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Abstract

In this paper, we show new bounds of the log canonical threshold for Van-
"dermonde matrix type singularities and summarize our recent results for the log
canonical thresholds of singularities in learning models.
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1 Introduction

Recently, the term “algebraic statistics” arises from the study of probabilistic models and
techniques for statistical inference using methods from algebra and geometry (Sturmfels
[29]). Our study is to consider the generalization error and the stochastic complexity in
learning theory by using the log canonical threshold in real and complex analysis and
algebraic geometry.

The log canonical threshold cz(Y, f) in algebraic geometry is analytically defined by

cz(Y, f) = sup{c: |f|7¢ is locally L? on U},
over the complex field and
cz(Y, f) = sup{c: |f|~¢ is locally L' on U},

over the real field for a nonzero regular function f on a smooth variety Y, where Z C Y
is a closed subscheme and U a neighborhood of Z (Kollr [19], Mustata [22]).

It is also known that cy(C¢, f) is the largest root of the Bernstein-Sato polynomial
b(s) € C[s] of f, where b(s)f® = Pf**! for a linear differential operator P(Bernstein
[12], Bjork[13], Kashiwara[18]). Let ¢(z) = [, |f(w)|**1dw A dW over the complex field
and ((z) = [, |f(w)[*¥dw over the real field, where 1 is a C* function with compact
support. Atiyah proved that ((z) is a meromorphic function on C, and its poles are
negative rational numbers, by using resolution of singularities [11]. The largest pole of
¢(z) corresponds to —cz(Y, f), if supp(v) O Z. We denote by 6z(Y, f) the order of the



largest pole in this paper. For simple example, we have ¢y (C, 2™) = 1/m, 6,(C,2™) =1
and ¢p(R,z™) = 1/m, 6(R, ™) = 1.

We have many differences between the real field and the complex field, for example,
log canonical thresholds over the complex field are less than 1, while those over the real
field are not necessarily less than 1. In algebraic geometry and algebraic analysis, these
studies are usually done over an algebraically closed field (Kollar {19], Mustata [22]). We
cannot apply results over an algebraically closed field to our cases over the real field,
directly.

The theoretical study of hierarchical learning models has been rapidly developed in
recent years. The data analyzed by such learning models are associated with image or
speech recognition, artificial intelligence, the control of a robot, genetic analysis, data
mining, time series prediction, and so on. They are very complicated and usually not
generated by a simple normal distribution, as they are influenced by many factors. Hi-
erarchical learning models such as the normal mixture model, the Boltzmann machine,
layered neural network and reduced rank regression may be known to be effective learning
models. They, however, likewise have complicated, i.e., non-regular statistical structures,
which cannot be analyzed using the classic theories of regular statistical models. (Harti-
gan [17], Sussmann [30], Hagiwara, Toda, & Usui [16], Fukumizu [14]). The theoretical
study has therefore been started to construct a mathematical foundation for non-regular
statistical models.

Watanabe proved that the largest pole of a zeta function for a non-regular statistical
model gives the main term of the generalization error of hierarchical learning models in
Bayesian estimation (Watanabe [32], [33]). The generalization error of a learning model
is a difference between a true density function and a predictive density function obtained
using distributed training samples. It is one of the most important topic in learning theory.
The largest pole of a zeta function for a learning model, which is called a Bayesian learning
coeflicient, corresponds to the log canonical threshold.

In this paper, we show new bounds of the log canonical thresholds for Vandermonde
matrix type singularities. Vandermonde matrix type singularities have been recognized
to be related to Bayesian learning coefficients for the three layered neural network (Aoy-
agi & Watanabe (8], Aoyagi (4], [5]), normal mixture models (Watanabe, Yamazaki &
Aoyagi (36], Aoyagi [6]), and the mixtures of binomial distribution (Yamazaki, Aoyagi &
Watanabe [38]). These facts seem to imply that the singularities are essential for learning
theory. We also overview our recent results of singularities for the restricted Boltzmann
machine (Aoyagi [7]) and the reduced rank regression (Aoyagi & Watanabe [9]). Such
singularities are degenerate with respect to their Newton polyhedrons and non-isolation
of their singularities (Fulton [15]). In several papers, only upper bounds of these values
were reported before (Watanabe [31], Watanabe & Watanabe [35], Yamazaki & Watan-
abe [39], [40], Nishiyama & Watanabe [25]). Rusakov and Geiger [27] considered them
for Naive Bayesian networks.

Such our results were used for analyzing and developing the precision of the Markov
Chain Monte Carlo (Nagata & Watanabe, [23]) and for studying the setting of tempera-
tures for the exchange MCMC method (Nagata & Watanabe [24]).



2 Main Result

In this paper, we denote by a*, b* constants and denote by a* if the variable a is in a
sufficiently small neighborhood of a*.

Define the norm of a matrix C' = (c;;) by ||C|| = />, ; lc;;|2. Denote by (C) the
ideal generated by {c;;}. Set N,y = NU {0}.

2.1 Vandermonde matrix type singularities

Definition 1 Fiz Q € N. Define [b},83,- - ,by]lo = %(0,++, 0,65, ,by) if b} = - - =
. N - J1 of @ is odd,
bj_1=0,b; #0, and v; = { |br1/bF  if Q is even.

Definition 2 Fiz Q € N and m € N,,.

\
g - a1y bin - bin \\
, az -+ QGom ba1 -+ ban
Let MH + HN wvariables w = . , . > and
am v aMH b1 -+ ban } J
* * * * )
Q1,H+1 "7 O H4r bH+1,1 T bH+1,N \
a3 g+1 ° Gom biiga - b;{+2N
JH+ JH+ +2,
rM +rN constants w} = ) ", ) ’ -
* * * %
OyMHE+1 " QM H4r H4r1 °°° bH+r,N / )
* *
i - @GH G gy --- Oy gy
Q21 *ct GH Aoy - O Hoy
Let A = : _ ; I=(l,...,6y) € Nyo»,
* *
am1 " OGMH OpEH41 - OMH4r

(Hbla’HbZJ"' HbHJ’HbH+IJ e I—Ibl‘fﬁ‘aej)]t

and B = (Br)e,+--+ey=0n+mo<n<H+r—1 (t denotes the transpose), where A is an M x (H +
r) dimensional matriz and B is an (H + r) x S.74r1 (Q"‘LM(IX, 11))',(Q"+m) dimensional
matriz.

We call singularities of ||AB||?* = 0 Vandermonde matriz type singularities.

To simplify, we usually assume that

t
(a;,H+j’ a;,H+j’ T ay\/!,H»{-j) # 0, (b*I"I+j,1’ ;I+j,27 Tt *H+j,N) 7& 0
for1<j<rand
[b;1+j,17 ;I+j,2> Ty }{+j,N]Q ?é [b*H+j',17 2!+j’,2: Ty ;I+j’,N]Q

for j # j'.



Let w, w;, A and B be as in Definition 2. Let w be in a sufficiently small neighborhood

* * * *
a;p "7 Oy bh - by
* * * *
. G OGzy 0pp - Uiy
w' = ) y .
* * * *
Apm1 t OmEH H1 ' YN
*k oKk -
Set (bOI,boz,' b* _ (0,---,0).
Let each (511,013, ,biN), - -, (B3, 0%, - -, biy) be a different real vector in

[btl’ z2a""b:N]Q5éOa fOI'iZ]_,...,H—{-'r;

{1, -, oo (OF, b)Y s [0, biNle #0,i=1,.. ., H +1}.

Then 7' > r and set (bj}, - ,bi5) = [byyi1r - > Vipinle, for 1 <i <.
It is natural to assume that
[B11, -+, binle

[b;lol’ T b;ION]Q
[b;{o+1,17 e ’b;{o+1,N]Q
: = (b1, -+, 0IN),

[b;10+H1,1, SR ;10+H1,N]Q
[b;Io+H1+1,1’ ) b*Ho+H1+1,N]Q
: = (b;:a ’b;?\l))

(6% e bt ]
Ho+Hy+Hz,1» yYHo+H 1+ H,,NIQ

* *
[ Hot+-+H,_1+1,10 """ H0+'"+Hr’-l+1’N]Q
. . ok
= P by

* *
[bH0+-.-+H,,_1+H,,,1’ o H0+"'+Hr’—1+Hr',N]Q
and Hy+:---+ H. = H.

Theorem 1 (Aoyagi [5])
We have

T,
=3 ey (A B 2),
a=0

(@* — g (@) p@*y _ g . " .
where w = {ay;” , bi; } = {ak,H0+,_.+Ha_l+,~, baj}lgkgM,lgiSHa,ISJSN,

I—(ely-"agN)€N+0 ’

&
oy (e
a a a a L a a N b(a) 7
A(a): 21 22 - 2Ho ,B}a): n , fora:O,r—f—lSaST’
@ (@ ()
a ... N
M1 Gpr2 UM Hq IT- bﬁi’jj

)



N ()%
(@) (o) (@) * / Hj:l bi; \
a;; G127 o 01, 91H4a N b(a)fj
2@ g@ L g I1j=1 6
A(a) — 21 22 . 2H, 2,H+a ’ Bga) _ , fOT‘ 1 <a< r,

N ¢
Hj:l b(I?a)J

N wx £
Hj:l ba_] i )

B(O) = (Bp))l1+~~-+£N=Qn+m,0_<_n_<.Ho~1, B(a) = (B§a))€1+"'+eN'—‘ﬂ,0,<_n.<_Ha—1 fOT r+l<acxs r’

and B(® = (B§a))£1+---+ln=n,05n_<_Ha forl<a<r.
B B@(1<a<r)and BO(r+1<a<r) are Hy x Zfigl (Q"+m+(ljvv__11))!!(Q"+m)!,

(Ha+1) X ngo %1—1))—,'"—' and H,, x Zf;(‘)’ 1 %ﬂ dimensional matrices, respectively.

*
Qpry Qpp ° 0 Qupp, QM H+o K

Theorem 1 shows certain orthogonality conditions of the log canonical threshold of
Vandermonde matrix type singularities. Usually, r corresponds to the number of elements
in a true distribution. It means that the Bayesian learning coefficient related with such
singularities is the sum of each for the small model with respect to each element of a true
distribution.

Theorem 2 (Aoyagi [5]) We use the same notations as in Theorem 1. If N = 1, we
have

MQko(ko + 1) + 2H0

-(||AB|>) =
Mr' O Mko(ka +1) +2Hy o~ Mkg (ko + 1) + 2(Ho — 1)
+ + . ,
2 QZZ; 4(1 + ka) al;ﬂ 4(1 + ko)
where

ko = max{i € Z;2Ho > M(i(i — 1)Q + 2mi)},
ko = max{i € Z;2H, > M(i* +4)} for1<a <,
ko =max{i € Z;2(Hy — 1) > M(i® + 1)} forr+1<d <7'.

and

0.+ (|AB|*) = #6 + 1

where

0= {ko,ka,kal : 2H0 = M(ko(ko - 1)Q + kao),2Ha = M(k?! + ka), 1 S (8 S T,
2(Hy —1) = M(k% +d),r+1<a <7’}

The next theorem gives new bounds for the log canonical threshold of Vandermonde
matrix type singularities.

Theorem 3 We use the same notations as in Theorem 1. We have the followings.



(1)
( MH,

NH,

IA(O)B(O)”Z) < 4 13@0

ifmM < N —1,

if N <mM <m(N -1),

ON = if M>N,(N—1)(m—1)>1,
SH,N + Q(M(1 + ko) + (N — 1)(2Ho — ko — 1))ko
4Qk0 +4m ’

\ if M > N,(N —1)(m—1) =0,

where kg = max{i € Z;2H, > (Qi(i — 1) + 2mi)(M — N +1)}.
(2) For1<a<r,

MH, + N

5 : if M <N —1,
Cyor ([[A@B@|2) < M;FﬂuN+(Mu+kd+%N—lxﬂ%‘ka‘DMa
2 4k, + 4 ’
if M > N,

where ko = max{i € Z;2H, > (i(s — 1) + 23)(M — N + 1) }.
(3) Forr+1<do <7,

Mhed, ymMsN-g,
Cytan (JA@ B2 < ¢ M 2(Ho = YN + (M(1 + ko) + (N = 1)(2Ho — 3 = ko)) ber
2 4k, + 4 ’
if M > N,

where ko = max{i € Z;2(Hy — 1) > (i(i — 1) + 25)(M — N +1)}.

(Proof)
Assume that Hy = H.
Let

¥ = [|AB|P?, (1)

¢ = dadb, V is a sufficiently small neighborhood of 0 and J(z) = [, ¥*¢.

By using a blowing up process together with an inductive method, we show that we
have the following functions (2) and (3) below.

Let

Hl
¢ = Hv,-T"dvdadb, (2)

i=1

T, = mM(GE—-1)+(H—-1i+1)N+Q(\M + (H —i)(N — 1))
+QE+ 1M+ (H—i-1)(N—-1)+-+QH'M+ (H—-H)N-1) -1
= mMGE—-1)+(H—-i+1)N
+QMGE+H)+(N-1)(2H-H' -3))(H' —-i+1)/2 -1,



and
Vo= (P HIIT 2| 4, |2 (3)
0 f— 6 —(H'-1)Q 2
+ Z (UIIUQI Q.. "Ul}/ ( ) )2||A2f181,0,---,0”
lL=Qn+m,n>H'
+ Z (vf1+(QH'+1)(‘32+'“+5N),U§1+(Q(H'—1)+1)(£2+“'+£N) - vgl_*(Q+1)(f2+--'+€N))2
G4ty =Qntm,
Lo+ Ly >0
XHA2f€1,€2,'",€N”2’
;1 Q2 - a1y ar,H'+1 G1,H'42 *°°  Q1H
where A; = : , Ay = : )
ami Aampm2 - aOMH! apM H'+1 aOMH'+2 *°° OMH
5!
Oira ™ ) (brgva - vg)® = 1)((bararavs - vp)? = 1) -+ ((bar4r,1)? — 1)
fontmo, 0 = :
by 2T (brrva - vm)? = 1)((bravs - -om)? = 1) -+ ((ba1)? — 1)
and N
|| Y
fel:£2""3eN = :

Jj=1"H,j
Construct the blow-up of the function (1) along the submanifold {b;; = 0,1 < ¢ <
H') 1 S .7 S N} Let bll = U1, bij = ’Ulbgja (Z7J) # (191)
Set by; = b}; —bj by, for i > 2 and a}; = a;1 +ai2b3; +a3b5i +- - -+a;pbf, for1 <i < M.
By using Lemma 1 in Section 2.4 and setting a;; = a;y, b;; = f; again, we need to consider
the functions

¢ = vl'¥-ldvdadp, (4)
and
T o= ) A (5)
+ > () Af gy ol
1=Qn+m,n>1
Y @R Ay fy |
L+ H N=Qn+m,
Lo+ HeN >0
aii a2 @3 -+ G1H bg;+Q(n_1)(bzq1 - 1)
where A; = : , Ay = : ) fén+m,g,...,g =1 :
an aym2 AGm3 - AMH bTHn:.Q(n_l)(bg1 - 1)
N 14
Hj:l b2]
and f€1,€2,---,£N =
N 4

We construct the blow-up of the above function (5) along the submanifold {v; =
0,ax1 = 0,b;; = 0,1 < k < M,2<i< H,2<j< N} Q times. Let ap; = vPa},,

bij = v, 1<k<M,2<i<H2<j<N.



We have the J(z)’s poles NHJ“”(NZ'"(ﬁ;)l)(N—I)) for 0 < p < @ and the functions Egs.

(2) and (3) with H' = 1, by setting a;; = aj;, bi; = bj;.

Assume Egs. (2) and (3). Construct the blow-up of function (3) along the submanifold
{b;=0,H +1<i<H1<j< N}

Let bpgry11 = ve4a and bij = 'l)HI+1b;j for HH +1 < i1 < H,1 < j < N, (’L,j) #*
(H'+1,1).

Set

bg’j((v2 " 'UH'+1)Q = )((vs - 'UH'+1)Q ~1)--- (('UH'+1,1)Q -1)

bl; — blyrpy ;b (biava - - - varg1)? — 1) ((barvs - cogre1)? = 1) - ((bivar4)? — 1)
fori > H' + 2 and

@ gy = @i ((mra1ave - vEr4)? = 1) (041,003 - o) = 1) - ((brg1,1)? — 1)
a1 2600 (brrg21v2 -+ vara1)? — 1) ((bara2,1v3 - cop1)? = 1) - ((bar421)® — 1)
4o+ b ((brvz - - - va1)® — 1)((0mva - - vpp1)? — 1) - ((bg1)° — 1)

for 1 < i < M. By using Lemma 1 and setting a;; = aj;, b;; = bj; again, we need to
consider the functions
1 H,
¢ = v " []vFdvdads, (6)
i=1
where
T, = mM@GE-1)+H—-i+1)N+QWM@GE+H)+(N-1)2H-H' -))(H' -i+1)/2-1,

for 1 <1< H' and

_ H'+m Q(H'-1)+ +Q\2 2
U = (o gL B9 1A, (7)
QH'+m_Q(H'-1)+m m+Q 2¢,.2 2
+(vy (23 vg R ) (6 g o+ A g g)
&, 0— LH—(H'-1)Q £ —H'Q\2
+ 3 (BT T I EO | As o ol P
H=Qn+mn>H'+1
H+(QH'+1)(L2+-+EN), L1+(Q(H'~1)+1)(£2+-+£ Li+Lo+-+EN 2
+ > (o ) RO N2 Ay gy |
L+ y=Qn+m,
Lo+ >0
ay a2 - Qg aiyH'+2 QG1L,H'+3 - Q1H
where A; = : , Ay = : , f’Qn+m’0’_'_,0 =
ap1 QGpm2 - GMH! OGM.H'+2 OMH'+3 *°° OGMH
m+Q(n—H'~1)
bH’+2,1 ((brr42,1v2 - - VU 41)? — ) ((bar+2,1v3 - - - v vug41)® — 1) - - ((bH'+2,1)Q —-1)

bt 0 D by - - v )@ = 1)((burvs - - vpr)@ — 1) -+ ((bar1)@ = 1)



and
HN blj
j=1"H'+2;
f‘el)e27"'7£N = :
N £

We construct the blow-up of the above function along the submanifold {vgy1 =
0,aky = 0,1 < k< M,1 <4 < H',}, m times. By letting ary = a};va41, we have the
poles iMH'“;’i(H“H') forl <i<m.

Fix 1 < p < H' + 1. We construct the blow-up of the above function along the
submanifold {v, = 0,a}; = 0,b;; = 0,1 <k < M,1 < V< HA+1,H+2<i<H2<Z
j < N} Q times. Let a; = vSay;, b =vJbj;, 1< k<M, 1< <H +1,H' +2<i<
H2<j3<N.

We have the J(z)’s poles

mM(p—1)+(H—p+1)N+Q(M(p+H')+(N—1)(2H—H' —p))(H' —p+1)/2+p'(M(H'+1)+(N-1)(H—H'—1)
2Q(H'—p+1)+2m~+2p’

for 1 <p< H'+1,0<p <Q and the functions Egs. (2) and (3) with H' + 1, by setting
Ay = a;m-,, bij = b‘:]

‘ Q.E.D.
Conjecture The bound values in Theorem 3 are the exact ones.

2.2 Restricted Boltzmann machine

In this section, we show our results for the restricted Boltzmann machine.
Let 2<LeNand K ¢ N.
From now on, for simplicity, we denote

@y ={ Y Hnl) meqs Ul om}} = ({mdh {{nm}D:

Let D = (d;;) be an L x K matrix with |d;;| < 1.

Denote D’ =[], H]Ii_l d;’;j, where J = (J;;) is an L x K matrix with J;; € {0,1}.

Set T = {I = (I;) € {0, 1} 2 |{{3°, Li}} =0}, and D! = 3 s s, D/ for I € T.
UK, Jij =k

Let

DI D*I
¥p = Z(b_o B D*o)z' ®
IeT

From the eigenvalue analysis method, we obtain the following theorem.

Theorem 4 (Aoyagi & Watanabe [10], Aoyagi [7])

Case 1 If L = 2 then cp-(¥p) = 1/2 and its order 6p-(¥p) = {
3/4, ifK=1,D*=0
1/2, if K=1,D*#0,][., D=0

3/2, ifK=1]]_,Df#0
3/2, if K>2,

2, ifK=1,D*=
1, otherwise K > 2.

Case 2 If L = 3 then cp-(¥p) =
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(3, if K=2,D"=

2, sz-?D*;éO, w—bflj—()forlngK,

and its order Op«(¥g) =< 2, if K = 2,b;"0]0 o 7 05 bigjo = b:j =0
Jor1<1<3,1<35<K,j# jo,

1, otherwise

where 1g,1%1,12 € {1,2,3} are dzﬁerent from each other and 1 < jo < K.

For its proof, we use the eigenvalues and the eigenvectors of the matrix C; = (cJI-’II)
where d! =[], d}i, and ¢"" = dI" with {{I' + I"}} = I, for I, I',I" € T.

172
We obtain cp+(¥p) and its order 8p+(¥p) for L > K using a recursive blowing up.

Theorem 5 (Aoyagi [7]) Assume that L > K and D* = 0. Then we have cp-(¥p) = &&

and its order 0p.(¥g) = { IlJ’ Zii i Ilgi i

We also bound values of cp. (¥ ) for other cases.

Theorem 6 (Aoyagi [7])

Let (dlj,dzj,' ce ,dLj) # 0 fOT’j = 1,...,K0 and (dlj,dgj,'” ,dLj) =0 fOT'j = Ko +
1,...,K iV, where V is a sufficiently small neighborhood of D*.

Then we have

L§K4—K0! < cp-(¥p) < L(KZKO) + Lg‘(o, if L > K — K,
L(L4_1) + LK < op.(Wp) < 2Ko+(Lzl)(L—2) + Lio (< LKo 4 L(K—Ko)), if L < K — K.

4

2.3 Reduced rank regression
Let

{w = (Agr, Br) | Agris an Hg x Ng matrix, By is an Mr x Hg matrix},

be the set of parameters.
Let ¥g = ||[ArBr — ARxBj||?

Theorem 7 (Aoyagi & Watanabe [8])
The log canonical threshold c,- (¥ g) and its order 0,,- (¥ R) are given as the followings:
Let v be the rank of ARB
Case 1 Let NR+7' < MR+HR, MR+1‘_<_ NR+HR andHR-i—r < MR+NR.
(a) If Mp + Hg + N + 1 is even, then 0,-(¥g) =1 and

—(HR + T)2 — M122 — NI22 + Q(HR +7‘)MR+ 2(HR +T)NR+ 2MpgpNpg
3 .

(b) If Mr + Hg + Ng + 7 is odd, then 0,.(¥g) = 2 and

Cy* (‘I’R) =

—(Hg +1)% — ~ NZ+2(Hp+71)Mg +2(Hg+ 17)Np + 2MpNg + 1

w (VR) = 3
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HRMR — HRT'F]VRT

Case 2 Let Mr+Hp < Ngr+1. Then 0,-(Yg) =1 and ¢y« (Vg) = 5
HryNgp — Hgr + Mpgr
5 .

MpgNpg

Case 4 Let Mp + Ngr < Hp + 1. Then 6,«(¥gr) =1 and ¢y« (Yr) = 5

Case 3 Let Np+ Hp < Mp+1. Then 0,«(Vg) =1 and ¢y« (Vg) =

2.4 Remarks
The following remarks are useful for our proofs.

Remark 1 If a regular function f(z) # 0, z € R? is non-degenerate with respect to its
Newton polyhedron 'y and if c = min{c’ > 0: cde € I'y} > 1 then we have ¢o(f) = 1/c
and 6o(f) = min{d, 0'}, where e = (1,...,1)" and 0’ is the number of faces T > ce with
dimension d — 1 of I'y [15].

Remark 2 Let

— ,511,,512 $1d — 9,521,,522 S2d — ,,501,5p2 , Spd — 1tz . td
fi=uiMug® - ug?, fo = uiPu® e u e fp = um U™ ut, 9 = Uy ug ug'du

and Ty be the Newton diagram of f2 + -+ f2.
Let ¢ = min{c’ > 0 : d(t+e) € T, } and § = min{d,0'}, where e = (1,...,1)¢,
t = (t1,...,tq)" and @' is the number of faces T > c(t + e) with dimensiond — 1 of T'y.
Then, the largest pole of [ ,oqr o(f2+ -+ + fz?)zg 28 1/c and its order is 6. In this
case, the condition ¢ > 1 is not necessary.

Corollary 1 Let fa(:cga), e x((iz)) > 0 be a regular function and cys (fa) = Ca, Ouwz (fa) =
0y, for a = 1,...,)r.
1

Thenforrf(xg ,...,a:fill), .. .;xgr),...,wfi?) =3 1 fa andw* = (wi,...,w}), we have
Cw* (f) = Za:l Ca; ew‘ (f) = Za:l(ga - 1) + 1.
(Proof)
By blowing ups at w},, we may set
0@, o) 95@) RO NG 4@
rdat®) = o @ e @8 @ gy
on one of local analytic coordinate systems and
(a) O (@)
Ca:—-tl (+)1:: 2 (+) <tz (j)l,for'I,Z@a—l—l
251" 254, 2s;
Let d =Y _,d, and
1 1 1
(1919 i)
e i
Gy 1y el
L:(lla"'ald): ’lt(_;x)eN
LSO 1) R 1))
1 b2 1d
\ 5 - i
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Set the mapping by

® C ITC I eY ) o)
L "y N 4 oy oy 1y .. a1
u="1u" = (g uyt? oyt U up® g™ U Uy
1 __ ! !
for v’ = (ul, - ,uy).
Then we have

a a a T () (a) ()
f’de(a)_ Z NOLS ’ugaﬁsé’...uft:)?s&a’)znuga)tx W@ @ gyl

a=1 a=1

_ (Z xS0 /22"° s“")t‘°))z 13 T (i -1 'E:.=12,_1(t‘°’+1)t‘°’ =

on a local coordinate system u'.

If L is related with a face (L) with dirnension d of a refinement of the fan defined by

the Newton diagram of 37 _, u{® o ul® - el "= then there exists ag such that

S0 (a°)l(a°) < e Ea)lgx), for o = 1 ,7and j = 1,...,d. Therefore, we have poles

D o=l 2 1(t(a) + 1)1(9‘)
2 A

Aj2== ,j== lp..,d,

on a local coordinate system u'.

We have
Py t(") IR
Z (a)l(a) an’
a=1 z 1 Sy
and \; = YT _| Cq, if and only if
(@) 19 =0,i>0,+1,1<ac<r Zs(”z“) = Zs"’z"’.

We can choose 5. _, 0, — (r — 1) independent vectors 1; satisfing (a) and (b), and this
fact completes the proof.
Q.E.D.

Lemma 1 Let U be a neighborhood of w* € R®. Let T be the ideal generated by fi1, ..., fn
which are analytic functions defined on U. If g1,...,9m € I, then Cor(fE+ -+ f2) is
greater than cy (g2 + -+ + ¢2,). In particular, if g1, ..., gm generate the ideal T then

Cor(f2+ -+ f) =cu (gl + -+ g%)

3 Bayesian learning theory

In this section, we overview Bayesian learning theory, especially the stochastic complexity
and the generalization error.

It is well known that Bayesian estimation is more appropriate than the maximum
likelihood method when a learning machine is non-regular (Akaike [1], Mackay [21]).
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Let g(z) be a true probability density function and (z)" := {z;}., be n training
independent and identical samples from ¢(z). Consider a learning model which is written
by a probability form p(z|w), where w is a parameter. The purpose of the learning system
is to estimate ¢(z) from (z)™ by using p(z|w).

Let p(w|(z)™) be the a posteriori probability density function:

p(wl(@)") = 5-9() [[ plaslw),

n

where 1 (w) is an a priori probability density function on the parameter set W and

7z, = /W 9(w) [] plasfw)dw,

So the average inference p(z|(z)™) of the Bayesian density function is given by

p(z|(z)") = / p(z|w)p(w|(z))dw,

which is the predictive density function.

S

This function always has a positive value and satisfies K(g||p) = 0 if and only if ¢(z) =

p(z|(z)").

The generalization error G(n) is its expectation value E, over n training samples:

= x) 10 ——————Q(x) x

Let

Kp(w) = i— Z log p((lzf:jﬁ))

=1

The average stochastic complexity or the free energy is defined by

F(n) = —En{log / exp(—nKn(w))w(w)dw}.

Then we have G(n) = F(n+ 1) — F(n) for an arbitrary natural number n (Levin, Tishby
& Solla [20], Amari, Fujita & Shinomoto [2], Amari & Murata [3]). F(n) is known as the
Bayesian criterion in Bayesian model selection (Schwarz [28]), stochastic complexity in
universal coding (Rissanen [26], Yamanishi [37], Akaike’s Bayesian criterion in optimiza-
tion of hyperparameters (Akaike [1]) and evidence in neural network learning (Mackay
[21]). In addition, F(n) is an important function for analyzing the generalization error.

It has recently been proved that the largest pole of a zeta function gives the gener-
alization error of hierarchical learning models asymptotically (Watanabe [32], [33]). We
assume that the true density distribution ¢(z) is included in the learning model, i.e.,
q(z) = p(z|w}) for w; € W, where W is the parameter space.
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Define the zeta function J(z) of a complex variable z for the learning model by

J(z) = / K (w) 3 (w)duw,

where K (w) is the Kullback function:

K(w) = /p(xlw{) log I;(gllg)) dz.

Then, for the largest pole —A of J(z) and its order 8, we have
F(n) = Alogn — (0 — 1) loglogn + O(1), (9)
where O(1) is a bounded function of n, and if G(n) has an asymptotic expansion,

Gy =2 _ -1

n nlogn

as n — oo. (10)

Therefore, our aim is to obtain A and 6.
Note that for Z = {w : K(w) = 0}, A = cz(W, K(w)) = sup{c: |K|™¢ is locally L' near Z},
which is the log canonical threshold of K (w) and its order 6 = 67 (W, K (w)).

(a) The three layered neural network with N input units, H hidden units and M output
units which is trained for estimating the true distribution with r hidden units:

Denote an input value by z = (z;) € RY with a probability density function g(zx)
which has a compact support W. Then an output value y = (yr) € RM of the three
layered neural network is given by yx = fx(z,w) + (noise), where w = {ak, bij;1 < k <
M,1<i<H,1<j< N} and

H N
fr(z,w) = Z ki tanh(z bi;Z;).
i=1 i=1
Consider a statistical model
—_— 1 1 2
p(ylz,w) = (QW)—M/QGXP(—glly — f(z, w)|[%).
Assume that the true distribution
* 1 1 *\ (12
p(yle, wp) = Wexp(“gﬂy — f(z, w)lI),

is included in the learning model, where w; = {a};,0};;1 < k < MH+1 < i< H +
r,1 <j < N} and fi(z,w;) = Zfigﬂ(—a;i) l:::mh(z;\l:1 b;;x;). Suppose that an a priori
probability density function ¢ (w) is a C®— function with a compact support W where

p(wp) > 0.
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2) and

its order with Q = 2 and m = 1, where A and B are defined in Definition 2.

(b) The normal mixture model with H peaks which is trained for estimating the true
distribution with r peaks :

Consider a normal mixture model

H N T — bij 2
p(zlw) = (2—751\,—/2 ;ali exp(— ZFI( 5 ) )s

where w = {a1;,b;;;1 <t < H,1<j < N} and Zfil a;; = 1. Set the true distribution
by

H+r N LAY
p(zlwy) = - > (—aii)exp(—ZFl(xJ 5 ),

(@m)™ S 2
where wf = {a};,bj; H+1<i< H+r,1<j < N} and EHH};H aj; = —1. Suppose that
an a priori probability density function ¢ (w) is a C*°— function with a compact support
W where ¢ (w}) > 0.
Then X and @ for the model corresponts the logcanonical threshold c,-(||4B]|?) and
its order with Q =1, M =1 and m = 1, where A and B are defined in Definition 2.

(a) and (b) as above show that ) in Egs. (9), (10) for three layered neural networks
and for normal mixture models are obtained by the same type of singularities, i.e., Vander-
monde matrix type singularities. The paper [38), moreover, shows that A for mixtures of
binomial distributions is also obtained by Vandermonde matrix type singularities. These
facts seem to imply that Vandermonde matrix type singularities are essential for learning
theory.

(c) The restricted Boltzmann machine with L binary observable units and K binary
hidden units y:

Set

eXP(Zfﬂ Z]K:1 i TiY;)
p(z,yla) = Z(a) ,

where

Z(a) = Z exp(z Z ai;TiY;),

ri=%1,y; =21, =1 j=1

z = (z;) € {1,-1}F and y = (y;) € {1, —1}¥.
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Consider a restricted Boltzmann machine
K L L
Hj:1(ni:1 exP(aijxi) + H¢:1 eXP(‘aijxi))

pala) = > p(z,yle) = Z(a)
Hle Hfii cosh(aij)
Z(a)

K
X H(Q Z Z Ti\ Ti, - - * Tiy, tanh(a;, ;) tanh(ai,;) - - - tanh(as,,;)).
J:

j=1 0<p<L/2i1<-<izp

.. K Jis
Let D = (d;;) = (tanh(a;;)). Denote D’ = &, H]I.ilbij;’ and z7 = Hle xiz"l ,
where J = (J;;) is an L x K matrix with J;; € {0,1}.
Then we have

2K 11X 11X, cosh(a;;) -
p(:zt|a) — H]—l 1;11(;3 ( ]) Z DJ.'IIJ.
J{{ZL, 5;})=o0 for all ;
Let 7
Z(b) = (a)

2K TT7, TI, cosh(ay;)
Set T={I = (L) € {0, 1} [{{, I:}} =0},and D! = 3 ,.;sr s yym0 DY for I € I.

UZK, =1
Then we have ]
p(zla) = - ) D'a!
70) 2

and Z(b) = 2KX D"

Assume that the true distribution is p(z|a*) with a* = (a};) and set D* = d* = (d};) =
(tanh(aj;)).

Then A and @ for the model corresponts the logcanonical threshold cp-(D_ ,EI(%{; -

-3%2)2) and its order appeared in Section 2.2.

Remark 3 Rusakov and Geiger [27] obtained A and 0 for the following class of Naive
Bayesian networks with two hidden states and binary features:

L K
p(.’L‘Ie, f, t) = tHe1(:1+zi)/2(1 _ ei)(l—m,‘)/2 + (1 _ t) H fi(1+:ci)/2(1 _ fi)(l—zi)/z.
=1 i=1

wherez € {1,—1}, e ={e;}2, e RE, f = {fi}E, € RE and 0 < t < 1. Our models with

=1
one hidden unit (K = 1) are obtained by setting t = 1/2, tanh(a;) = 2¢; — 1 and f; = —e;.
The relation f; = —e; creates a parameter space different from that of our models.

(d) The reduced rank regression model with My input units, Ng output units and Hpg
hidden units:

Let

{w = (Agr,Br) | Agis an Hg x Ng matrix, Bg is an Mg x Hp matrix},



17

be the set of parameters.
Denote the input value by z and the output value y of the reduced rank regression
model, which is given by
y = ArBgz + (noise).

Consider the statistical model

1
p(ylz, w) = o)X

Then A and 0 for the model corresponts the logcanonical threshold c(as 5s)(||ArRBr —
A% B%||?) and its order appeared in Section 2.3.

1
EXP(—E(y — ArBgz)?).
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