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1 Introduction

Let M be a dj-dimensional Riemannian manifold (with or without boundary) and let
N be another compact dy-dimensional Riemannian without boundary. We will assume
that NV is isometrically embedded in R* (k > dy). Let u be a map from M to M which
belongs to H'(M ; R*). The energy of u is defined by

1
E(u) = 5 /M |du(z)|?dsg-

If OM # @, we assume that ulaM = ~ for some given v € H/?2(dM;R¥) with v(z) € N.

The map u is (weakly) harmonic if it is a critical point of E. The Euler-Lagrange
equation satisfied by the (weakly) harmonic maps is

7(u) = trace Vdu = 0, “IaM =y

where 7 is called a tension field.

Let (z1,--- ,Zm), (Y1, - ,yn) be a local coordinates of M and N, respectively. The
metrics in local coordinates are written as
dpr dn
ds?, = Z gijdzFdz? and ds? = Z hapdy®dy”®
k,j=1 a,f=1

respectively. Then, the tension field 7(u) can be expressed as follows: for u® = y, o u,

n

7(u)(z) € Ty)N, where 7(u)(z) = Z 'r(u)”’% with

=1 7
T\ o O%uY — Ou® ouP
(@) = 3 0 g —Zri-;-( Eﬁ: T a0(2) G o
i,7=1 t a,f=
Ou® OuP

=t + 30 3 gt 2 2
J

1,j=1 a,f=1
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where I'}; and NT'); are Christoffel symbols of Riemannian manifolds (M, g) and (N, h)

respectively, (¢*7) is the reciprocal matrix of g(a%i, 5‘%) and Ay is the Laplace Beltrami

operator of (M, g).
The heat flow associated to the above Euler-Lagrange equation is
Ou

5 7(u) = 0.
As is well known, the global existence of smooth solutions of the initial boundary
value problem for a heat flow of harmonic maps from a Riemannian manifold M into a
Riemannian manifold N depends on the geometry of N

If the sectorial curvature of A is non-positive, then there exists a unique global smooth
solution of the problem for C?** data. Moreover, the solution subconverges to a harmonic
map as the time goes to infinity.(see e.g. Ellis-Sampson [8], R.S. Hamilton [12]).

In general, the structures of solutions of the harmonic map heat flows are very com-
plicated, and the study is still quite incomplete.

There are extensive works when the target space NV is a sphere S®¥~1. In this situation,
assuming that M is an open domain in R?, the harmonic map heat flow equation is
written as

% = Au+ |Vulu.

Then, the local existence of smooth solutions and global existence of weak solutions with
bounded energy can be established. Moreover, the partial regularity results hold for
dy = 3,4. More precisely, flows of bounded energy are regular in the interior of domain
except for a closed set of Hausdorff dimension at most dys — 3 (e.g. Y. Chen [5], M.
Feldman [16], M. Struwe [20]). There are also uniqueness and non-uniqueness results on
the weak solutions of bounded energy (e.g., J-M. Coron [6], P. Topping [21], A. Freire [10]).
The finite time blow-up results have been investigated by many authors (e.g., Chang-Ding
[4], Coron-Ghidaglia [7]). Here we say that the solution wu(z,t) blows up at ¢t = T if

limsup [|[Vu(, t)]leo = 00.
t—T-

We now consider the case when the target manifold NV is a dy-dimensional ellipsoid,

say,
=1}, a_,->0

Definition 1 u : Q@ — N is said to be weakly harmonic if u is a critical point of the
energy

dn+1

u
N = {(U],Ug,"‘ y Udy+1) € RN+ . Z

LN N

I

— a
Jj=1

KN

and M is an open domain  in R? or a flat torus 7.

1
E(u) = 3/, |Vu(z)|*dz
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under the following constraints:

u e H! ﬂL‘*’(Q;N), u|pg=7€ HY?(00; N)

where
H'NL®(GN) = {ue H' N LP@GRW ) : u(z) e N ae. in Q)
and
HY (00 N) = {u € H2(O4RWN*Y) : u(z) e N a.e. on 8Q}.
We have

Lemma 1 u is weakly harmonic if and only if u satisfies the constraints and for any
¢ € Cg°(Q, R +1)

d
. ) - ) 2 A2
> [ {10s,00,6) — 00yl A%, 9

=1

—(u, Oz;u) ({A%05,u, ¢) — (A%u,8;,¢)) } dz =0 (1.1)

where A is a linear mapping A : R¥v+!1 — RIN+HL defined by
U Ud 41
A:(ul,...,udN*l)H(_’...,L).
a Adpn+1

The proof is accomplished by the straghtforward calculation of the left hand side of
the following:

dE(u,)
ds s=0 - O’ ulan =7
— U+ S¢ : o0 . TRdN+1
where u, = TA(s +59)] € N with ¢ € C°(Q; RN+,

Lemma 2  Ifu is smooth and weakly harmonic, then u satisfies
Au+ AA%u =0 (1.2)

where
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Proof If u is smooth, then (1.1) is rewritten as
/(Au — (u, Au)A%u, @)dz = 0, V¢ € CP(Q, RN,
Q

Hence, we have

Au — (u, Au)A%u = 0. (1.3)

Since |Aul? = 1, we have
Oz, | Aul® = 2(A%u, 8;,u) = 0, - (1.4)
A|Au)? = |AVu|? + (A%, Au) = 0. (1.5)

From (1.3) we have
(Au, A%u) — (u, Au)|A%ul* =0
Then, we make use of (1.5) to obtain

AVul?
Hence, (1.3) is rewritten as
AVul?
Au + |’ yem IL A%y
which gives (1.2). ]
Several authors ([15], [1], [13], [14]) investigated special case of the ellipsoid N’ C R¥*!
with a; = 1,(j = 1,2,--- ,d). One of their main results is concerned with stability of

the equator map. Here we say that the map U* = z/|z| from the unit ball B4 of R¢
into the equator of S* C R4t! or of the ellipsoid N ’ is a critical point for the energy
E. U* is called the equator map. Jiger and Kaul [15] (1979) showed that the equator
map U* into sphere is an absolute minimum if d > 7, but is is unstable if 3 < d < 6.
Baldes [1] (1984) considered the equator maps into ellipsoid N’ and showed U* is stable
if a2 > 1 and n > 7, and unstable a? < 4(d — 1)/(d — 2)?. Helein [13] (1988) showed that
if a2 < 4(d — 1)/(d — 2)?, there is a smooth minimizing map and if a®> > 4(d — 1)/(d — 2)?,
U* is a unique minimizer. Here we remind that

Definition 2 Let u € HY(Q; N) be a weakly harmonic map. u is called (weakly) stable if
u+ s¢

|A(u + s¢)|

d2

ds?

It might be an mterestmg open problem to generalize the equator maps to gneneral
ellipsoid and to ingestigate thier properties.

for ug =

E(u,) , 20 V¢ € CC(Q,R¥WH)  with u- A%p = 0.

In this paper our aim is to investigate the initial boundary value problem to the
heat flow of harmonic maps into general ellipsoid N and to generalize results previously
obtained for the maps into sphere or for the maps into the special ellipsoid mentioned
above. We summ up our results mostly with rough sketches of proofs. Details will be
published elsewhere.
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2 Global existence of weak solutions

Let up be a map from £ into V. We consider the initial-boundary value problem : find
u : 9 x [0,+00) — N such that | -

g—? = Au+ A%, (z,t) € Q x [0, +00) (2.1)
Cu(z,0) =up(z), €N (2.2)
u(z,t) = uo(z), (x,t) € O x [0, +00) (2.3)

Definition of global weak solutions is as follows:

Definition 3  Let ug € H' N L®(Q; N) and v € HY2(0Q : N). Then, u is a weak
solution of (2.1) — (2.3) if u satisfies

u € L®(0,00; H' N L®(Q; N)),
Byu € L*((0,00) x Q; RN+,
“Ian =7

and

/00/ {(Beu, #) + (Vu, Vo) — M\(A%u, ¢)} dzdt = 0,
o Ja
Vo € C3°((0, 00) x Q; RN,

Denote N, the open upper hemisphere, i.e., Ny = {u € N : u;, > 0} where the
subscript ig € {1,2,--- ,dy + 1} is chosen scuh that

a;, = min  a;.
O =l ANl

We first consider the global existence of weak solutions.

Theorem 3 Let up € H' N L®(2; N). Then there ezists a global weak solution of (1.1)-
(1.3).
If Q2 is a bounded domain with smooth boundary 0§ such that
(z,nz) >0, Vz e oN

where n; denotes the unit outer normal vector at x € 652, and u0| an = Yobeing a constant,
the mapping u(t) subconverges strongly to a constant in H*(2) ast — oo
Moreover, if ug € N, then the solution is uniquely determined by the data.

The proof of Theorem 3 is accomplished by the following Ginzburg-Landau approxi-
mation: for @ > 1 and any k£ > 0

6u(k)

5 = O + k1= [Aug P72 (1 — | Aug ") uw), (2.4)

u=1ug on 0N x [0,4+00) | J(2 x {t = 0}). (2.5)
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By using the standard theory of semilinear parabolic systems (see [17]), it can be proved
that for every integer k > 1, the problem (2.4)-(2.5) has a global solution wux)y which
is smooth in £ x (0,00). In order to prove the convergence of {u()}, we need a priori

estimates of them.
We have

Lemma 4 The following equality holds:
‘ 2 1 2 k 2|2a 1 2
|Os Ay | “dzdt + — IV Auy|®dz + — |1 — |Aupy|®|*®dz = = | |V Aug|*dz.
o Ja 2 Ja da Jo 2 Ja

Proof. Multiplication of the both sides of (2.4) with A?Bu(x) and integration by parts
in z,t on 2 X [0,¢] yield the result. [

Lemma 5 Let ¢ is a continuous function on [0,00) with bounded derivative. We have
/ (| Aury(z, t)|? — 1)%dz
Q
t t
+ [ [ ollaumP = )iV AugPdadt +2 [ [ (Aul? = DI Auge, Augo) Pdadt
0 Ja 0o Ja

t
+k/ /ﬂcp(lAu(k)|2—l)||Au(k)|2—— 1%2-2(| Augey | — 1)|| Augey[2dedt = 0.
0

where ® is the primitive of 2¢.

Proof. We multiply the both sides of (2.4) with ¢(|Au)|® — 1) A%ux) and integrate by
parts in z,t on 2 x [0, t] to obtain the result. |

Lemma 6 (Maximum principle) For any k > 1

|Augky| <1, V(z,t) € Q2 x [0,00).

Proof. In Lemma 5 taking ¢ as

(s) = 0, forz <0
wis) = s, forz >0

and denoting

_J 0, for f<O
[f]+_{f, fOI’f>O’

we have

/[lAu(k)(:zz,t)|2 - l]ida: <0, VvVt>0
9]
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from which it follows that

lA’U,(k)| <1, V(a:, t) € N x [0,00)

We continue the proof of Theorem 3.

From Lemma 4 and Lemma 6 , we see that

{u@)} is a bounded set in L*(0, co; H?(2) N L*°(R))
{Ou@y} is a bounded set in L?(0, c0; L*(R2))

Hence wee that
{uk)} is a bounded set in H2([0, 00) x ).

It is a standard manner that we make use of the above mentioned boundedness to extract
a weakly convergent subsequence of {u)}ren in H*?([0, 00) x ©2). We can show the limit
function u a weak solution to (2.1)-(2.3) by a suitable modification of Evans’ argument
(see [9]).

Moreover, taking ¢(z) = z in Lemma 5 we obtain

{k]1 — | Augy|?)**72(1 — |Auwy|®)ur)} is a bounded set in L(§2 x [0, oo])
Then, in view of (2.4) we see that
{Au} is a bounded set in L'(£2 x [0, 00])

from which it follows that {Augy} and {k|1 —|Aug|?|>*~2(1— | Au(k)|?)uk) } subconverges
to Au and AA%u in measure, respectively. u

We also have
Lemma 7 IfQ is a bounded domain in R with smooth boundary 02 and

(z,nz) 20, Vze of2

where n, denotes the unit outer normal vector at x € 95, uol =77 being a constant,
then there exists a § > 0 such that

/ |Vu(z, t)2(|z)? + 1)dz < e‘“/ |Vuo(z)|?(|z|* + 1)dz. (2.6)
Q Q

Thus we have the convergence assertion as ¢ — oo.

Uniqueness assertion is obtained essentially by the same maximum principle as in the
proof of the regularity theorem mentioned below.

2. Regularity

For regularity of solutions we have
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Theorem 8 Let 0 < a < 1 and 0 = &. Assume that up € W2=(Q) and the image of
ug belongs to a compact subset of Ny. Then, u is smooth and

IVullo < CllVuol|co,

ou
+ | Aufloo < C(l| Aol + IVuollZ,)-

ot

oo

We here consider the regular local solution 1 constructed by the standard local existence
theorems (e.g. Hamilton [12], Ladyzenskaya -Uralceva [19], Fuwa-T [18]) and to establish
the maximum principle to the derivatives of solutions.

First we note that the assumption that ug = (uo1,- - , Upay+1) € RV lies a compact
subset in NV, implies there exists a positive constant b such that ug;, > b. Then, by the
maximum principle yields that

ui, (z,t) > b, V(z,t) € Q x [0,00)
We utilize the following maximum principle for a parabolic operator P defined by

P(f) = div(e~®gradf) — e-“";—{
where @ is a smooth function on §2 x [0, T] for some T > 0.

Lemma 9 (Mazimun Principle) Assume that f is smooth on § x [0, T) and satisfies
P(f)>00nQx (0,T) for some T > 0. Then,

max f < max
2x f < max f

where Q = Q x [0,T) and T' = (092) x (0, T) U x {t = 0}.

For the proof we refer to Friedman [17].

Put f = 1e® where ¢ and ® are smooth functions on  x [0, T]. Then
P(f) =VoVyY + ¢p(AD — 6,D) + Ay — 6.

We take & = —2logu,, and

¥ = 5|Vuf?
or

o= Lol

2|0t

Simple calculation shows that

i0
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For ¢ = 1|Vu|? we have
DAY — Opp = | Duf? — A\|AVu|?

where D?u.denotes the Hessian of w.
Then, by the Cauchy-Schwartz inequality we have

B 1 s 1/ A 1., ,
P(f) = V& S|Vul + (2a?0 + 51V ) V|
— M AVu|? + | D?u)?

> —|V®||Vu||D?*u| + i|Vu|2|\7<1>|2 + | D?*ul?

1 wtl g
+ A (TIVUIZ“ Z —;Vui|2)
a;, =1 &
> 0.

2

ou

ot

A similar calculation holds for 9 = %

Thus we obtain

I Vull oo @xo,00) < IVuoll oo

18sul|Loo(xfo,o0) < | AUl Lomi) + V0]l Lo (-
Then, we have

|Aullzo@) < 0ullze@) + CllVullie(g) < C.

As to the case 92 # &, a similar result holds by making use of different strategy to

u
obtain higher spacial regularity of u besides the maximum principle to 3 [

Finally we remark that for the proof of uniqueness of (weak) solutions we take

® = —loguj — log ul
LI 2)2
=—=|u —u
$ =2l — o]
where u! and u? are two solutions with the same initial and boundary data.

3. Blow-up of solutions

Most results of the finite time blow-up are shown for (axially) symmetric solutions
for the harmonic map heat flow into sphere. We extend the notion of axially symmetric
solutions to the ellipsoid. It is straightforward if we consider an ellipsoid of the form

1
Nl={(U1,"' ,1Ln+1) E]Rn+1 : uf++uf,+—(§ufl+1 = 1}
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General cases are left for further studies.
we first consider the 2-dimensional ellipsoid

N’ = {(u1,uz,uz) € R® : u? +ul + ;lz-ug =1}.
Let
u = (cos cos x, sin sin x, a cos ).
Then, the equation (1.1) becomes

o (a? — 1)(sin ) cosy sin 1 cos Y

i 2 v 2
ot A%+ (a2 — 1)sin®y + 1 VYl (a? — 1) sin® 1 + 1I X!
% = Ax + 2cotyy Vi - V.

Let M = B? = {(z,y) € R? : 22 + y? < 1}. Introducing the polar coordinates on the
plane, i.e. £ = rcosf,y = rsinf. As is the case of sphere, we say that the solution u is
axially symmetric if

x=ml, (meN), p=1y(rt).

For axially symmetric solutions we have |Vx|? = m2?/r?, Vx -Vy = 0 and Ax = 0.
Hence, 1 satisfies

m? sin 1 cos
r2((a? — 1)sin?7 + 1)’

(a? — 1)(sin®y cos 9

2 —
(a? — 1) sin?y + 1 kad

";/)t = ¢rr+ %¢r+

When m = 1, we can also extend the notion of axially symmetric solutions to the case
of n-dimensional ellipsoidal target space N,
Let @ = B™ or R® Let u : Q — N’

u= (E sin¢(r,t), a cos ¥ (r, t)) , r=]|z| (2.7)
r
Then, we have

n—1 (a? — 1)(sin®y cos 9
r Ut @ S D s p + 1

(n—1)sinycos®y
r2((a? — 1)sin’y + 1)’

1/}t = wrr + l‘l/)‘f'lz -

We say that u of the form (2.7) is an axially symmetric solution of (2.1). The energy E
is of the form

n—1

E(y) = % /:o ((a2 sin? 9 + cos® ¥)|9-|% + = sin? 1/)) r*ldr (2.8)

Finite energy yields that sin(0,t) = 0, say, ¥(0,t) = kx, k € Z.

Our result is
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Theorem 10  There exist regular azially symmetric initial and boundary data for which
the solution to the harmonic heat flow (1.1) blows up in finite time.

For simplicity we consider @ = R™ and use a variant of the method of Coron and
Ghidaglia (1989) [7].
Let w : R® — N’ satisfy

_ |AVw]?

1 — ) A2
—Aw + 5(:1: V)w = AAw, A= AT

For 7 > 0, u(z,t) = W(z/(t —t)*/?) is a solution of (2.1)-(2.3).
Set

(n—1)singcosg
r2((a? — 1)sin®g + 1)

n—1 r a? — 1)(singcosg
g‘r+_g'r-'- ( 2 .9
r 2 (a2 —1)sin*g + 1

A(g) = —Grr — !grlz +

If A(g) <0, H(r,t) = g(z/(T — —t)'/?) satisfies

n—1  (a®~1)(sin¢cost

" (n—1)siny cosyp <0
" (a2 —1)sin?yp +1

[rl® + r2((a? — 1)sin®y +1) —

¢t - 1/)rr -

In order to prove the blow-up of solutions, it is crucial to construct a function g such
that A(g) < 0. Candidates of g are

#(r, ) = 2 arctan :—;, #°(r, 1) = 2arctan g, peR

which satisfy

1 sin ¢ cos
¢rr+;¢r_"‘—%2—‘—?=0-

Here we choose ¢”. Then,
lin(l) ¢ (r,pu) = £m, lim ¢°(r,p) = 0.

Long and tedious calculation shows that A(qb" ) < for sufficiently large i > 0 for any @ > 0.

More precise investigations will be done near future.
This work has been done with my student H. Miyoshi.
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