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1. Introduction
In this paper we discuss on the singular limit of the tristable Allen-Cahn
type equation of the form

$tJ_{t}-\Delta\tau\iota+\frac{f_{0}(u)+\epsilon f_{1}(u)}{\epsilon^{2}}=0$ in $\mathbb{R}^{N}\cross(0, T)$ , (1.1)

$u|_{t=0}=g$ on $\mathbb{R}^{N}$ . (12)

For $f_{0},$ $f_{1}\in C^{2}(\mathbb{R})$ and $g\in BUC(\mathbb{R}^{N})$ we a.ssume that

(Fl) either $f(u)=f(-u)$ or $f(u+1)=f(u)$ holds for $u\in(-1,0)$ ,

(F2) there exist $a_{0}\in(-1,0)$ and $a_{1}\in(0,1)$ such that $f_{0}(-1)=f_{0}(a_{0})=$

$f_{0}(0)=f_{0}(a_{1})=f_{0}(1)=0$ ,

(F3) there exists $R>1$ such that $f_{0}>0$ in $(-1, a_{0})\cup(0, a_{1})\cup(1, R)$ and
$f_{0}<0$ in $(-R, -1)\cup(a_{0},0)\cup(a_{1},1)$ ,

(F4) $f_{0}’(k)>0$ for $k=-1,0,1$ , and $f_{0}(a_{k})<0$ for $k=0,1$ ,

$( F5)\int_{-1}^{0}f_{0}(u)du=\int_{0}^{1}f_{0}(u)du=0$ ,

$( F6)\int_{-1}^{0}f_{1}(u)du\leq\int_{0}^{1}f_{1}(u)du$ .

(Gl) $\inf_{R^{N}}g<b_{0},$ $s\iota ip_{\mathbb{R}^{N}}g>b_{1}$ ,

(G2) there exists $\overline{\delta}>0$ such that $\lambda_{k}(\delta)=$ sllp$\{g(x); d_{0}^{k}(x)<-\delta\}$ and
$\Lambda_{k}(\delta)=\inf\{g(x);d_{0}^{k}(x)>\delta\}$ are monotone decreasing and increasing
for $\delta\in(0,\overline{\delta})$ and $k=0,1$ , respectively, where $d_{0}^{k}$ is the signed distance
function of $\Gamma_{0}^{k}$ $:=\{x;g(x)=b_{k}\}$ defined as

$d_{0}^{k}(x):=\{\begin{array}{l}dist (x, \Gamma_{0}^{k}) if x\in\{y\in \mathbb{R}^{N};g(y)\geq b_{k}\},-dist(x, \Gamma_{0}^{k}) if x\in\{y\in \mathbb{R}^{N};g(y)<b_{k}\},\end{array}$ (1.3)

and dist $(x, U);= \inf\{|x-y|;y\in U\}$ for $U\subset \mathbb{R}^{N}$ .
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The typical example of $f_{0}$ is

$f_{0}(u)= \frac{d}{du}u^{2}(u-1)^{2}(u+1)^{2}=2u(u-1)(u+1)(3u^{2}-1)$ ,

$f_{0}(u)= \frac{d}{du}\frac{1-\cos(2\pi u)}{2\pi}=\sin(2\pi u)$ .

The equation (1.1) is the $L^{2}$ gradient flow of the following energy form

$\mathcal{E}(u)=\int_{\mathbb{R}^{N}}[\frac{|\nabla u|^{2}}{2}+\frac{F_{0}(u)+\epsilon F_{1}(u)}{\epsilon^{2}}]du$,

where $F_{0}= \int f_{0}$ and $F_{1}= \int f_{1}$ . The assumptions $(F2)-(F4)$ imply that
$F_{\epsilon}(u)$ $:=F_{0}(u)+\epsilon F_{1}(u)$ has three local minima at $\alpha_{k}=k+O(\epsilon)$ for $k=$

$-1,0,1$ , and two local maxima at $\beta_{k}=b_{k}+O(\epsilon)$ for $k=0,1$ a.s $\epsilonarrow 0$ ,
respectively. Thus, from analogy to the Allen-Cahn equation and (Gl), one
can find three stable equilibria expressed by the region satisfying $u\approx k$ for
$k=-1,0,1$ , and two evolving internal transition layers around $\{(x, t)\in$

$\mathbb{R}^{N}\cross(0, T);u(x, t)=\beta_{k}\}$ for $k=0,1$ . By formal asymptotic analysis as in
[10] or [11] the layers approximate the motion of interfaces evolving by

$V=-H+A_{k}$ , (1.4)

where $V$ is the normal velocity of the interface, $H$ is its mean curvature
defined with the opposite normal vector for $V$ , and $A_{k}$ is the constant as

$A_{k}=-C \int_{-1}^{k}f_{1}(u)du$ ,

where $C$ is the niimerical constant determined only on $f_{0}$ , which is in partic-
ular independent of $k$ . See also [9] for the details of a.symptotic analysis.

Our aim is to give a rigorous convergence result of internal transition
layers to the interfaces evolving by (1.4), in particular when $A_{k}$ are different
but satisfy (F6), i.e.,

$A_{0}\geq A_{1}$ . (1.5)
The dynamics of intemal transition layers for Allen-Cahn equation, which

is the $L^{2}$ gradient fiow of $E$ with bistable potential $F_{\epsilon}$ , is studied by [10] with
formal asymptotic analysis. Rigorous convergence results of layers to in-
terfaces evolving by (1.4) are shown by [3, 2, 1]. Asynlptotic analysis for
Allen-Cahn type equation with multiple-well potential is given by [11] and
[9]. The rigorous convergence result for Allen-Cahn equation with multiple-
well potential is obtained by [8] when $f_{0}$ and $f_{1}$ is periodic with same periods.
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Our problem is its extension with removing assumptions of periodicity for $f_{1}$ .
The crucial difference is that the driving forces $A_{k}$ for internal transition lay-
ers depend on $k$ , and then interfaces or intemal transition layers may collide
with each other. However, we are now a.ssume (1.5). The important property
obtained from above is that evolving interfaces $\Gamma_{t}^{k}$ by (1.4) do not collide with
each other if $\Gamma_{t}^{0}$ is on the outside of $\Gamma_{t}^{1}$ . In this case we can investigate the
motion of layers similarly $a_{\wedge}s[8]$ . However we need each interfaces evolving
(1.4) with $k=0,1$ to know the motion of layers. It is one of differences from
the result of [8].

In the next section we consider the motion of interfaces by (1.4) in level
set sense. Our situation includes the situation that interfaces are not com-
pact. Thus we have to treat viscosity solutions to level set equation for (1.4)
carefully. In the third section we shall sketch the proof of the convergence
result. Throughout this paper we simply write

$\{x\in \mathbb{R}^{N};v(x, t)=\gamma\}=\{v(\cdot, t)=\gamma\}$ ,
$\{(x, t)\in \mathbb{R}^{N}\cross(0, \infty);v(x, t)=\gamma\}=\{v(\cdot, \cdot)=\gamma\}$ $(or \{v=\gamma\})$

for $v:\mathbb{R}^{N}\cross[0, \infty)arrow \mathbb{R}$ and $\gamma\in \mathbb{R}$ for the simplicity of notations. Similarly
we express $\{v(\cdot, t)\geq 0\},$ $\{v\geq 0\}$ and other inequalities. The second set on
the above does not include $t=0$ , and accordingly we especially write as

$\{v=\gamma\}\subset \mathbb{R}^{N}\cross[0, \infty)$ or $\{v=\gamma\}\subset \mathbb{R}^{N}\cross(0,T)$

if we have to clarify the time interval of the sets. We also denote the intemal
transition layer evolving by (1.1) or interfaces evolving by (1.4) just by layer
or interface for simplicity.

2. Level set equations
In this section we construct target interfaces evolving by (1.4) with level set
method for the convergence of internal transition layers by a solution of (1.1).
We also prepare some properties of the interfaces.

In the level set method we describe the evolving interfaces $\Gamma_{t}^{k}$ by (1.4) a.s

$\Gamma_{t}^{k}:=\{w^{k}(\cdot, t)=0\}$ (2.1)

with an at least continuous function $w^{k}:\mathbb{R}^{N}\cross[0, \infty)arrow \mathbb{R}$. Here we give the
direction of the motion by

$\vec{n}_{k}=-\frac{\nabla w^{k}}{|\nabla w^{k}|}$ .

170



Then, the level set equation of (1.4) is of the form

$tl)^{k_{-}}t|\nabla\tau l)^{k}|\{div\frac{\nabla w^{k}}{|\nabla w^{k}|}+A_{k}\}=0$ $in$ $\mathbb{R}^{N}\cross(0, T)$ . (22)

(See [4] for the details.) In this paper we intend to prove that intemal
transition layers in $(1.1)-(1.2)$ approximate the evolving interfaces $\Gamma_{t}^{k}$ with
initial interfaces

$\Gamma_{0}^{k}:=\{g=b_{k}\}$ .
Here we do not assume any compactness for initial interfaces $\Gamma_{0}^{k}$ . Thiis we
have to consider the comparison principle for viscosity solutions for the prob-
lem in unbounded doniain, which is key lemma to estimate the solution to
(2.2) or (1.1). We now recall simple version of Theorem 2.1 in [5] adjusting
to our problems.

Lemma 2.1. ([5, Theorem 2.1]) Let $u$ and $v$ be, respectively, viscosity
sub- and supersolution of (2.2) in $\mathbb{R}^{N}\cross(0, T)$ . Assume that

$(Al)u(x, t)\leq K(|x|+1)fv(x, t)\geq-K(|x|+1)$ for some $K>0$ independent
of $(x, t)\in \mathbb{R}^{N}\cross(0, T)$;

$(A2)$ there is a modulus $m_{T}$ such that

$u^{*}(x, 0)-v_{*}(y, 0)\leq m_{T}(|x-y|)$ for $(x,y)\in \mathbb{R}^{2N}$ ;

$(A3)u^{*}(x, 0)-v_{*}(y, 0)\leq K(|x-y|+1)$ on $\mathbb{R}^{2N}$ for some $K>0$ independent
of $(x, y)\in \mathbb{R}^{2N}$ .

Then there is a modulus $m$ such that

$u^{*}(x, t)-v_{*}(y, t)\leq m(|x-y|)$ for $(x, y, t)\in \mathbb{R}^{2N}\cross(0, T]$ .

In particular $u^{*}\leq v_{*}$ on $\mathbb{R}^{N}\cross(0, T]$ .

The difference between the above and the usual comparison principle is the
additional conditions (Al) and (A3). For not only the uniqueness of solutions
$b_{11}t$ also the properties of interfaces evolving (1.4) with $k=0$ and $k=1$ ,
we now sketch the construction of a viscosity solution $w^{k}$ to (2.2) satisfying
(Al) and (A3).

Let us choose an initial data for $w^{k}a_{\wedge}s$

$w^{k}|_{t=0}=d_{0}^{k}$ on $\mathbb{R}^{N}$ , (2.3)
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where $d_{0}^{k}$ is deflned as (1.3). The basic strategy of the construction is by
Perron’s method due to H. Ishii. (See [6].) In the method the solution is
given by

$w^{k}(x, t)=siip\{z(x, t)$ ; $\phi(x,t)\leq z(x,t)\leq\psi(x,t)zi_{\iota}savisco_{\iota}sity_{S11}bso1_{11}tion$

to $(2.2),$
$\}$

with a viscosity sub- and super-solution $\phi$ and $\psi$ satisfying $\phi(\cdot, 0)=\psi(\cdot, 0)=$

$d_{\eta}^{k}$ , respectively.
Here we construct only $\psi$ since the construction of $\phi$ is similar. Note that

$d_{0}^{k}$ satisfies

$|d_{0}^{k}(x)-d_{0}^{k}(y)| \leq|x-y|\leq\mu+\frac{1}{4\mu}|x-y|^{2}$ for $(x, y)\in \mathbb{R}^{2N},$ $\mu>0$ .

Then, we now introduce

$\tilde{v}_{y,\mu}^{+}(x, t)=\frac{1}{2\mu}(N-1+4|A_{k}|)+\frac{1}{4\mu}|x-y|^{2}+\mu$,

$\overline{v}_{y,\mu}^{+}(x, t)=\frac{1}{2\mu}(N-1+4|A_{k}|)+|x-y|+\mu+\frac{1}{\mu}-2$.

All the coefficients in the above functions are chosen by technical reason to
satisfy all the following properties;

(i) $\tilde{v}_{y,\mu}^{+}$ is a viscosity supersolution to (2.2) for $(x, t)\in B_{4}(y)\cross(O, T]$ , where
$B_{r}(y):=\{x\in \mathbb{R}^{N};|x-y|<r\}$ ,

(ii) $\overline{v}_{y,\mu}^{+}$ is a viscosity supersolution to (2.2) for $(x, t)\in(\mathbb{R}^{N}\backslash \overline{B_{1’ 2}(y)})\cross(O, T]$

provided that $\mu<1/4$ ,

(iii) $\tilde{v}_{y,\mu}^{+}<\overline{v}_{y,\mu}^{+}$ on $B_{2}(y)\cross[0, T]$ ,

(iv) $\tilde{v}_{y,\mu}^{+}>\overline{v}_{y,\mu}^{+}$ on $(\mathbb{R}^{N}\backslash \overline{B_{2}(y)})\cross[0, T]$ .

We now introduce

$v_{y_{r}\mu}(x, t):=\{\begin{array}{ll}\tilde{v}_{y,\mu}(x, t) on B_{1}(y)\cross[0, T],\min\{\tilde{v}_{y,\mu}(x, t),\overline{v}_{y_{J}\mu}(x, t)\} on (B_{3}(y)\backslash B_{1}(y))\cross[0,T],\overline{v}_{y,\mu}(x, t) otherwise.\end{array}$

Then $v_{y,\mu}$ is a viscosity supersolution of (2.2) in $\mathbb{R}^{N}\cross(0, T]$ by stability of
viscosity solutions provided that $\mu\in(0,1/4)$ . Consequently, the function

$\psi(x, t):=\inf\{v_{y,\mu}(x, t)+d_{0}^{k}(y);y\in \mathbb{R}^{N}, \mu\in(0,1’ 4)\}$
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is still a viscosity supersolution of (2.2) satisfying $\psi(x, 0)=d_{0}^{k}(x)$ for $x\in$
$\mathbb{R}^{N}$ . The viscosity subsolution $\phi$ is constructed by $\tilde{v}_{\overline{y,}\mu}(x, t)$ $:=-\tilde{v}_{y,\mu}^{+}(x, t)$ ,
$\overline{v}_{\overline{y_{J}}\mu}(x, t):=-\overline{v}_{y,\mu}^{+}(x, t)$ , and their supremum.

From the definition of $\phi$ and $\psi$ we find

$\phi(x, t)\geq-(|x|+Lt+\mu+\frac{1}{\mu}-2)$ ,

$\psi(x, t)\leq|x|+Lt+\mu+\frac{1}{\mu}-2$

for $(x, t)\in \mathbb{R}^{N}\cross[0, T]$ , where $L=(N-1+4|A_{k}|)/\mu$ . This implies (Al)
and (A3). Moreover, from the Lipschitz continuity and [5, Corollary 2.11]
we have

$|w^{k}(x, t)-w^{k}(y, t)|\leq|x-y|$ for $x,$ $y\in \mathbb{R}^{N}$ and $k=0,1$ .

The above and (F6) yield that interfaces $\Gamma_{t}^{k}$ $:=\{x\in \mathbb{R}^{N};w^{k}(x, t)=0\}$ do
not collide with each other for $t>0$ .

Lemma 2.2. ([9, Lemma 3.1]) Assume that $A_{0}\geq A_{1}$ . Let $w^{k}$ be a viscos-
ity solution to (2.2) with (2.3). Let

$U_{t}^{k}:=\{w^{k}(\cdot, t)>0\}$ .

Then $U_{t}^{1}\subset U_{t}^{0}$ for $t\in[0, T]$ . Moreover,

dist $(\Gamma_{t}^{0}, \Gamma_{t}^{1})\geq$ dist $(\Gamma_{0}^{0}, \Gamma_{0}^{1})>0$ for $t\in[0, T]$ ,

where $\Gamma_{t}^{k}$ is given by (2.1) for $k=0,1$ .

Here we omit the proof of Lenima 2.2. See [9] for the detail of the proof.

3. Convergence
We intend to prove the convergence of internal transition layers in a solution
to $(1.1)-(1.2)$ to the interfaces evolving (1.4) with level set formulation.

In [3] the authors show the convergence results for the usual Allen-Cahn
equation in $\mathbb{R}^{N}\cross[0, \infty)$ with a special initial datum which is constructed by
a standing wave and the signed distance froni initial interface. However, it is
not clear to find such an initial datum in our problem. Thus we shall prove
the convergence under general initial data.
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To state our main result we now prepare some notations. Let $w^{k}$ be a
viscosity solution to $(2.2)-(2.3)$ . We now denote “interfaces”, “insides” and
”outsides” of interfaces by $\Gamma,$ $I$ and $O$ , respectively which are defined as

$\Gamma_{t}^{k}:=\{w^{k}(\cdot, t)=0\}$ ,

$I_{t}^{k}:=\{w^{k}(\cdot, t)>0\}$ ,

$O_{t}^{k}:=\{w^{k}(.., t)<0\}$ ,

$\Gamma^{k}:=\bigcup_{t>0}\Gamma_{t}^{k}\cross\{t\}$
,

$I^{k}:= \bigcup_{t>0}I_{t}^{k}\cross\{t\}$
,

$O^{k}:= \bigcup_{t>0}O_{t}^{k}\cross\{t\}$ .

Theorem 3.1. Assume that $(Fl)-(F6),$ $(Gl)-(G2)$ hold. Let $u$ be a solution
to $(1.1)-(1.2)$ . Then,

$uarrow\{\begin{array}{lll}-l in O^{0}\cap O^{1}0 in I^{0}\cap O^{l}+l in I^{0}\cap I^{1}\end{array}\}$ locally uniformly as $\epsilonarrow 0$ .

The our main result has a kind of advantages against to $[3]$ ’s one such that the
convergence result holds for general initial data. However, the convergence
does not hold at $t=0$ (see the definitions of $I^{k}$ and $O^{k}.$ ) It is because of
general initial data.

We now sketch the proof. The strategy of the proof is similar to [8]. More
precisely, it is in two steps expressed by the following lemmas. The first step
is to show the behavior of a solution $u$ to $(1.1)-(1.2)$ that traveling fronts
appear in very short time.

Lemma 3.2. (Generation of fronts.) Let $u$ be a solution of $(1.1)-(1.2)$ .
Assume that $(Fl)-(F4)$ . Then, for any $\mu>0$ and $m>0_{f}$ there exists
$\overline{\epsilon}=\overline{\epsilon}(\mu, m)$ and $\tau_{0}=\tau_{0}(\mu)$ such that

$u(x, \tau_{0}\epsilon^{2}|\log\epsilon|)\geq\alpha_{-1}-\mu\epsilon$ for $x\in \mathbb{R}^{N}$ ,
$u(x, \tau_{0}\epsilon^{2}|\log\epsilon|)\leq\alpha_{1}+\mu\epsilon$ for $x\in \mathbb{R}^{N}$ ,
$u(x, \tau_{0}\epsilon^{2}|\log\epsilon|)\leq\alpha_{k-1}+\mu\epsilon forx\in\{y\in$ 飛$N_{;}g(y)\leq b_{k}-m\}$ ,
$u(x, \tau_{0}\epsilon^{2}|\log\epsilon|)\geq\alpha_{k}-\mu\epsilon$ for $x\in\{y\in \mathbb{R}^{N};g(y)\geq b_{k}+m\}$

provided that $\epsilon\in(0,\overline{\epsilon})_{f}$ where $\hat{\alpha}=\max\{|\alpha_{-1}|, |\alpha_{1}|\}$ .

174



We are now assume (Gl) without periodicity like as [8] so that we cannot
apply [8, Theorem 3.1]. However, if $g\in[-1,0]$ or $g\in[0,1]$ in $\mathbb{R}^{N}$ , then
we obtain the above estimate by applying the method as in [2, \S 3] or [8,
\S 3] with a little adjustment. Thus we modify their method to adjust to our
problem. More precisely, we give the modification $\overline{f_{\epsilon}}$ of $f_{\epsilon}$ as in [2] or [8] in
the both domain $(-\infty, 0]$ and $(0, \infty)$ . To apply the similar argument as in
[8, \S 3] independently in $\{g\leq b_{0}-m\}$ and $\{g\leq b_{1}-m\}$ , then we obtain
Lemma 3.2.

The second step is to construct a supersolution stated the following lemma
for the estimate of the convergence.

Lemma 3.3. (Large wave solution.) Assume that $(Fl)-(F6)$ and $(Gl)$
hold. Then, there exist $K_{k}>0$ for $k=-1,0,1$ which is independent of

$\epsilon$ such that for any $\delta>0$ there exists a viscosity supersolution $\psi^{\epsilon,\delta}$ to (1.1)
satisfying

$\psi^{\epsilon,\delta}(x, 0)\geq(\alpha_{-1}+\epsilon K_{-1})\chi_{\{d_{0}^{O}\leq 2\delta\}}(x)$

$+(\alpha_{0}+\epsilon K_{0})x_{\{d_{0}^{1}\leq 2\delta\}\backslash \{\theta_{\Omega}\leq 2\delta\}(x)}$ (3.1)
$+(\alpha_{1}+\epsilon K_{1})\chi_{\{d_{O}^{1}>2\delta\}}(x)$,

$\overline{\epsilonarrow 0lin1}\psi^{\epsilon,\delta}(x, t)\leq\{\begin{array}{lll}-l in\{\theta(\cdot,t)\leq 0\}0 in\{d^{l}(\cdot,t)\leq 0\}+l other\uparrow vise \end{array}\}$ for $t\geq 0$ ,

where $d^{k}(\cdot, t)$ is the signed distance fnnction of $\Gamma_{t}^{k}\subset \mathbb{R}^{N}$ with same sign as
$w^{k}(\cdot, t)$ for $k=0,1_{f}$ and $\chi_{U}:\mathbb{R}^{N}arrow \mathbb{R}$ is the chamcteristic function defined
$as$

$\chi_{U}(x)=\{\begin{array}{l}1?_{\text{ノ}}fx\in U0other\uparrow vise\end{array}$

for $U\subset \mathbb{R}^{N}$ .

Note that $\{d_{0}^{0}\leq 2\delta\}\subset\{d_{0}^{1}\leq 2\delta\}$ and thus the right hand side of (3.1) takes
only the three values $\alpha_{k}+\epsilon K_{k}$ for $k=-1,0,1$ . The strategy of the proof is
to modify the method as in [8]. First, we construct a viscosity supersolution
with a traveling wave solution and truncated distance function a.s in [3]. A
traveling wave solution is of the form $u(x, t)=q_{k}$ ( $x\cdot$ e–ct) with a pair of a
function and a constant $(q_{k}, c)$ for some $e\in \mathbb{S}^{N-1}$ , and thus $q_{k}$ and $c$ satisfy

$-q_{k}-cq_{k}+f_{\epsilon}(q_{k})=0$ in $\mathbb{R}$ ,
$q_{k}(-\infty)=\alpha_{k-1},$ $q_{k}(0)=\beta_{k},$ $q_{k}(\infty)=\alpha_{k}$ . (3.2)
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We now use $d^{k}(x, t)$ to construct a traveling wave solution related to $\Gamma_{t}^{k}$ . By
similar argument as in [3, \S 2] we obtain

$d_{t}^{k}-\Delta d^{k}-A_{k}|\nabla d^{k}|\geq 0$ in $\{d^{k}>0\}\subset \mathbb{R}^{N}\cross(0, T^{*}\cdot]$

in viscosity sense, where $\tau*$ is the extinction time of $\{w^{k}(\cdot, t)=0\}$ (see
[3, \S 2] for the details of the extinction time). However, there is no such a
good estimate in $\{d^{k}(\cdot, \cdot)\leq 0\}$ , thus we also introduce a truncated distance
fiinction as in [3, \S 3]. Let $\eta\in C^{\infty}(\mathbb{R})$ be a cut-off function satisfying

$\eta(s)=\{$ $s-\delta-\delta$

for $s\in(\delta 2, \infty)$ ,
for $s\in(-\infty, \delta/4)$ ,

$0\leq\eta’(s)\leq C_{\eta}$ , $|\eta’’(s)|\leq C_{\eta}\delta$ for $s\in \mathbb{R}$

for $\delta>0$ , where $C_{\eta}$ is a positive constant. Then, by the similar argument
as in [8], for $\delta>0$ there exist positive constants $K_{1,k}$ and $K_{2,k}$ which are
independent of $\epsilon>0$ such that

$\psi^{k}(x, t):=q_{k}(\frac{\eta(d^{k}(x,t))+K_{1,k}t}{\epsilon})+\epsilon K_{2k,)}$

is a viscosity supersolution of (1.1) for sufficiently small $\epsilon>0$ . See [8] how
to choose $K_{1,k}$ and $K_{2,k}$ . The important properties are such that

$\eta(d^{k}(x, t))+K_{1}t<-\frac{\delta}{2}$ for $(x, t)\in\{d^{k}\leq 0\}\subset \mathbb{R}^{N}\cross[0, \infty)$ ,

$\eta(d^{k}(x, t))+K_{1}t>\delta$ for $(x, t)\in\{d^{k}\geq 2\delta\}\subset \mathbb{R}^{N}\cross[0, \infty)$ .

The characteristic difficulty to prove the convergence with multiple-well
potential is that each $\psi^{k}$ is not useful to estiniate a solution because of (3.2).
In particular $\psi^{0}$ crosses to $u$ and thus the comparison principle does not hold
between $\psi^{0}$ and $u$ . One attempt to consider

$q(-\infty)=\alpha_{-1}$ , $q(\infty)=\alpha_{1}$

instead of (3.2). However, the author remarked in [8] that there is no such a
solution in general. To overcome this difficulty we pile up solutions $\psi^{k}$ like
a.s [8]. Note that we can choose $K_{1,0}=K_{1,1}$ , and $K_{2,k}=2^{-k}K_{2}$ for some
positive constant $K_{2}$ which is independent of $k=0,1$ . We now define

$\psi(x, t):=\{\begin{array}{ll}\min\{\psi^{0}(x, t), \psi^{1}(x, t)\} for (x, t)\in\{d^{0}\leq 2\delta\}\subset \mathbb{R}^{N}\cross[0, T^{*}]\psi^{1}(x, t) otherwise\end{array}$
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for sufficiently small $\delta>0$ . From Lemma 2.2 $\psi$ is well-defined for sufficiently
small $\delta>0$ . Moreover, from the properties of $q,$

$d^{k}$ and $\eta$ we find $\psi$ is a
desired viscosity supersolution in Lemma 3.3.

The crucial difference between our problem and [8] is the way to construct
$\psi^{k}$ , especially we use each distance function $d^{k}$ from $\Gamma_{t}^{k}$ . If $f_{\epsilon}$ is periodic as
in [8], we can choose $q_{0}(s)+2$ instead of $q_{1}$ , and $d^{0}(x, t)-\gamma$ for some $\gamma>0$

instead of $d^{1}(x, t)$ . However, it does not work well in our problem since $A_{k}$

are depend on $k$ . Thiis we have to introduce an each distance function of
interfaces and a traveling wave solution.

Finally we present a sketch of the proof of Theorem 3.1. It is similar
to that of [8]. However there is a little difference in particular how to use
Lemma 3.2. It is because of the difference of initial data for a solution to the
level set equation.

Sketch of the pmof of Theorem 3.1. We now present a sketch of the estimate
of $u$ from above since the estimate from below is similar.

Fix $\delta\in(0,\overline{\delta})$ . Then there exists $m>0$ such that $\{d_{0}^{k}\leq-\delta\}\subset\{g<$

$b_{k}-m\}$ . Thus, to apply Lemma 3.2 with $\mu=K_{2}/4$ we obtain

$u(x, \tau_{0}\epsilon^{2}|\log\epsilon|)\leq(\alpha_{-1}+\epsilon K_{2}\prime 4)\chi_{\{d_{0}^{0}\leq-\delta\}}(x)$

$+(\alpha_{0}+\epsilon K_{2}’ 4)\chi_{\{d_{0}^{1}\leq-\delta\}\backslash \{d_{0}^{0}\leq-\delta\}}(x)$

$+(\alpha_{1}+\epsilon K_{2}\prime 4)\chi_{\{d_{0}^{1}>-\delta\}}(x)$

$=:v^{\delta}(x)$ .

We now consider

$\Gamma_{t}^{k,\delta}:=\{x\in \mathbb{R}^{N};w^{k}(x, t)=-3\delta\}$ .

Then, since $w^{k}(x, t)+3\delta$ is still a viscosity solution to (2.2), we find

$\psi^{k,\delta}(x, t):=q_{k}(\frac{\eta(d^{k,\delta}(x,t))+K_{1}t}{\epsilon})+2^{-k}\epsilon K_{2}$

is still a viscosity supersolution to (1.1) for $k=0,1$ and sufficiently small
$\epsilon>0$ , where $d^{k_{r}\delta}(\cdot,t)$ is a signed distance function of $\Gamma_{t}^{k,\delta}$ with same sign
as $w^{k}(\cdot, t)+3\delta$ for $t\in[0, T_{\delta}^{*}]$ , and $T_{\delta}^{*}$ is the extinction time of $\Gamma_{t}^{k_{t}\delta}$ . Rom
definition of $d^{k_{J}\delta}$ or $d^{k}$ we have

$\{d^{k_{1}\delta}(\cdot, 0)\geq 2\delta\}\supset\{d_{0}^{k}(.)\geq-\delta\}$ . (3.3)

This implies that

$\psi^{k,\delta}(x, 0)\geq\alpha_{k}+\epsilon K_{2}/4$ for $x\in\{d_{0}^{k}\geq-\delta\}$
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for sufficiently small $\epsilon$ , since the convergence lini $sarrow\infty q_{k}(s)=\alpha_{k}$ is exponen-
tially fast (see [8]). Thus, from (3.3) we obtain

$v^{\delta}(x)\leq\psi^{k_{1}\delta}(x, 0)$ for $x\in \mathbb{R}^{N}$ .

From the coniparison principle we have

$\uparrow l(x, t+\tau_{0}\epsilon^{2}|\log\epsilon|)\leq\psi^{k,\delta}(x, t)$ for $(x, t)\in \mathbb{R}^{N}\cross[0, T_{\delta}^{*}]$ .

Thus we obtain

$\overline{\epsilonarrow 0lin\iota}u(x, t)\leq k$ for $(x, t)\in\{w^{k}\leq-3\delta\}\subset \mathbb{R}^{N}\cross(0, T_{\delta}^{*}]$ .

Since $O^{k}= \bigcup_{\delta>0}\{w^{k}\leq-3\delta\}$ we obtain the estimate of the convergence in
Theorem 3.1 from above. $\square$
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