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EXISTENCE AND STABILITY OF A TRAVELING WAVE SOLUTION ON A
3-COMPONENT REACTION-DIFFUSION MODEL IN COMBUSTION

KOTA IKEDA AND MASAYASU MIMURA

1. INTRODUCTION

It is shown in (8] that thin solid, for an example, paper, cellulose dialysis bags and polyethylene sheets,
burning against oxidizing wind develops finger-like patterns or fingering patterns. The oxidizing gas is
supplied in a uniform laminar flow, opposite to the directions of the front propagation and they control the
flow velocity of oxygen, denoted by V. When V is decreased below a critical value, the smooth front develops
a structure which marks the onset of instability. As V is decreased further, the peaks are separated by cusp-
like minima and a fingering pattern is formed. In addition, thin solid is stretched out straight onto the
bottom plate and they also control the adjustable vertical gap, denoted by a parameter h, between top and
bottom plates. We remark here that fingering patterns occur for small h, which implies that such patterns
appear in the absence of natural convection. Similar phenomena have been also observed in a micro-gravity
experiment in space (see [5]).

To investigate these phenomena, a reaction-diffusion model (RD) was proposed in [2]. We carried out
numerical simulations, reproducing similar results to the experiment described above. If the effect of the
flow (denoted by A in (RD)) is strong, a flame front is smooth. Decreasing A raises the destabilization of the
smooth flame front. Eventually, fingering pattern occurs in small A > 0.

Our model (RD) is represented as follows:

Ou ,0u
5= LeAu + A 9 + vk(u)vw — au,
(RD) %% = —k(u)vw, (z,y) € (—o00,00) x 2,t >0,
Ow ow
i Aw + /\a—z — k(u)vw,

where the constants Le, called Lewis number, v and a are positive constants, A and )\ are nonnegative
constants, ¢ C R™ is a bounded domain, and A = 82/9z% + Y, 82/8y? is Laplacian as usual. The
nonlinear term k is defined by

k() = Aexp(—B/(u—6)), u>90,
1o, 0<u<é

for some constants A, B > 0 and # > 0. This function k and 6 are called Arrhenius kinetics and ignition

temperature in combustion. Note that we considered a general setting for the nonlinear function k in [2] and
(31-
We suppose that

lim u(z,y,t)=0, lim w(z,y,t)=w,>0, lim w(z,y,t)=uw >0
|z|—o00 Z~+00 I——00
for any y €  and t > 0, where w, and w, are constants and w, > w;. We also suppose that u and w satisfy
ou Ow
—(z,y,t) =0, —(z,y,t)=0
(@0, ) =0, =2 (z,u,1)

for £ € (—o00,00), y € O and t > 0, where v is the unit exterior normal vector on 9§2. We suppose that
initial functions satisfy

u(z,y,0) = w(z,y) > 0, v(z,y,0) =ve(z,9) 20, w(z,y,0)=wuo(z,y) >0,
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and
(1.1) wo(+00,y) = wy, wy(—o0,y) = wy.

In numerical simulations, a smooth flame front is observed in (RD) if A is sufficiently large, which implies
that (RD) has a stable traveling wave solution independent of y-variable. Our first aim in this paper is to
construct a stable traveling wave solution in the case that X is large. The second aim will be described after
the statement of Theorem 3.

Now we describe main results and how to prove the existence and stability of a traveling wave solution
of (RD). We formally take the limit of A — oo in (RD) so that Sw/8z = 0 holds. Then, from the boundary
condition of w, we obtain w = w, and (RD) is reduced to

%E = LeAu + /\'gﬂ + vk(u)vw, — au,
(1.2) a:} & (z,y) €(—00,00) X §2,t > 0
5 = —k(u)vw, '

with the boundary condition
lim u(z,y,t)=0, yeNt>0,
|| —o0

Ou

-é—;(:z:,y,t) =0, z€&(—o00,00),y € 0N, t>0.
Hence a solution of (RD) approaches that of (1.2).
Theorem 1. Let (u*,v*,w) be a solution of (RD) with an initial function (ud,vd,wd) depending on A
and (u,v) be a solution of (1.2) with an initial function (uo,vo). Suppose that (ud,v}) and (ug,vo) belong
to D(LZ) x C*((—o0,00) x Q) and satisfy

(1.3) llug — uolla = 0, |vg — voll Lo ((—oo,00)xa2) = O
as A — oco. Here L3 is a fractional power of L, = —LeA — N8/0z + a with the domain D(L2) endowed
by || - lla = |l - lze((~c0y00)xs2) +]ILS - lLr((~c0,00)xq) for 1/2 < @ <1 andn+1 < p < oo (see [6]), and

C*((—o0,00) x Q) is a Hélder space with the ezponent 0 < k < 1. In addition, assume wd —n € D(L?Y),
where a monotonically increasing function n € C?(—o0, c0) satisfy

n(z) = {
and Lg is a fractional power of L, = —A — A\8/0z. Then, for any 6,T > 0 and R € (—o0, ),
sup (Jlu?(¢) = u()lla + [v*(2) = v(t)[| L2 ((~o0,00)x2)) = O,
o<t<T

Wy, =21,

uy, =<0,

(1.4) A
sup_[|w”() — wrllL=((R,c0)x) = 0
<t<T

as A — oo.

From this result, a traveling wave solution of (RD) may approach that of (1.2). In order to achieve our
goal, we introduce a new parameter € > 0 and construct a solution of

{ —ect = e2u” + eX'u’ + vk(v)vw, — au,

—cv' = —k(w)vw,

(1.5)

with boundary conditions

(1.6) u(xo0) =0, v(+00) = vy,

where c is called wave speed of a traveling wave solution. We derived (1.5) from (1.2) by putting Le — ¢,
7Y — 7v/€, and a — a/e. Although this problem is easier than (1.8) and (1.9) below, it is still difficult to verify
the existence of a traveling wave solution without any technical assumptions for parameters. If we use the
smal parameter €, we can apply perturbation theory to our problem and construct a traveling wave solution.
By this method we also see how the traveling wave solution obtained in the following theorem behaves as
€ — 0, and that it is stable in (1.2). This is why we introduced the small parameter € > 0 above.
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Theorem 2 ([3]). Suppose that there is v such that for any v < v, it holds that

u1 (v)
/ (vk(uw)vw, — au)du = 0,
0

where uj(v) denotes the mazimum of the three zeroes of yk(u)vw, — au. Then, there are positive constants
T and N (v,) such that if v < v, <7, 0 < N < N(v,), and € > 0 is sufficiently small, the system (1.5) with
(1.6) has a solution, denoted by (u,v,c). In addition, the associated eigenvalue problem

eud = e2¢" + e(c+ N’ + vk' (w)vw, ¢ + vk(w)w,.p — ag,
u = cp’ — k' (uw)vw,d — k(u)y

has a unique solution (¢, %, n) = (v',v',0) in HZ(R) x HL(R) x As for small k > 0, where H}(R) and H2(R)

are weighted Sobolev spaces, and As is a closed subset in C for small § > 0 defined later. The two small

parameters k and & are supposed to be independent of €. Furthermore the algebraic multiplicity of 4 = 0 is
1in (1.7).

(1.7)

A traveling wave solution is (linearly) stable if the eigenvalue problem does not have an eigenvalue p € A
except for 11 = 0, and the algebraic multiplicity of 4 = 0 is 1. Note that (u/,v’) is a solution of (1.7) for
i = 0. Since k(0) = 0 and k’(0) = 0, the essential spectra come to the imaginary axis if we consider the
above problem in a usual Lebesgue space or continuous function’s space (see Section 5 in [1]). In order to
avoid the essential spectra of (1.10), it is necessary to introduce weighted functional spaces. We define a

functional space L2(R) by
oo 1/2
otz = ([ lo@eraz) < oo},

Sobolev spaces H}(R) and H2(R) with the weight function e** are defined as L2(R) analogously. If we
assume that the eigenfunction belongs to the weighted space, the eigenvalue problem (1.10) does not have
essential spectra in g € A for a small § > 0 Hence it is sufficient to consider only spectra with a finite
multiplicity (namely, eigenvalues), where A is defined by

As = {p € C| Rep > -6}

and Rey is the real part of ;2. Although we only consider the linear stability in this paper, it may imply the
usual stability.

From Theorems 1 and 2, we can easily obtain a stable traveling wave solution in (RD) as a perturbed
solution of (1.5) and (1.6). However, we cannot obtain a traveling wave solution in (RD) by only Theorems
1 and 2 because Theorem 1 determines the behavior of solutions in (RD) and (1.2) in local time. We have
to give a rigorous proof in order to establish the existence of a traveling wave solution in (RD).

We follow the argument above and use the small parameter €. Qur problem is given by

L2(R) = {w € LL.(R)

—ecu’ = 2u” + eNu' + vk(u)vw — au,

(1.8) —cv’ = —k(u)vw,
—cw' = w" + Aw' — k(u)vw,
and boundary conditions
(1.9) u(xo0) =0, v(+o00)=v, >0, w(+o0)=wy,,
where the spatial coordinate z is given by z = = — ct.

Theorem 3. Under the same conditions as in Theorem 2, if A is sufficiently large, there is a traveling wave
solution, denoted by (u,v,w,c) of (1.8) and (1.9). In addition, the associated eigenvalue problem

end = e2¢” + e(c+ N)¢' + vk (wvwed + vk(u)wyp + vk(u)vn — ad,
(1.10) py = cp’ — K'(w)vweé — k(uw)wp — k(uw)vn,
un=n"+ (c+ A)n' — k' (u)vwe - k(uw)wyp — k(u)vy
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has a unique solution (¢,1,n, 1) = (u',v',w',0) in HXR) x HY{(R) xC(R) x As, where C,.(R) is defined by
Ci(R)={neC(R) | sup [n(z)]e"* < oo}.

—oo<z< o0

Furthermore the algebraic multiplicity of p =0 is 1.

So far we have been investigating a traveling wave solution which represents flame uniformly burning
against oxidizing wind. By numerical calculation we observe another type of solutions in (RD), “reflection
of traveling wave solutions” (see Figure 1, [4]). Our second aim in this paper is to consider the reflection
phenomena in (RD). Actually, reflection cannot be seen in the case that X is large. In the above we only
consider a traveling wave solution under the condition that ) is sufficiently large, which cannot be applied
to reflection phenomena. Then we construct a solution of (1.8) with A fixed again. '

t = 100 t = 400

FIGURE 1. Reflection of a traveling wave solution. In this figure, three lines (one solid line
and two dotted lines) represent the functions T', P, and W, respectively. This numerical
calculation was done in a finite interval. The traveling wave solution initially goes to right
(the left figure). After it hits the boundary, a different traveling wave solution arises (the
right figure).

Theorem 4. Fiz A. Under the same conditions as in Theorem 2, there is a traveling wave solution of (1.8)
and (1.9).

We also consider other traveling wave solution in (RD) in the opposite direction of the previous traveling
wave solution and study
’ 2,1

v + edu’ + vk(u)vw — au,
(1.11) cv' = —k(u)vw,

/
cw' = w" + A’ — k(w)vw,

EcCu

f

and boundary conditions
(1.12) u(£o0) =0, v(—o00)=1v,, w(+00)= w,.

Theorem 5. Fiz A independent of e. Under the same conditions as in Theorem 2, there is a traveling wave
solution of (1.8) and (1.9).

Here we remark a related result on the existence of a traveling wave solution of (1.5). This is the work of
Roques [7]. In this work, the author proved the existence of a traveling wave solution in a combustion model
with an ignition temperature (i.e. # > 0 in the definition of k(u)) without using any singular perturbation
theory. This result implies that (1.5) has only two traveling wave solutions with different wave speeds.
However, this work does not contain the case where k(u) is not of ignition type, namely, k(u) > 0 for u > 0.
In addition, the stability of those traveling wave solutions is unclear although it may be believed that a
traveling wave solution with a faster wave speed is stable and a traveling wave solution with a slower wave
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speed is unstable in general. On the other hand, we prove the existence of a traveling wave solution even in
the case of @ = 0. Furthermore, we also show the stability of that traveling wave solution by using a singular
perturbation theory.

This paper is organized as follows. In what follows we only give an-outline of the proof for Theorems 4
and 5. In the proof we apply singular perturbation theory. We formally construct solutions, called outer
and inner solutions. '

2. CONSTRUCTION OF A TRAVELING WAVE SOLUTION IN (1.8) AND (1.11)
In this section we construct a formal solution of (1.8) and (1.11). We set z — —2z and rewrite (1.8) into

ecu’ = e2u" — eNu' + vk(u)vw — au,

(2.1) o' = —k(u)vw,
cw' = w" = I’ — k(u)vw,

and boundary conditions

(2.2) u(too) =0, v(—00)=wv,, w(—00)=wy.

We first construct outer and inner solutions of this problem. We divide (—00,00) into three parts

I = (—00,0), I=(0,7), I3=(1,00).

The width of the second interval is a parameter denoted by 7, which is determined later. From the second
and third equations of (2.1), we have

w' — (c+ Nw' = k(u)vw = —cv'.
By integrating (—oo, z), it holds that

w' — (e + A)(w —w,) = —c(v—v,).

We treat this equation instead of the third equation of (2.1). Finally, we consider on each intervals

~

e2uM” _ elc+ /\')u(l)l + vk(uM) oMM — M) =0, 2el,
(2.3) { ' 4 k(u(l))v(l)w(l) =0, zelh,
w®' — (c+ N (w® - w,) = —c(v = v,), z € I,

la

~

e2u®” _ e(c+ A')u(z)’ + ’7k(u(2))v(2)w(2) —au® =0, z€ I,
(2.4) { @ 4 k(u®)u@w? = o, z €I,
L w®’ — (c+ NP —w,) = —c(v?® —v,), z € I,

and
e2u®” elc+ ,\')u(s)’ + vk(u®) @B — qu®) =0, zel;,
(2.5) cv® 4 k(u®)p® @) = o, zels,
w®’ — (c+ NWw® - w,) = —c(v® —v,), z € I3.
Also, we construct a formal solution of (1.11) by dividing (—o0, o) into three parts
I, = (-00,0), I»=(0,7), I3=(1,00).

Since our traveling wave solution is expected to be bounded, the function w must converge to a constant,
denoted by wy, as 2 — —o0 if exists. Since wy represents the density of oxygen in the direction where flame
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proceeds, w; must be nonnegative and less than w,. By the same argument as above, we replace the third
equation of (1.11) into a first-order differential equation and consider on each intervals

(2" 4 e(N - c)u(l)l + k(M)WMD — qu® =0, zel,
(2.6) { @ 4 E(uM)pMypt) = o, z € Ih,
L w® 4 (A = QW = wy) = —c(vV — v,), z€el,

((e2u@” e(N - c)u(z), + Yk(uP) @@ — qu®@ =0, ze€l,

(2.7) { cw® 4 k(u®)u@u@ = o, z€ I,
L w®' 4+ (A= ) (w® —wy) = —c(?® = v,), z € I,

and
e2u®" — g(N = )u®’ + 7ku® )@@ — gu® = 0, z€ls,
(2.8) cw® k(u®)u® @ = o, z€ls,

w®' § A= )w® —uy) = Zc(@® - v,), z € I3.

The nonnegative constant w,; will be determined later.

2.1. The lowest order approximation of (2.1). We first construct outer solutions. By putting € = 0 in
(2.3), we formally get

UV W - aU) =0, z € (—00,0),
VD' + KU WOWD = o, z € (~00,0),
We — e+ NI = wy) =~V —v,), 2 € (~o0,0),
Vi (—o0) = v, W(—00) = wy.
From the first and second equations it holds that Uél)(z) = 0 and Vo(l)(z) = v,. Then Wél)(z) is given by
Wo(l)(z) = w, — AeletA)?

for a constant A determined later.
Next, by putting € = 0 in (2.4), we formally get

TRU)WVEPWE - aU =, z € (0,7),

Vi + kUPIVEWE =, z € (0,7),

Wo(z), —(c+ )\)(Wéz) —w,) = —c(Vo(z) - ), z¢€(0,7),

V20 ="0), wi?(0) = wi(0).
Let p = h4(g) be a unique positive solution of vk(p)q — aq = 0. Then the first equation can be solved with
respect to Ué2) such as Uéz)(z) = hg4 (Vo(z)(z)WO(z)(z)). Substituting it into the second equation, we have

V&' = — k(b (VOWPYVO WS, 2 € (0,7),

W' — (c+ VWP —w,) = —e(V® —v,), ze (0,7),

V0(2)(0) = vy, Wéz)(O) = w, — A.

It is easy to see the existence of the solution of this problem by standard theory.for ordinary differential
equations.
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By putting € = 0 in (2.5), we formally get

U WVEWE — ati? =, e (o0,
V' + kUPWEWE =, 2 € (7,00),
W' — e+ NWE —w,) =~V —v,), z € (r,00),
V(1) = VP (), W (+00)| <-c0.

Traveling wave solutions are supposed to be bounded. We supposed that Wéa) satisfies the boundary
condition at oco. Then, by the similar argument above, we have Ués)(z) = 0, Vo(s)(_z) = Vo(z)('r), and
W (2) = w, + (VP (1) = v,)/(c + ).

Next we consider the inner solution at z = 0, 7. At z = 0, we introduce the stretched variable £ = 2/e.
Rewrite (2.1) by using £ and putting € = 0. Then we formally get

{ &50 - (C+ ’\,)¢0 + 7k(¢0)vr(u)r - A) - a¢0 = 0, 6 € (_m) 00),
¢o(~00) =0, ¢o(00) = UP(0) (= ha (v, (0, — A))),

where “"” denotes the differentiation with respect to £&. There is A such that for any given 0 < A < A, this
problem has a solution ®;(§) with a wave speed uniquely determined, denoted by ¢ = ¢*(A4). The constant
A is given such as the wave speed c? (A) corresponds to 0 for A = A. Note that ¢*(A) is continuous with
respect to A and decreases monotonically.

Before we consider the inner solution at z = 7, we first define a(c) and ®;(£). Let a(c) be a positive
constant such as the problem

¢ — (c+ X)d+ a(c)rk(¢) —ap =0, £ € (~o0,00),
$o(—00) = hi(alc)), ¢o(c0) =0

has a solution ®;(§) for each 0 < ¢ < &. We denote the maximum wave speed by G, i.e., ¢ is such a positive

constant as this problem does not have a traveling wave solution for ¢ > @.

Now we introduce the stretched variable £ = (z — 7) /e and obtain an inner solution at z = 7. We formally
obtain

{ do = (c+ N)do + 7k(#0) Vs (Wi (7) ~ ago = 0, ¢ € (~o0,00),
do(—00) = Ug?(7) (= ha (Vo (Ws?(7))),  do(o0) = 0.
If Vo(z)(T)Wéz) (7) is equal to a(c), this problem has a solution ¢o(€) = ().

We have defined all outer and inner solutions. Recall that the wave speed ¢ must be ¢*(A) for the existence

of ®1(¢). Then, substituting ¢ = ¢*(A) into the outer and inner solutions, we formally express our traveling
wave solution (u,v,w) as

(@1(2),vr, W (2)), zel,

(w,0,w) ~ { U@+ (@) - UPO) + (22520 - UP (), VP (), Wi (2)), =€ I,

(A2 (r) = )
c*(A)+ A

Unfortunately, the function w is not continuous at z = 7 in general. In addition, we do not see that there

does exist the function $,(¢), that is, V0(2)(T)W(§2)(T) correspond to a(c). To establish these two conditions,
we must choose an appropriate pair (A, 7), which is given in the next lemma.

(q)2(§)7vl)(2)(7)17”r+ ), z € I3.

Lemma 1. There is a pair (A*,7*) such that it satisfies

{ (*(A) + WP (1) = w,) = *(AVEP(r) = vy),

(2.9)
V()W (1) = alc*(4)).
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Proof. To prove this lemma, we evaluate the behavior of the solution of a differential equation
(AW = —k(hy (vw))vw, z >0,

(2.10) w' = (c*(A) + N)(w —w,) = —c*(A)(v—-v,), z2>0,
v(0)=v,, w0)=w,—A

in the v-w phase space. In particular it is important to study the A-dependency of the solution.
We introduce some notations here (see Figure 2). We define a line L and a hyperbolic curve II by

L = {(v,w) | (("‘(A) + A)(w—wy) =c*(A)(v-vr)}, = {(v,w)|vw=a(c(4))},

respectively. The line L is through (v, w,), while II is below (v,, w,) because of a(c*(A)) < v,w,. The slope
of L is positive so that L intersects IT at a unique point in v > 0,w > 0, denoted by (v4,w4). It is obvious
that v4 < v, and wa < w,. Let T be a segment defined by

['={(v,w) e LUl |vg <v<w}.

In what follows, we show that the solution of (2.10) is through the intersection (v4,w4) for some A.

We note that v’ is strictly negative for positive v and w, the initial value of (2.10) is below (v,,w,) in the
phase space. Due to the continuity and monotonicity of ¢*(A) with respect to A, (v, w, — A) is beneath L
and above II. Hence the flow of (2.10) must hit T at some z for 0 < A < A, denoted by z*(A). It is easy to
see that 2*(A) is uniquely determined. Since the solution of (2.10) continuously depends on the initial value
and parameters, z*(A) is continuous with respect to A.

We finally prove that there is A such that (v(2*(A)), w(2*(A))) = (va,wa) for some A. If A is close
to 0, the initial value is near (v,,w,;) € L. Then v decreases more than w for small z > 0 so that
(v(2*(A)), w(z*(A))) must be on L at z*(A). On the other hand, c*(A) tends to 0 as A — A, and then
the slope of L also tends to 0. Since wz = w, is larger than w, — A, (v(2*(A)), w(2*(A))) must be on II
at z*(A). From these facts and the continuity of ¢*(A) and z*(A) with respect to A, we can conclude that
there is A* such that (v(2*(A*)), w(z*(A*))) matches (v4-,w4-) by the intermediate value theorem. We put
T = 2*(A*). O

FIGURE 2. The line L and the hyperbolic curve II in the v-w plane. There is a unique
intersection of L and II, which corresponds to (va,wg).

2.2. The lowest order approximation of (1.11). In this subsection we obtain outer and inner solutions
for (1.11) by taking the limit of € — 0. When we construct the solutions, we need the relationship between
A and the wave speed c. In the next lemma, we prove that A must be larger than c.

Lemma 2. If there is a bounded solution of (1.11) and (1.12), the wave speed c is less than .

Proof. By the second equation of (1.11) and u — 0 as z — 00, v(+00) exists and v(4+o0) < v,. From the
third equation of (1.11), we have

(A = ) (wr —un) = —c(v, — v(+00)) < 0.

Due to w, > wy, we see A > c. 0O
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We first construct outer solutions by the similar argument in the previous section. By putting € = 0 in
(2.6), we have

Uél)(z) =0, Vo(l)(z) = v, Wo(l)(z) = wj.
By putting € = 0 in (2.7), we formally get UéQ) = h,,.(Vo(z)Wéz)), and (Vo(z) ) Wéz)) is a solution of
V' = —k(hy (VOWEWVEWE, z € (0,7),
W £ (A=W —wy) = c(w, - V), z€(0,7),
VP0) =v,, W) =wu.
Finally, by putting € = 0 in (2.8), we have
U () =0, V5 (z) = Vg (),

W5 () = (, - 3 () - v,)) (1 - e =90 — WP (r)e A=),

Note that Wéz) (r) = Wéa)(r) holds. From the boundary condition for the function w at oo, Wé3)‘(+oo)
=uy — C(VO(Z)(T) - v,)/(X = ¢) must be equal to w,. However it does not hold true in general. We will find
an appropriate value 1wy later.

Next we consider the inner solutions at z = 0 and z = 7. At z = 0, we introduce the stretched variable
§ = z/e. Rewrite (1.11) by using £ and putting € = 0. Then we formally get

{ $o + (N = c)do + Yk(do)vrun — adg = 0, € € (—o0,00),
$o(—00) =0, ¢o(00) = U (0) (= ha (vrun)).

This problem has a solution ®;(¢) with a wave speed ¢ = ¢*(w;) uniquely determined for each wqy > w.,
where w, is given such as ¢*(w,) = 0. Since our interest is in traveling wave solutions with a positive wave
speed, we naturally assume this condition. In addition we should consider the upper bound for w; because
¢*(un) must be smaller than A from Lemma 2. Hence we suppose that uy satisfies we < un < w*, where
w* are defined as follows. The constant w* is supposed to be w, in the case of A > ¢*(w,), while in the
case of A < ¢*(wy), it is defined such as c*(w*) = A. The wave speed c*(un) is continuous and increases
monotonically so that w,,w* are uniquely determined.

At z = 7, we introduce the stretched variable £ = (z — 7) /e and formally get

{ bo + (N = &)o + 7k(¢0) VX ()W (1) — ago = 0, € € (—00, ),
$o(—00) = U (1) (= ha (VP ()W (1)) do(00) = 0.

(2.11)

If Vu(z)('r)Wéz)(T) is equal to a(c*(uy)) for wy, this problem has a solution denoted by ®,(£), where a was
defined in the previous section.

We have already defined all outer and inner solutions of (1.11). Recall that the wave speed ¢ must be
c*(un) for the existence of ®1(£). Then, substituting ¢ = ¢*(uq) into the outer and inner solutions, we
formally express our traveling wave solution (u,v,w) as

(Ql(g)sv‘r’u"l), z e Il,
(u,v,w) ~ { (U (2) + (<1>1(§) ~UP(0)) + (@2(2 ; Ty~ U (1), VP (2), W8 (2)), z €I,
(®2(2), V& (r), WD (2)), zels.

The function w does not satisfy the boundary condition at z = +oco in general as described previously. In
addition, we do not see that there does exist the function ®5(&), that is, Vo(z)(‘r)Wéz) (7) corresponds to
a(c*(un)). To establish these two conditions, we must choose an appropriate pair (uy, 7), which is given in
the next lemma.
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Lemma 3. There is a pair (w},7*) such that it satisfies

c*(un) )
wy — ———— (Vo () — vr) = w,,
(2.12) A—c*(wg) O

VD (WP (1) = a(e* (wn)).
Proof. We first introduce several notations. Let (v,w) be a solution of
c*(un)v' = —k(hy(vw))vw, z>0,
(2.13) w + (A= c*(un))(w — wy) = —c*(wy))(v —v,), z>0,
v(0) = vy, w(0) = wy.
Define two lines L;, Ly and a hyperbolic curve II by
Ly = {(v,w) | (A= c*(un))(w — uy) = —c*(wn)(v — vr) },

A= c*(un)
—_— —-w
= () (wy — )},

II = {(v,w) | vw = a(c*(w))}.

Since the slope of L; is negative, L; intersects IT at two points. Let Pr, n be one of the intersections
whose component of v in the v-w plane is less than another point. We denote a unique intersection of Lo
and H by Pr, n. The point Pr, 1, denotes the intersection of L; and Ly. We also set Py = (vr, wy) and
Py = (v, a(c*(un))/vy), which are on Ly and TI, respectively. By these notations, we define a set T', which
consists of segments of Ly, Ly and I, by

I'= {(v,w) | (v,w) € Ly between Py 3 and P,} U {(v,w) | (v,w) € II between P, and Py}.

On the line L;, w' = 0 and v’ < 0 so that the solution (v,w) of (2.13) must be I" at some z. Let z*(un) be
the first point of z where (v,w) is on I'. It is obvious that z*(u;) depends on uy continuously.

Actually, the line L3 is not included in v > 0 for uy close to w, because of ¢*(w,) = 0. Since (A=
c*(un)) (wr — uwn)/c*(un) decreases monotonically with respect to wy, there is uniquely 1, such that

A —c*(1y)
c* (i)
Clearly, w, < w0, holds so that we only consider W, < uw; < w”* in the following.

We see by the same argument as in the proof of Lemma 1 that (v,w) hits Pr, n for some w;, which
completes the proof of the lemma. If wy is near ,, the w-component of Pp, n is large. Then, (v, w) is on II
for z = 2*(u;). On the other hand, in the case of w; = w*, the initial value (v,,w*) lies on Lj, which implies
that (v,w) is on Ly for w; near w* at z = z* (un). Due to the continuity of z*(u;) with respect to w;, there
is " such that (v(z*(w})), w(z*(w}))) is equal to Pr, . O

Ly ={(v,w) | v=v, —

(wr — ) = 0.
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