}^{2}$

in low frequency, we define our space $X$ totally on the Fourier space $\mathbb{R}_{\tau,\xi}^{2}$ similarly
to the standard $X^{s,b}$ .

This feature of our space allows us to define an auxiliary space for the estimate
of nonlinearity simply as $\langle\partial_{t}+\partial_{x}^{3}\rangle X$ , and completely separate the estimate for the
Duhamel term of the integral equation, like (4), into the linear Duhamel estimate,
like (5), and the bilinear estimate, like (6). The same reduction would be nontrivial
for function spaces including the norm on the physical space. Moreover, the space
in [9] should be considered in the time-restricted form, i.e. with a temporal bump
function, because the $L_{t}^{2}(L_{x}^{\infty})$ maximal function estimate does not hold globally in
time. Such restriction in time is not needed for our space in proving the bilinear
estimate.

We should also make a crucial remark that our space $X$ has the monotonicity in
frequency, namely, $|\tilde{u}|\leq|\tilde{v}|$ implies $\Vert u\Vert_{X}\leq\Vert v\Vert_{X}$ , which does not hold in the space
defined on the physical space $\mathbb{R}_{t,x}^{2}$ . We actually use this property in the proof of
required linear estimates Lemma 1. Such structure is also compatible with the I-
method and admits the identical proof for the global well-posedness as the previous
one ([6]) working on the standard $X^{s,b}$ .
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