goooboooogn
0 16950 20100 35-55 35

Variational characterization of the Knothe-Rosenblatt type rearrangements and its
stochastic version
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1 Introduction.

The Knothe-Rosenblatt rearrangement plays a crucial role in many fields, e.g., the
Brunn-Minkowski inequality and statistics (see [12], [13], [22] and the references therein).

Let d > 1 and let M;(R%) denote the set of all Borel probability measures on R?
with a weak topology. For a distribution function F on R, let

F'u):=inf{z e Rlu< F(z)} (0<u<1). (1.1)
For B, P, € MR, z€R,and i =0,1, let

Py((—o00,z] x R*™) (k=1),
Fik(zlxk-1) = § P((—o0,z] x R¥*|x;_1) (1 <k <d),
R((-—OO, x]lxd—l) (k = d)a
Pr(xk) = Fre(loi(z), -, or-1(x-1)) " (Fop(@elxe-1))(1 < k < d),(1.2)

where X, := (2;)1<i<k € R for z = (2;)1<i<q € R? and P;(-|xk-1) denotes the regular
conditional probability of P; given xj_;.

Suppose that Fpi(-|xz—1) is continuous for all k = 1,---,d. Then P, is the image
measure of Py by

Txr(xa) = (p1(21)," -, pa(xa)).

Tk r is called the Knothe-Rosenblatt rearrangement. Suppose, in addition, that
Fy (:|xk—1) is continuous for all k = 1,-- -, d. Then Tk is invertible and the minimizer
of the following weakly converges to Py(dz)dry p(z)(dy) as € — 0: for p > 1,
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d |
intl [ SNy, — zyfPudady)|u(ds x RY) = Py(da),
RIxR4 ;7

u(R? x dy) = Pu(dy) . (13)

provided [ga |z|P(Po(dz) + Pi(dx)) is finite (see [2]). Here §,(dy) denotes the delta
measure on {z}.
For 1 < k <d, xx-; € R* !, dFok(T|Xk-1)0p, (x,)(dy) is the unique minimizer of

inf{ [ |y — 2P u(dedy) jp(de x R) = dFo.(zlxe-1),
BR X dy) = dFia@lor(), - oG} (14)

(see e.g. [21], [24]). (1.4) also implies that Po(dxk X R¥7*)6 (4 (21, on(xx)) (AYk) is the
unique minimizer of

iné{ [ Iy - 2uPu(dedy)|u(dz x R¥) = Fo(dz x R*5),
Rk xRk
1(R* x dy) = Pi(dy x R*%),
yizwi_l(xi_l)(i= 1,"',k— 1),/1,—(1.8.}. (15)
We generalize (1.5) and call the minimizer the Knothe-Rosenblatt type rear-
rangement. We also prove the duality theorem, give the convergence result which

generalizes (1.3) by the idea of [2] and consider the similar problems in the stochastic
control setting.

2 Knothe-Rosenblatt type rearrangement.

Let d > 2,1 < d; <d, c(z,y) : R% x R¥% — [0,00) be Borel measurable and
Ve Ml(R2d1). For P, P, € Ml(Rd), let

T(Po,Pily) = inf{ [ clxsa Yadn(dedy)
p(dxg, x R&H x dyy x R&4) = v(dxg,dya,),
w(de x RY) = Py(dz), u(R? x dy) = Pl(dy)}, (2.1)
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where X;; := (Zk)it1<k<; € R for z = (xx)1<k<a € RY. If the set over which the
infimum is taken is empty, then we consider the infimum is equal to infinity. If there
exists a Borel measurable function ¢ : R% +— R% such that y4 = ¢(xg4,), v-a.s., then

we write, for simplicity,

T(Py, P1|p) :==T (P, P1|v).
We first show the existence of the Knothe-Rosenblatt type rearrangement.

Proposition 2.1 Suppose that ¢ is lower semi-continuous. Then, for any Py, P, €
M1(R?), T(P,, P|v) has a minimizer, provided it is finite.

(Proof) Let {gn}n>1 be a minimizing sequence of T'(P,, P|v). Since u,(dz x R%) =
Py(dz) and p,(R? x dy) = Pi(dy), it has a weakly convergent subsequence which we
denote by {ink) }k>1. Let p denote the limit. Then by Skorohod’s representation
theorem, Fatou’s lemma and the lower semicontinuity of c,

T(P, Plv) = lim RdC(Xdl,d,Ydl,d)/‘"n(k)(dxdy)

k—oo JR x

> [ O Yo au(dady). (2:2)

For any f € C(R% x R%),

/Rded f(*%4,,¥a,)pu(dzedy) = lim R F(Xay, Ya,) ngey (dzsdy)

k—oo JREx

= /Rdl R4 f(%ay, Ya, )v(d%a,dya,)- (2.3)

In the same way, one can show that u(dz x R%) = Py(dz) and u(R¢ x dy) = P;(dy).0

2.1 Duality Theorem

It is easy to see that the following holds:

_ c(Xdy,d» Ydi d)
(P, P _ 1nf{/ e T u(dzdy
(P ll(P) RixR4 1{¢(xd1)}(Yd1) ( )

ulde x RY) = Po(da), (R x dy) = Pi(dy)},  (2.4)

where 14(z) :=1if x € A and := 0 if z &€ A for the set A. This leads us to the duality
theorem for T'(Py,, P1|¢) which can be obtained from [11] (see also p. 76 in Vol. 1 of

[21]).
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Theorem 2.1 For any Py, P, € M;(R4%),

fo, /i € Cy(RY),

T(RRly) = su{ [ A@P@y - [ fo@)Fo(da)

_ C(xdl,d, Yd, ,d)
fi(y) = fo(z) < ———l{w(xdl)}(}’dl) } (2.5)

For f € Cy(R%) and = = (X4,,%4,.4) € RY,

v(z; flp) = sup{f(p(%a,), y) — c(Xa1,0,9) |y € R4}, (2.6)
Then, from (2.5),

T(Ro Pilp) = sup{ [ f)Pi(dy) - [ (@i fle)Po(da)|f € GRY}.  (27)
We easily obtain the following (see e.g. (2.8)-(2.9) in [16]).

Proposition 2.2 Suppose that p € C(R% : Rdl); c(z,y) € C(R% x R4 : [0,00))
and limyy_ oo c(,y) = 0o0. Then for any f € Cp(R?), v(:; flp) is continuous.

We formally derive the Hamilton-Jacobi Equation (HJ Eqn for short) for v(z; f|p).
Let

®(t, z) z +t(p(z) — z),
b(t,z) = @(®(t, )7 (z)) ~ 2 ) 7 (2) ((t,z) €[0,1] x R™), (2.8)

provided it exists. Then

BEL) _ p(z) — 2 = bit, 9 (t,2)). (2.9)

In case ¢(z,y) = £(y — z) for a convex ¢, we consider the following HJ Eqn:

ovu(t, )
ot

where Vg, := (8/8z:),, Va4 = (8/0z:){y, ;1 and

+ < Vagu(t, z),b(t, xq,) > +h(Va qv(t,z)) =0 ((t,z) € (0,1) x R%), (2.10)

h(z) :=sup{< u,z > —f(u)lu € R4} (2 € Ri%),

Then we have
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Proposition 2.3 Suppose that c(z,y) = €(y—x) for a convex £, that ®(t,-) is injective
for allt € [0, 1], that the HJ Egqn (2.10) has a classical solution v and that the following
ODE has an absolutely continuous solution: for any ¢2(0) = X4, 4

deo(t)
dt
Then v(0,z) = v(z;v(1,-)|p).

= Vh(Viy 10(t, B(t,%a,), $2(2))). (2.11)

(Proof) For any ¢, € AC(R4 %), from (2.9), we have

U(lv @(1’xd1)’¢2(1)) - U(O?¢(07xdl)’ Cb?(o))
- Al{a”(t’q’(t’xdl)’¢2(t))+ < Vagu(t, ®(t,x4,), $2(t)), b(t, B(t,x4,)) >

ot
+ < Vaaolt, 2060, 82(6)), 29 >t
= [{A(Taalt, 2 %0), 6:0))
+ < Vi av(t, 8(t,%4,), d2(0)), d‘f’;ft) bas
< /0 (dd)i(t))dt (2.12)

where the equality holds if (2.11) holds. By Jensen’s inequality,

dea(t)

v(0,2) = sup{u(te(xa) 610) — [ 6(F2D)atl62(0) = xa..a}

= Sup{v(lyso(xdl),%(l)) — £(¢2(1) — #2(0))|#2(0) = Xdl,d}
= v(z;v(l, )|p).0 (2.13)

Before we formulate the duality theorem in the framework of the theory of viscosity

solutions, we give assumptions.
(A.1). b(t,z) is bounded and there exists K > 0 such that

[b(t, z) — b(t,y)| < K|z —y| (¢t €[0,1],z,y € R™).

(A.2). There exists m € C([0, 1] x R% x [0, 1] x R% x [0, 00)) such that m(¢, z, s,y,0) =0
and that

b(t, z) — b(s,y)| < m(t,z,s,y, |t —s|+|z—y|) (t,s€][0,1],z,y € R%).
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(A.3). £: R*% — [0,00) is convex and lim infjy|—co %}’—l) = 00.
Example 2.1 Suppose that d; = 1. Then (A.1)-(A.2) holds if 1 < dp(z)/dx < K+1.

For (t,z) € [0,1] x R% and f € C,(RY),

v(t, z; flp)

= sup{f(@(Lya). 1) - [ ¢( D) asl@(t,30). 42(0) = 2} (219

Then it is easy to see that the following holds:

v(t, z; fle)
= sup{f(xdl + (1 —t)b(t,xq,),y) — (1 — t)e(———‘i‘—> 'y € R dl} (2.15)

(see (2.8)). We also have

Corollary 2.1 Suppose that c(z,y) = é(y — x) and that (A.1)-(A.8) hold. Then for
any Lipschitz continuous f : R? — R, v(t,x; f|p) is a Lipschitz continuous viscosity
solution of (2.10). In particular, for any P, PL € M;(R9),

T(Po, Pil¢) = sup{ [ w(Ly)Pi(dy) =~ [ v(0,5)Po(dm)fu(1, ) € CR(R)}, (216)
where v(t,z) denotes a bounded uniformly continuous viscosity solution of (2.10).

(Proof) In the same way as in p. 127 in [4], by (A.1) and (A.3), one can prove
that v(-,-; fl¢) is Lipschitz continuous for Lipschitz continuous f : R* — R. In

addition, from Chap. II1.16 of [7], under (A.1)-(A.3), v(¢, z; f|p) is a bounded, uniformly
continuous viscosity solution of (2.10). It is easy to see that the supremum in (2.7) can
be taken only over all f € Cg°(R?). For n > 1, f € C®°(R?) and (¢,z) € [0,1] x R,

otz f) = sup{f(xd1+(1—t)b(t xa,), ¢2(1))_/ (dab;(s)) ,

d¢;£3) < n} (2.17)

Then, from Theorem 10.1 in p. 95 of [7], under (A.1), v, (¢, z; f) is the unique bounded
uniformly continuous viscosity solution of the following HJ Eqn: for (¢,z) € (0,1) x R,

¢2(t) = Xd,;,d»
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ov(t, )
ot

+ < vd1v(t7x)ab(taxd1) > +hn(vd1,dv(t>$)) = 0,
v(l,z) = f(x), (2.18)

where

hn(2) == sup{< u, z > —€(u)|u € R4 |u| < n}.

Let 7 be a bounded uniformly continuous viscosity solution of (2.10) with 7(1,z) =
f(z). Then it is a bounded uniformly continuous viscosity supersolution of (2.18) with
9(1,z) = f(z) and

un(t, z; f) < (¢, z) (2.19)

from Theorem 9.1 in p. 86 of [7]. Let n — oo in (2.19). Then we obtain v(t, z; f|p) <
o(t, z)0.

2.2 Convergence Theorem

Let 2 <k <d,0=dy<d; <---<dy=dand
(A4) c; € LSC(R%~4-1 x R4~4-1:[0,00)) (i = 1,- -+, k).
For e > 0, P, P, € M;(R9),

k
TE(POa Pl) = inf{Aded ZSzulci(xdi—l,dﬂyd;‘-—1,di)lu(dxdy)’

=1

pu(dz x RY) = Py(dz), p(R? x dy) = Pl(dy)}. (2.20)

It is known that if ¢;(z,y) = £(y — x) and ¢; is strictly convex and superlinear (¢ =
1,---,k) and if Py(dz) is absolutely continuous with respect to the Lebesgue measure
dz, then T¢(Fy, P1) has the unique minimizer, provided that it is finite (see e.g. [21],
[24], [25]).

T( Py, Py) = inf{/R c1(z, y)u(dzdy)

d1 x R41

u(dz x R%) = Py, (do), u(R% x dy) = Pl,l(dy)}, (2.21)

where P, ;(dxg,) := P,(dxg, x R¥%) (t = 0,1). For i > 2 and v;_; € M;(R?%-1),
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Ti(Poiy Pralvica) = inf{/Rd_de_ Ci(xd,-_x,d,»aYdi_l,di)ﬂ(dxdy)‘
pu(dxg,_, x RE %=1 x dy,  x R%E%41) =y, (dxg,_,dya,_,),
u(dz x R%) = Py(dz), w(R% x dy) = Pu(dy)}. (2.22)

The following theorem can be proved in the same way as [2] (see also section 1) and is

proved for the readers’ convenience.

Theorem 2.2 Let P,, P, € M;(R%). Suppose that k = 2 and (A.4) holds and that
Ti(Po1, Pia) and To(Po, Pi|v1) have the unique minimizers v, and v,, respectively.
Then a minimizer of T¢(P,, P) exists and weakly converges to v, as € — 0 and the

following holds:

ll_r'% RixR{ 51 (xd17yd1)/1‘€(dxdy) = TI(PO,I, Pl,l)a (223)
li_f)f(l) R xR ca(Xay,ds Yoy a)u° (dzdy) = To(Fo, Pilv). (2.24)

(Proof). In the same way as in the proof of Proposition 2.1, by a standard method,

one can show that T%(Py, P;) has a minimizer uf, since

T<(Py, P) < Ty(Pos, Pr1) + €To(Po, Py|11) < +o0. (2.25)

Since the set of u for which u(dz x R?) = Py(dz) and u(R? x dy) = P,(dy) is compact,
any sequence {u"}n,>1 (én — 0 as n — o00) has a weakly convergent subsequence
{p"®},>1 and for the limit p,

H1 (dxd1 del) = ,u(dxdl x R4 x del x Rd—dl)

is the minimizer of T (Ps 1, P11) by the uniqueness of the minimizer and (2.23) holds.
Indeed, from (2.25),

< o
T1(Po1, Pia1) < /Rdldel ci(z, y)pu1(dzdy) /Rded c1(Xq,, Ya, )u(dzdy)
< lign inf T (P, P1) < limsup T*~® (Fy, P)
—00 £— o0

< Ti(Poa, Pry)- (2.26)
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Since
Ty (Poy, Pia1) + €/Rded c2(Xdy,d, Yay,a) 5 (dzdy) < T (P, Pr), (2.27)

we also have, from (2.25) and (2.27),

To(Fo, Pilry) < /Rded c2(Xdy,d Yy ,a)(dzdy)
< hzn—l»gl f RixRd ca(Xdy > Yay,a) 7@ (dzdy)
< limsup c2(Xdy,d> Yy ,a) 1@ (dzdy)
{—o0 RixRd
< Ta(FBy, Pijnr). (2.28)

The uniqueness of the minimizer of T5(Fy, P;|v;) completes the proof.0

Theorem 2.3 Let By, P, € M;(R?). Suppose that (A.4) holds, that T1(Ps 1, P11) and
T;(Poy, P1i|vi—1) have the unique minimizers vy and v; (i = 2,---, k), respectively and
that v — T;(Py;, P1i|v) is continuous (i = 3,---,k). Then a minimizer of T¢(P,, P;)
exists and weakly converges to vy as € — 0 and the following holds:

li_l,% RixR4 c1(Xay, Ya )1 (dzdy) = Ti(Pog, Pr1), (2.29)
}:1_1"% RIx R4 ci(xdivl,di’ydi—lydi)l‘l’s(dxdy) = T"i(PO,i’ Pl,i‘V'i—l)(i =2, ak) (230)

(Proof). In the same way as in (2.25), one can show that T¢(Pp, P;) has a minimizer
uf and that any subsequence {u*~},>; (¢, — 0 as n — o00) has a weakly convergent
subsequence {u"®},5; . Let u denote the weak limit of u»® as £ — oo. We prove
the theorem by induction. For i = 2,- - -, k,

EE—I(PO,i—17 Pl,i—l)
1—1

= inf{‘/l;di_.ldei_l Z sj_lcj(xdj—x,dj7 ydj—lydj)y(dxdy)i

=1

v(dz x R%') = Py, (dz), V(R x dy) = Pl,i—-l(dy)}' (2.31)

Let pi_, and vf; denote a minimizer of T}, (Po;i—1, P1,i-1) and T3(FPoj, P j|v5;1) (G =
i,- -, k), respectively, where v§i_y = p5_;. Then
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k
T7 1 (Poi-1,Pri-1) + / > e e (Xayy a4y Ydjo1.a; ) (dxdy)
R4xRd =i
< TPy, P)

k
< Tia(Poi-1, Pri1) + ZEJ_ITE'(Po,ja Prjlvii-1)- (2.32)

j=i

From Theorem 2.2, u§ — v, as € — 0 and (2.23)-(2.24) holds. Suppose that ui — v;
as e — 0 for i < k — 1. In the same way as in Theorem 2.2, one can show that for
i=12,

p(dxq, x R¥™% x dyg, x R%) = v;(dxq,dya;).- (2.33)

Suppose that (2.33) holds for 7 = ¢ — 1. Then, from (2.32) and the assumption of
induction,

Ti(PO,h Pl,ily’i—-l) S deRd C‘i(xdi_l,di ) Yd,-_l,d,»).u(dxdy)
< lielzl-ni:glf /Rded Ci(xdi—-l:di’ Ydi—l,di)/fn“) (dxdy)
= lilg-l—»soljp RixR4 C"(xd—e—z,dn}’di—hdf)y'sn(!) (dxdy)
< Jlim Ti(Fog, Pyi|ps"y) = Ti(Po, Pilvioy). (2.34)

(2.34) implies (2.30) and the uniqueness of the minimizer v; of T;( Py, P1|vi—1) implies
that (2.33) holds for j = .0 '
From (2.32), we also have

Proposition 2.4 Suppose that the assumption in Theorem 2.8 holds. Then, for i =
1, --,k—1,

< fRded Z;’-——-l Sj-lcj (xdj-l,dj, Yd;_1.d; )/J'E(dxdy) - II;:E(PO,?:’ Pl,i)

0 .
et

—0 (e—0).
(2.35)

We don’t know the real convergence rate of (2.85).

Example 2.2 Let P,, P, € M;(R?). Suppose that
(7’) d’i+1 =dz+1 (i=17"'7k—1)y
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(it) c;i(z,y) = Li(y — z) and £; : R% — [0,00) is strictly conver and superlinear (i =
1,---,k),

(i53) Py is absolutely continuous with respect to the Lebesgue measure dz,

(i) T1(Po1, P11) is finite.

Then T1(Po,1, P11) has the unique minimizer v, which can be written as follows:

vi(dxa,dya,) = Po,1(d%a;)0¢,(x4)(AYas ), (2.36)

where ¢1 15 a Borel measurable function (see e.g. [21], [24]).

Suppose, in addition, that

(v) Ti(Pog, Pri|vi1) is finite fori=2,--- k. (If T;(Pos, P1i|vi-1) is finite, then it has
a minimizer (see the proof of Prop. 2.1).)

Then the following holds:

Vi(dxdidydi) = Pogi(dxdi)6q>u0,~~,vi_1(xdi)(dydi)’ (237)
where CI)VO,'",Vi—x (xdi) = (¢Uo (xd1)> T ¢V¢—1 (xdi))) ¢u0 = ¢1 and

brics (%a,) = (Fouoy1(1Xdieys Buo,mics (Xaim1))) ™ (Fricr 0(Zas|Xaimss Bug, iz (X)),
F a(xxa_ 1, @ugoviy (Xai_y))
= Vi1(R % (=00, 2]|(%X4;_1, oo, iz (Xai_1))),
F o(za|%a; 1, Py wieo (Xai_y))

= Vi—l((_ooaz] X Rl(xdi—I’ @Vo,"',ui—z (th‘—l)))'

In particular, ¢,,_, is a minimizer of the following:

min{/Rdi Li(p(z) —24,) Poi(dz) | Poi(Pug, o i_pr @) F = Pl,i} = Ti(Po;, Prs|vi-1). (2.38)

3 Stochastic version of Knothe-Rosenblatt type re-
arrangement.

Let A denote the set of all R%valued, continuous semimartingales {X (¢)}o<:<1 On a
(possibly different) complete filtered probability space such that there exists a Borel
measurable Sx : [0,1] x C([0,1]) — R? for which

(i) w — Bx(t,w) is B(C([0, t]))+-measurable for all ¢t € [0, 1],
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(i) X () = X(0) + f5 Bx (s, X)ds + Wx(t) (0 <t < 1).

Here B(C([0,1]))+ := Ns>:B(C([0, s])), B(C([0,t])) and Wx denote the Borel o-field of
C([0,t]) and an (F/)-Brownian motion, respectively, and FX := ¢[X(s) : 0 < s < {]
(see e.g. [14]). Let d > 2 and 1 < d; < d, and let b; : [0,1] x R% +— R% be a Borel
measurable function such that the following SDE has a weak solution for a given initial

distribution:

dX1(t) = bi(t, X1(t))dt + dWi, (t). (3.1)

Let L(t,z;u) : [0,1] x R¢ x R¥% 5 [0, 0).

A minimizer of the following can be considered as the stochastic optimal control
(SOC for short) version of the Knothe Rosenblatt type rearrangement: for Py, P, €
M;(R9),

V(By, Pilby) = inf{E[ / L Y (); ﬁy,g(t,Y))dtHYe A, By1(t,Y) = bi(t, Vi (2),

PY(0)! = Py, PY(1)™! = Pl}, (32
where we write By (t,Y) = (By1(¢,Y), By2(t,Y)) € R% x R44,

Example 3.1 For By, P, € M;(R?), take Txg in section 1 and, on a complete filtered
probability space, consider
_ t Tkr(Z(0)) — Z(s)
2(t)=2(0) + [ L
Then Z(1) = Txgr(Z(0)). In particular, PZ(1)™! = P,, provided PZ(0)™' = B,.
Besides, fz:(t,Z) = Bz,(t,Z;) for alli =1,---,d. Suppose thatp € [1,2) and that
Jra |z|P(Po(dz) + Pi(dz)) is finite. Then
1 Txr(Z(0) — Z(s)
E[/o l-s
Indeed, W,(t) := Z(t) — Z(0) — (Txr(Z(0)) — Z(0))t is a tided down brownian motion
starting and arriving at o, and

Txkr(Z(0)) — Z(s)
l1—s

ds + W (t). (3.3)

pds] < 0. (3.4)

Wo(s)

= Twr(Z(0)) - 2(0) - T2

We describe our assumption in this section to show the existence of the stochastic
analogue of the Knothe Rosenblatt type rearrangement.
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(H.1). (i) L € C([0,1] x R% x R¥% : [0,00)), (ii) u — L(t,z;u) is strictly convex.
(H.2). There exists v > 1 such that

inf{L(t, z;u) : (t,z) € [0,1] x R%} > 0.

lim inf 3.5
|'u.|——}oo I’U,,'Y ( )

(H.3).
AL(e;,ep) ;= sup (8, 25u) — L(s, y; ) — 0 aseq, g0 — 0, (3.6)

1+ L(s,y;u)
where the supremum is taken over all (¢, z) and (s,y) € [0, 1] x R® for which |t—s| < &,
|z — y| < €2 and over all u € R4.

The following can be proved in the same way as Prop. 2.1 in [19], and the proof is
omitted.

Proposition 3.1 Suppose that (H.1)-(H.3) hold. Then for any Py, P, € M;(R%),
V (P, P1|b1) has a minimizer, provided it is finite.

3.1 Duality Theorem
We consider the following HIB Equation:

Ov(t, z)

1
5 + §Av(t,x)+ < Vi, v(t, ), b1(t, %a,) >

+H(t,z; Vy, ,v(tT)) = 0, (3.7)
((t,z) € (0,1) x R9), where

H(t,z;z) ;= sup{< u,z > —L(t,z;u)|lu € R #} (z € Ri"%),
For f € Cb(R,d),

u(t,z fon)(@) = sup{B[rr() - [ L(s, Y () Bra(s, Y ))ds|
Y(t) = 2, Bya(s,Y) = bi(s, Ya(s)), Y € A}. (3.8)

(H.4). (i) L(¢,z;0) is bounded; (ii) AL(0,00) is finite;(iii) b, € C*?([0,1] x R¥) N
Cy'([0,1] x R9), |DL(t,z;w)|/(1 + L(¢,z;u)) is bounded on [0,1] x R? x R% and
D, L(t,z;u) is bounded on [0,1] x R? x Bp for all R > 0, where Bg := {z € R%||z| <
R}.
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The following can be proved in the same way as Theorem 11.1 in IV.11 of [7], and
the proof is omitted.

Proposition 3.2 Suppose that (H.1)-(H.2) and (H.4,i,ii) hold. Then, for any f €
C3(R%) N C3(RY), u(t, z; f|by) € CH2([0,1] x R N CP*([0,1] x RY) and is the unique
classical solution of the HJB Equation (3.7) with v(1,z) = f(x).

It is easy to see that the following holds:

o 1 L(t, Y (t); Bya(t,Y))
V(Fo, Pifbr) := mf{E[/o L@y (Bra(t, Y))

PY(0) = Py, PY(1)™} = Pl}, (3.9)

dt] }Y € A,

which implies the duality theorem for V (P, Pi|by).
Theorem 3.1 Suppose that (H.1)-(H.4) hold. Then for any By, P, € M;(R9),

V(Po, Bilbr) = sup{ [ v(1,9)Pi(dy) - [ v(0,2)Po(da)}, (3.10)

where the supremum is taken over all classical solutions v of (3.7) with v(1l,y) €
C(R4Y).

(Proof). Under (H.1)-(H.3) and (H.4,i,ii), (3.9) implies that V (P, -|b;) is convex and
lower-semicontinuous, which can be proved in the same way as in [19] and is not
identically equal to infinity by considering the case where fBy2(s,Y) = o from (H.4,i).
Hence, from Theorem 2.2.15 and Lemma 3.2.3 in [3],

V(Fo, Pilby) =sup{ [ f@)Pi(dy) — V(Bo, 1) (H)|f € GRD},  (81D)

where

Pe Ml(Rd)}. (3.12)

V(Roy 1b2)"(£) 1= sup{ [ F@)P(dy) = V (P, Po)

One can replace Cy(R?) by C®°(R?) in (3.11) in the same way as in the proof of
Theorem 2.1 in [19]. For f € Cg°(R?), from Proposition 3.2,
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V (P, [b1)"(f)

- ol Tty o o)

= [, w0, fby) Po(da), (3.13)

where the optimal control is By (¢,Y) = Vg, qu(t, Y (¢); f|b1).0
As a corollary to Theorem 3.1, in the same way as [19], we easily obtain

Corollary 3.1 Suppose that (H.1)-(H.4) hold. Then for any Py, P, € M;(R%) for
which V (Py, P1|by) is finite, there exists a Borel measurable function b3 : [0,1] x R¢ —
R4% such that for a minimizer {Y (t)}o<i<1, Bra(t,Y) = b3(¢, Y (¢)).

We consider the following marginal problem:

v(Py, Py|by) := inf /0 St /R L L(t,7; Ba(t, ) Qe(da), (3.14)

where the infimum is taken over all {Q:(dz)}o<s<i € Mi1(R?) for which By = by,
Q:= P, (t=0,1) and

0Q(dz) 1 .
T = §AQt(dx> - dZ'U(B(t, $)Qt(d$))’

in a weak sense. Here we write B(t,z) = (B:1(t, ), Bz2(t,z)) € R® x R%%.
In the same way as [17], we have

Theorem 3.2 Suppose that (H.1)-(H.4) hold. Then for any Py, P, € M;(R%),

v(Po, Blbs) = sup{ [ v(1,9)Pildy) = [ v(0,5)Po(da) . (3.15)

where the supremum is taken over all classical solutions v of (8.7) with v(l,y) €
Ce(RY). In particular, V(Py, Pi|b1) = v(P,, P1|b1)(€ [0, 00)).

We introduce an additional assumption to formulate the duality theorem in the
framework of the theory of viscosity solutions.
(H.4)'. (i) OL(t,z;u)/0t and D,L(t, x;u) is bounded on [0, 1] x R¢ x Bg for all R > 0;
(ii) AL(0, co) is finite;(iii) b; € CE([0, 1] x R9).

In the same way as in Lemma 4.5 in [17], one can prove
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Proposition 3.3 Suppose that (H.1)-(H.3) and (H.4)’ hold. Then for any f € UCy,(R?),
u(t, z; f|b1) is a bounded continuous viscosity solution of (3.7) with v(1,z) = f(z) and
for any Q@ € M;(R?) and t € [0,1],

[ uttz f1b)Qz) = sup{ E[f(v(1)) - [ (s, Y (s); Brals, Y ))ds]|
PYTU(8) = Q.Bra(s,Y) = bi(5,¥i(s)), Y € A}.(3.16)

In addition, for any bounded continuous viscosity solution u of (3.7) with u(l,z) =
f(z), u(t,z) > u(t, z; f|b1), that is, u(t,z; f|b1) is minimal.

In the same was as in Theorem 3.1, from Prop. 3.3, we have

Theorem 3.3 Suppose that (H.1)-(H.8) and (H.4)’ hold. Then for any By, P, €
M;(R9),

V(Py, Pi|by) = sup{ /R u(1,y)Pi(dy) - /R (0, x)Po(dx)}, (3.17)
where the supremum is taken over all bounded continuous viscosity solutions v(t, z; f)

of (3.7) with v(1,z) € C°(R?).
Remark 3.1 (H.3) and (i) in (H.4)’ implies (i) in (H.4).

3.2 Convergence Theorem

Let Ly : [0,1] x R x R% — [0,00) and Ly : 0,1} x R? x R% % [0, 00). For € > 0,
Py, P, € M;(R?),

VE(Py, P) = inf{E[ée*-l /01L,-(t,Y,-(t);ﬁm(t,Y))dt”

PY(0)! =R, PY(1)"' = P,,Y € A}, (3.18)

where Y, (%) := Y1(t) and Y2(t) := Y (¢) for Y(¢) = (Y1(2), Ya(t)) € R% x Ré~%,
If (H.1)-(H.3) holds for L = L; for all i = 1,2, then V*(5,, P,) has a minimizer,
provided it is finite (see Prop. 2.1 in [19]).

1
Vi(Por, Pr) = inf{E[/o Li(t, Y (); By (¢, Y))dt] IY € A,
PY(0)™! = Py1, PY(1)! = Pm}, (3.19)
where A; denotes A with d = d;.
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Remark 3.2 If (H.1)-(H.4) with L = L, holds and that V1(Py1, P1 ;) is finite. Then
there exists a Borel measurable function b : [0,1] x R4 +— R% such that for any
minimizer {Y (t) }o<i<1 of Vi(Poy1, Pi1), By (t,Y) = b(t, Y (t)) (see [19]).

Let b; denote the drift vector of the minimizer of Vi(FPy 1, Pi 1), provided it exists
and let V5(FPy, P1|b1) denote V (P, Py|b;) with L = Ly. Then

Theorem 3.4 Let Py, P, € M;(R%). Suppose that (H.1)-(H.3) with L = L; holds
(i = 1,2) and that Vi(Py 1, P11) and Va(Py, Pi|by) is finite and have the unique mini-
mizers {X1(t) bo<t<1 and {X(t)}o<i<1, respectively. Then a minimizer {Y*(t)}o<i<1 of
Veé(Po, P1) exists and weakly converges to {X (t)}o<i<1 as € — 0. In particular,

lig B[ [ 146, Y0 Brea 6, YN dt] = VilPos, BLo), (3.20)
1
15%E[/0 Lg(t,Ye(t);ﬁys,z(t,YE))dt] = Va(Py, Plby). (3.21)

(Proof) In the same way as Prop. 2.1 in [19], one can show that there exists a minimizer
Ye(t) of VE(Py, P)) since

VE(Py, P) < Vi(Po1, Pi1) + €Va(Po, Prlby). (3.22)

In the same way as in Lemma 3.1 in [19], from (H.2), one can show that any se-
quence {Y*"(:)},>1 in A (¢, — 0 as n — o0) has a weakly convergent subsequence
{Y*®) () }g>1. Indeed,

E[ /0 " Lu(t YE(): Byent, Ys))dt] < VB, PY), (3.23)
E[ /0 C Lat, YE(); ﬂys,g(t,YE))dt} < Va(Py, Pilb). (3.24)

We prove (3.24). In the same way as in Lemma 3 1 in [19], from (H.1,ii), by Jensen’s
inequality,

ViR Pa) < B[ [ Lalt Y (2)s By 1, V)]
< EUOILl(t,Yf(t);5y,,1(t,ye))dt]. (3.25)

Indeed, Y € A; with
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Bre(t, YY) = EBry<(t,Y*))|Y7(5),0 < 5 < ]

(see e.g., p. 258 of [14]). (3.25) and (3.22) implies (3.24).

Let Y°(t) denote the weak limit of {Y*»® (-)}4>; as n — oo. Then, again in
the same way as in Lemma 3.1 in [19] and (3.25), from (H.1,ii) and (3.22)-(3.23), by
Jensen’s inequality, '

Vi(Po1, Pi1)

IA

1
B| [ La(t, Y2(8); By (8, Y1)t
1
E[ | L, Y2 reatt, YO))dt]
liminf Ve (Py, P,) < limsup V) (Py, Py)
—0o0 k—oo
Vi(Po1, Pra)- (3.26)

IAN A

IA

Byo1(t,Y?) = Byo(t,Y?) from the strict convexity of Ly in u, and Y{ is equal to the
minimizer X; of V;(Py 1, Py1) by the uniqueness of the minimizer of V1(Pp 1, Pi1) and
we obtain (3.20). From (3.24), we also have

Vo(Py, Pulb1) < E[/O1 La(£, Y°(£): Byoa(t, Yo))dt]

rrl
ll]{n inf FE [/ L2 (t, Y en(k) (t), ,Byen,z (t, Yen(k) ))dt]
—_ 00 0

AN

IA

1
lim sup F |:/c; L2 (t, Yénx (t), ,Byen.'z (t, Yen(k)))dt]

k—oo

< Va(Po, Pilby). (3.27)

The uniqueness of the minimizer of %(Po, P1]b;) completes the proof.0
One can easily prove

Corollary 3.2 Let Py, P, € M;(R?). Suppose that (H.1)-(H.8) with L = L; holds
(i=1,2), thaty =2 in (H.2), and that Vi(Po1, P11) and Vo(Po, P1|b1) ts finite. Then
the minimizers { X1(t) }o<t<1, { X (¢) o<t<1 and {Y¢(t) }o<i<1 of Vi(Po,1, Pi1), Va(Po, P1lb1)
and VE( Py, P1) exist uniquely, respectively. In addition, {Y*(t) }o<t<1 weakly converges
to {X(t)}o<t<1 ase — 0 and (8.20)-(3.21) holds.

From (3.21)-(3.22) and (3.25), we easily have
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Proposition 3.4 Supoose that the assumption in Theorem 3.8 holds. Then for any
minimizer {Y*}o<i<1 of VE(Fo, P1),

B|[3 La(t, YF (2); Breat, Y9)dt]| = VA (Pou, Pro)

3

0< —0 (e—0). (3.28)

We don’t know the real convergence rate!

4 Discussion

In section 2, Theorem 2.3, we assumed that v — T;(Po,, P1,i|v) is continuous (i =
3,---,k). This continuity is known only in the case of the Knothe-Rosenblatt rear-
rangement where the representation of the minimizer is known. It is difficult to prove
that v — T'(P,, P1|v) is continuous, which is our future problem.

In section 3.2, we only considered the case where k = 2 because of the similar reason
to above. The point is that we do not even know any example such as the Knothe-
Rosenblatt rearrangement. This is also our future problem.

The Knothe-Rosenblatt rearrangement implies the Brunn-Minkowskii inequality. We
would like to find, in future, the inequality which can be obtained by the result in

section 3.
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