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Integral equations and approximation of
p—Laplace equations
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1 Introduction

In this note I partially describe the contents of the lecture that I gave
at the conference. The lecture was based on a recent joint work with H.
Ishii [11].

We consider the Dirichlet problem of integral equation

(Ea){ M,ul=f inQ
u=g for x € 012,

where Q is a bounded domain of R” and f € C(Q) and g € C(62) are
given functions. Let p > 1 and p > o. The operator M, is defined as

M#l@) = p. [ G(8(z +2) — p(e) B Zdz,
B(0,dist(z,09)) ||
for bounded measurable functions ¢ on 2, where G is a function on R
given by G(r) = |r[P~2r. We establish the existence and uniqueness result
for (E,) and convergence of solution of (E,) as ¢ — p to the corresponding
Dirichlet problem for p-Laplace equation

vAy,u=f in{)
(E‘x’){ u=g for z € 09,

where v = v, , is a constant given by
G
L)



2 Solvability of equation (E,)

First it is to be noted that we solve this problem in viscosity sense, and to
establish the existence of solution the Perron method is employed, and it
is necessary to establish stability properties of subsolutions beforehand.

Theorem 2.1 Let Sy be a nonempty subset of subsolutions of (E;). As-
sume that the family Sy is uniformly bounded on Q. Define the bounded
function u on Q by u(x) = sup {v(z)|v € Sp}. Then u is a subsolution of

(Es).

It is natural to check that the half relaxed limit of subsolutions is also a
subsolution.

Theorem 2.2 Let {ux} be a sequence of subsolutions of (E,). Assume
that the collection {ux} is uniformly bounded on Q2. Define the bounded
function u on Q by

u(z) = lim sup {u(y)ly € B(z, ;') NQ, k 2 j}

Then u is a subsolution of (E,).

These theorems are proved through some appropriate estimates of the
operators M,.

To formulate a basic existence result (Perron method) for (E,), we let
g~ € LSC(Q2) and g* € USC(R?) be a subsolution and a supersolution of
(E,), respectively. Assume furthermore that g* are bounded in 2 and
g~ < g*in . Set

u(z) = sup {v(z)| v is a subsolution of (E;), g~ <v<g"inQ} (1)
Theorem 2.3 The function given by (?7?) is a solution of (E).
The uniqueness of solution is a consequence of the comparison theorem.

Theorem 2.4 Let u € USC(Q) and v € LSC(Q) be a subsolution and a
supersolution of (E,), respectively. Assume that u < v on O and u and
v are bounded on Q. Then u < v in .



To conclude the existence of solution, it is not enough only to have Per-
ron method, because in it the existence of sub and supersolution which
satisfy the comparison principle is assumed. We need to construct such
functions. And for this purpose we impose two following additional as-
sumptions.

(H1) The set Q satisfies the uniform exzterior sphere condition. That
is, there is an R > 0 and for each z € 91, a point y € R™ such that

B(y,R)NQ = {z}.
(H2) There exist constants ¢y € (0,1) and Cy > 0 such that
|f(z)| < Co(dist(z, dN))°PD=7 for all z € Q.
With (H1) and (H2) assumed, we have

Theorem 2.5 There exist functions ¢~ € USC(Q) and ¢+ € LSC(Q)
such that Y+ (resp., 1~ ) is a supersolution (resp., subsolution ) of (E,),
Y~ < Yt on Q and Y* = g on Q. Moreover, the functions Y= can be

chosen independently of o.

It is important that this construction of barrier functions is independent
of o, that is, when thinking the asymptoic behaviour of solutions as o —
p+ later, the solutions are dominated by the barrier functions and so do

not diverge to Foo.
As a consequence of all these theorems above, we conclude

Theorem 2.6 There exists a unique solution of (E,).

3 p-Laplace equation in the limit as ¢ — p

For each o, we have a unique solution of (E,), which we write u,. We
now turn our attention to the asymptotic behavior of u,as we let ¢ — p.
And we insist that the sequence {u,} converges to the solution of the
corresponding Dirichlet problem of p-Laplace equation (E).

The existence and uniqueness of solution of (E,) must be checked, and

actually



Theorem 3.1 There is a unique weak solution of (Ex).

Theorem 3.2 Let v € WPNC(Q) be the unigue weak solution of (Ex).
Then

lim u,(z) = v(z) . wuniformly on Q.

o—p—

Outline of proof. Here we give the fundamental calculation on which
Theorem3.2 is based. Let u € C2(R?). We compute

I:= lim G(u(z + z) — u(z))K,(2)dz
=P~ J|z|<1
where K,(z) = i—fl—:f; Put ¢ := Du(z), A := D?u(z). For simplicity we
assume that ¢ # 0 and ¢ = |g|e,. Here e, denotes the k-th basis of R™.
If0<d<k 1, and |2 <6,

Glu(z+2z)—u(z)) = G(g-z+ %Az -z)=G(g-2)G(1 + é;j)
= Gla (G +G 1+ 9‘;:.';)*21;'5)
~ G(qg-2)+G(1)Az-z|g- 2|2
Therefore
Glu(z + 2) —u(z))K(z)dz = G(q-2)K(z)dz
|z|<é |z]<8
+ G'(1) Az - z|q- z|PT K (2)dz

|z]<é

G'(VlglP~*(p - o) |

Az - z|z,|P?
|z|n+a'

z|<é

/ —_ - ’z' 2 Zn p—2
= GO m-0) as [ —%J——d
=1

z|<é
Next we compute the integral part of the last term.
PIN(EZN()" 2 op :
el [ T G #n)
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And
v _TeRHrert
v TET(E)T(G)? '
Therefore

z|<é

n 2 p—2
z:|%|zn
(JD—U)Z%J'/| I—J‘|I;||71TL—dZ
j=1

n—1
= (YD aij+7ann)"7

= ’Y(A_U(CL’) + (p - 2)8n,nu(x))5p_a7

where a; ; denotes the (i, j)-entry of the matrix A.
On the other hand,

Apu(z) = div(|Du(z)|P">Du(z))
(p — 2)| Du(=)[P~* D*u(z) Du(z) - Du(z)

+ |Du(z)|P 2 Au(z)

= |Du(@)P* (Du() + (p — 2)0nnu(a) ).
Hence we get

I - Vn,PAPu($)7
where I‘(Bﬂ)I‘(l) .
l ’ _ 2 2 i
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