Variational characterization of the Knothe-Rosenblatt type rearrangements and its stochastic version

Department of Applied Mathematics

Hiroshima University

1 Introduction.

The Knothe-Rosenblatt rearrangement plays a crucial role in many fields, e.g., the Brunn-Minkowski inequality and statistics (see [12], [13], [22] and the references therein).

Let $d \geq 1$ and let $\mathcal{M}_1(\mathbf{R}^d)$ denote the set of all Borel probability measures on \mathbf{R}^d with a weak topology. For a distribution function F on \mathbf{R} , let

$$F^{-1}(u) := \inf\{x \in \mathbf{R} | u \le F(x)\} \quad (0 \le u \le 1). \tag{1.1}$$

For P_0 , $P_1 \in \mathcal{M}_1(\mathbf{R}^d)$, $x \in \mathbf{R}$, and i = 0, 1, let

$$F_{i,k}(x|\mathbf{x}_{k-1}) := \begin{cases} P_i((-\infty, x] \times \mathbf{R}^{d-1}) & (k=1), \\ P_i((-\infty, x] \times \mathbf{R}^{d-k}|\mathbf{x}_{k-1}) & (1 < k < d), \\ P_i((-\infty, x]|\mathbf{x}_{d-1}) & (k=d), \end{cases}$$

$$\varphi_k(\mathbf{x}_k) := F_{1,k}(\cdot|\varphi_1(x_1), \cdots, \varphi_{k-1}(\mathbf{x}_{k-1}))^{-1}(F_{0,k}(x_k|\mathbf{x}_{k-1}))(1 \le k \le d), (1.2)$$

where $\mathbf{x}_k := (x_i)_{1 \leq i \leq k} \in \mathbf{R}^k$ for $x = (x_i)_{1 \leq i \leq d} \in \mathbf{R}^d$ and $P_i(\cdot | \mathbf{x}_{k-1})$ denotes the regular conditional probability of P_i given \mathbf{x}_{k-1} .

Suppose that $F_{0,k}(\cdot|\mathbf{x}_{k-1})$ is continuous for all $k=1,\dots,d$. Then P_1 is the image measure of P_0 by

$$T_{KR}(\mathbf{x}_d) := (\varphi_1(x_1), \cdots, \varphi_d(\mathbf{x}_d)).$$

 T_{KR} is called the **Knothe-Rosenblatt rearrangement**. Suppose, in addition, that $F_{1,k}(\cdot|\mathbf{x}_{k-1})$ is continuous for all $k=1,\dots,d$. Then T_{KR} is invertible and the minimizer of the following weakly converges to $P_0(dx)\delta_{T_{KR}(x)}(dy)$ as $\varepsilon \to 0$: for p>1,

$$\inf \left\{ \int_{\mathbf{R}^d \times \mathbf{R}^d} \sum_{k=1}^d \varepsilon^{2(k-1)} |y_k - x_k|^p \mu(dxdy) \Big| \mu(dx \times \mathbf{R}^d) = P_0(dx), \right.$$

$$\left. \mu(\mathbf{R}^d \times dy) = P_1(dy) \right\}, \tag{1.3}$$

provided $\int_{\mathbf{R}^d} |x|^p (P_0(dx) + P_1(dx))$ is finite (see [2]). Here $\delta_x(dy)$ denotes the delta measure on $\{x\}$.

For $1 \leq k \leq d$, $\mathbf{x}_{k-1} \in \mathbf{R}^{k-1}$, $dF_{0,k}(x|\mathbf{x}_{k-1})\delta_{\varphi_k(\mathbf{x}_k)}(dy)$ is the unique minimizer of

$$\inf \left\{ \int_{\mathbf{R} \times \mathbf{R}} |y - x|^p \mu(dxdy) \middle| \mu(dx \times \mathbf{R}) = dF_{0,k}(x|\mathbf{x}_{k-1}), \right.$$

$$\mu(\mathbf{R} \times dy) = dF_{1,k}(y|\varphi_1(x_1), \cdots, \varphi_{k-1}(\mathbf{x}_{k-1})) \right\}$$
(1.4)

(see e.g. [21], [24]). (1.4) also implies that $P_0(d\mathbf{x}_k \times \mathbf{R}^{d-k})\delta_{(\varphi_1(x_1),\cdots,\varphi_k(\mathbf{x}_k))}(d\mathbf{y}_k)$ is the unique minimizer of

$$\inf \left\{ \int_{\mathbf{R}^{k} \times \mathbf{R}^{k}} |y_{k} - x_{k}|^{p} \mu(dxdy) \middle| \mu(dx \times \mathbf{R}^{k}) = P_{0}(dx \times \mathbf{R}^{d-k}), \right.$$

$$\mu(\mathbf{R}^{k} \times dy) = P_{1}(dy \times \mathbf{R}^{d-k}),$$

$$y_{i} = \varphi_{i-1}(\mathbf{x}_{i-1})(i = 1, \dots, k-1), \mu - a.s. \right\}.$$

$$(1.5)$$

We generalize (1.5) and call the minimizer the **Knothe-Rosenblatt type rear**rangement. We also prove the duality theorem, give the convergence result which generalizes (1.3) by the idea of [2] and consider the similar problems in the stochastic control setting.

2 Knothe-Rosenblatt type rearrangement.

Let $d \geq 2$, $1 \leq d_1 < d$, $c(x,y) : \mathbf{R}^{d-d_1} \times \mathbf{R}^{d-d_1} \mapsto [0,\infty)$ be Borel measurable and $\nu \in \mathcal{M}_1(\mathbf{R}^{2d_1})$. For $P_0, P_1 \in \mathcal{M}_1(\mathbf{R}^d)$, let

$$T(P_0, P_1 | \nu) := \inf \left\{ \int_{\mathbf{R}^d \times \mathbf{R}^d} c(\mathbf{x}_{d_1, d}, \mathbf{y}_{d_1, d}) \mu(dx dy) \middle| \\ \mu(d\mathbf{x}_{d_1} \times \mathbf{R}^{d - d_1} \times d\mathbf{y}_{d_1} \times \mathbf{R}^{d - d_1}) = \nu(d\mathbf{x}_{d_1} d\mathbf{y}_{d_1}), \\ \mu(dx \times \mathbf{R}^d) = P_0(dx), \mu(\mathbf{R}^d \times dy) = P_1(dy) \right\}, \tag{2.1}$$

where $\mathbf{x}_{i,j} := (x_k)_{i+1 \le k \le j} \in \mathbf{R}^{j-i}$ for $x = (x_k)_{1 \le k \le d} \in \mathbf{R}^d$. If the set over which the infimum is taken is empty, then we consider the infimum is equal to infinity. If there exists a Borel measurable function $\varphi : \mathbf{R}^{d_1} \mapsto \mathbf{R}^{d_1}$ such that $\mathbf{y}_{d_1} = \varphi(\mathbf{x}_{d_1})$, ν -a.s., then we write, for simplicity,

$$T(P_0, P_1|\varphi) := T(P_0, P_1|\nu).$$

We first show the existence of the Knothe-Rosenblatt type rearrangement.

Proposition 2.1 Suppose that c is lower semi-continuous. Then, for any $P_0, P_1 \in \mathcal{M}_1(\mathbf{R}^d)$, $T(P_0, P_1|\nu)$ has a minimizer, provided it is finite.

(Proof) Let $\{\mu_n\}_{n\geq 1}$ be a minimizing sequence of $T(P_0, P_1|\nu)$. Since $\mu_n(dx \times \mathbf{R}^d) = P_0(dx)$ and $\mu_n(\mathbf{R}^d \times dy) = P_1(dy)$, it has a weakly convergent subsequence which we denote by $\{\mu_{n(k)}\}_{k\geq 1}$. Let μ denote the limit. Then by Skorohod's representation theorem, Fatou's lemma and the lower semicontinuity of c,

$$T(P_0, P_1 | \nu) = \lim_{k \to \infty} \int_{\mathbf{R}^d \times \mathbf{R}^d} c(\mathbf{x}_{d_1, d}, \mathbf{y}_{d_1, d}) \mu_{n(k)}(dxdy)$$

$$\geq \int_{\mathbf{R}^d \times \mathbf{R}^d} c(\mathbf{x}_{d_1, d}, \mathbf{y}_{d_1, d}) \mu(dxdy). \tag{2.2}$$

For any $f \in C(\mathbf{R}^{d_1} \times \mathbf{R}^{d_1})$,

$$\int_{\mathbf{R}^{d}\times\mathbf{R}^{d}} f(\mathbf{x}_{d_{1}}, \mathbf{y}_{d_{1}}) \mu(dxdy) = \lim_{k\to\infty} \int_{\mathbf{R}^{d}\times\mathbf{R}^{d}} f(\mathbf{x}_{d_{1}}, \mathbf{y}_{d_{1}}) \mu_{n(k)}(dxdy)$$

$$= \int_{\mathbf{R}^{d_{1}}\times\mathbf{R}^{d_{1}}} f(\mathbf{x}_{d_{1}}, \mathbf{y}_{d_{1}}) \nu(d\mathbf{x}_{d_{1}}d\mathbf{y}_{d_{1}}). \tag{2.3}$$

In the same way, one can show that $\mu(dx \times \mathbf{R}^d) = P_0(dx)$ and $\mu(\mathbf{R}^d \times dy) = P_1(dy)$.

2.1 Duality Theorem

It is easy to see that the following holds:

$$T(P_0, P_1 | \varphi) = \inf \left\{ \int_{\mathbf{R}^d \times \mathbf{R}^d} \frac{c(\mathbf{x}_{d_1, d}, \mathbf{y}_{d_1, d})}{1_{\{\varphi(\mathbf{x}_{d_1})\}}(\mathbf{y}_{d_1})} \mu(dxdy) \right|$$

$$\mu(dx \times \mathbf{R}^d) = P_0(dx), \mu(\mathbf{R}^d \times dy) = P_1(dy) \right\}, \qquad (2.4)$$

where $1_A(x) := 1$ if $x \in A$ and := 0 if $x \notin A$ for the set A. This leads us to the duality theorem for $T(P_0, P_1|\varphi)$ which can be obtained from [11] (see also p. 76 in Vol. 1 of [21]).

Theorem 2.1 For any $P_0, P_1 \in \mathcal{M}_1(\mathbf{R}^d)$,

$$T(P_{0}, P_{1}|\varphi) = \sup \left\{ \int_{\mathbf{R}^{d}} f_{1}(y) P_{1}(dy) - \int_{\mathbf{R}^{d}} f_{0}(x) P_{0}(dx) \Big| f_{0}, f_{1} \in C_{b}(\mathbf{R}^{d}), \right.$$

$$\left. f_{1}(y) - f_{0}(x) \leq \frac{c(\mathbf{x}_{d_{1},d}, \mathbf{y}_{d_{1},d})}{1_{\{\varphi(\mathbf{x}_{d_{1}})\}}(\mathbf{y}_{d_{1}})} \right\}. \tag{2.5}$$

For $f \in C_b(\mathbf{R}^d)$ and $x = (\mathbf{x}_{d_1}, \mathbf{x}_{d_1, d}) \in \mathbf{R}^d$,

$$v(x; f|\varphi) := \sup\{f(\varphi(\mathbf{x}_{d_1}), y) - c(\mathbf{x}_{d_1, d}, y)| y \in \mathbf{R}^{d - d_1}\}.$$
(2.6)

Then, from (2.5),

$$T(P_0, P_1|\varphi) = \sup \left\{ \int_{\mathbf{R}^d} f(y) P_1(dy) - \int_{\mathbf{R}^d} v(x; f|\varphi) P_0(dx) \middle| f \in C_b(\mathbf{R}^d) \right\}. \tag{2.7}$$

We easily obtain the following (see e.g. (2.8)-(2.9) in [16]).

Proposition 2.2 Suppose that $\varphi \in C(\mathbf{R}^{d_1} : \mathbf{R}^{d_1})$, $c(x, y) \in C(\mathbf{R}^{d-d_1} \times \mathbf{R}^{d-d_1} : [0, \infty))$ and $\lim_{|y-x|\to\infty} c(x, y) = \infty$. Then for any $f \in C_b(\mathbf{R}^d)$, $v(\cdot; f|\varphi)$ is continuous.

We formally derive the Hamilton-Jacobi Equation (HJ Eqn for short) for $v(x; f|\varphi)$. Let

$$\Phi(t,x) := x + t(\varphi(x) - x),
b(t,x) := \varphi(\Phi(t,\cdot)^{-1}(x)) - \Phi(t,\cdot)^{-1}(x) \quad ((t,x) \in [0,1] \times \mathbf{R}^{d_1}),$$
(2.8)

provided it exists. Then

$$\frac{d\Phi(t,x)}{dt} = \varphi(x) - x = b(t,\Phi(t,x)). \tag{2.9}$$

In case $c(x,y) = \ell(y-x)$ for a convex ℓ , we consider the following HJ Eqn:

$$\frac{\partial v(t,x)}{\partial t} + \langle \nabla_{d_1} v(t,x), b(t,\mathbf{x}_{d_1}) \rangle + h(\nabla_{d_1,d} v(t,x)) = 0 \quad ((t,x) \in (0,1) \times \mathbf{R}^d), \quad (2.10)$$

where $\nabla_{d_1} := (\partial/\partial x_i)_{i=1}^{d_1}, \ \nabla_{d_1,d} := (\partial/\partial x_i)_{i=d_1+1}^d$ and

$$h(z) := \sup\{\langle u, z \rangle - \ell(u) | u \in \mathbf{R}^{d-d_1}\} \quad (z \in \mathbf{R}^{d-d_1}).$$

Then we have

Proposition 2.3 Suppose that $c(x,y) = \ell(y-x)$ for a convex ℓ , that $\Phi(t,\cdot)$ is injective for all $t \in [0,1]$, that the HJ Eqn (2.10) has a classical solution v and that the following ODE has an absolutely continuous solution: for any $\phi_2(0) = \mathbf{x}_{d_1,d}$

$$\frac{d\phi_2(t)}{dt} = \nabla h(\nabla_{\mathbf{x}_{d_1,d}} v(t, \Phi(t, \mathbf{x}_{d_1}), \phi_2(t))). \tag{2.11}$$

Then $v(0,x) = v(x; v(1,\cdot)|\varphi)$.

(Proof) For any $\phi_2 \in AC(\mathbf{R}^{d-d_1})$, from (2.9), we have

$$v(1, \Phi(1, \mathbf{x}_{d_{1}}), \phi_{2}(1)) - v(0, \Phi(0, \mathbf{x}_{d_{1}}), \phi_{2}(0))$$

$$= \int_{0}^{1} \left\{ \frac{\partial v(t, \Phi(t, \mathbf{x}_{d_{1}}), \phi_{2}(t))}{\partial t} + \langle \nabla_{d_{1}} v(t, \Phi(t, \mathbf{x}_{d_{1}}), \phi_{2}(t)), b(t, \Phi(t, \mathbf{x}_{d_{1}})) \rangle + \langle \nabla_{d_{1}, d} v(t, \Phi(t, \mathbf{x}_{d_{1}}), \phi_{2}(t)), \frac{d\phi_{2}(t)}{dt} \rangle \right\} dt$$

$$= \int_{0}^{1} \left\{ -h(\nabla_{d_{1}, d} v(t, \Phi(t, \mathbf{x}_{d_{1}}), \phi_{2}(t))) + \langle \nabla_{d_{1}, d} v(t, \Phi(t, \mathbf{x}_{d_{1}}), \phi_{2}(t)), \frac{d\phi_{2}(t)}{dt} \rangle \right\} dt$$

$$\leq \int_{0}^{1} \ell\left(\frac{d\phi_{2}(t)}{t}\right) dt, \qquad (2.12)$$

where the equality holds if (2.11) holds. By Jensen's inequality,

$$v(0,x) = \sup \left\{ v(1,\varphi(\mathbf{x}_{d_1}),\phi_2(1)) - \int_0^1 \ell\left(\frac{d\phi_2(t)}{t}\right) dt \Big| \phi_2(0) = \mathbf{x}_{d_1,d} \right\}$$

$$= \sup \left\{ v(1,\varphi(\mathbf{x}_{d_1}),\phi_2(1)) - \ell(\phi_2(1) - \phi_2(0)) \Big| \phi_2(0) = \mathbf{x}_{d_1,d} \right\}$$

$$= v(x;v(1,\cdot)|\varphi).\square$$
(2.13)

Before we formulate the duality theorem in the framework of the theory of viscosity solutions, we give assumptions.

(A.1). b(t,x) is bounded and there exists K>0 such that

$$|b(t,x) - b(t,y)| \le K|x-y| \quad (t \in [0,1], x, y \in \mathbf{R}^{d_1}).$$

(A.2). There exists $m \in C([0,1] \times \mathbf{R}^{d_1} \times [0,1] \times \mathbf{R}^{d_1} \times [0,\infty))$ such that m(t,x,s,y,0) = 0 and that

$$|b(t,x) - b(s,y)| \le m(t,x,s,y,|t-s| + |x-y|) \quad (t,s \in [0,1], x,y \in \mathbf{R}^{d_1}).$$

(A.3). $\ell: \mathbf{R}^{d-d_1} \mapsto [0, \infty)$ is convex and $\liminf_{|v| \to \infty} \frac{\ell(v)}{|v|} = \infty$.

Example 2.1 Suppose that $d_1 = 1$. Then (A.1)-(A.2) holds if $1 < d\varphi(x)/dx \le K+1$.

For $(t, x) \in [0, 1] \times \mathbf{R}^d$ and $f \in C_b(\mathbf{R}^d)$,

$$v(t, x; f|\varphi) := \sup \left\{ f(\Phi(1, \mathbf{y}_{d_1}), \phi_2(1)) - \int_t^1 \ell\left(\frac{d\phi_2(s)}{ds}\right) ds \middle| (\Phi(t, \mathbf{y}_{d_1}), \phi_2(t)) = x \right\}.$$
(2.14)

Then it is easy to see that the following holds:

$$v(t, x; f|\varphi) = \sup \left\{ f(\mathbf{x}_{d_1} + (1-t)b(t, \mathbf{x}_{d_1}), y) - (1-t)\ell\left(\frac{y - \mathbf{x}_{d_1, d}}{1-t}\right) \middle| y \in \mathbf{R}^{d-d_1} \right\}. (2.15)$$

(see (2.8)). We also have

Corollary 2.1 Suppose that $c(x,y) = \ell(y-x)$ and that (A.1)-(A.3) hold. Then for any Lipschitz continuous $f: \mathbf{R}^d \mapsto \mathbf{R}$, $v(t,x;f|\varphi)$ is a Lipschitz continuous viscosity solution of (2.10). In particular, for any $P_0, P_1 \in \mathcal{M}_1(\mathbf{R}^d)$,

$$T(P_0, P_1 | \varphi) = \sup \left\{ \int_{\mathbf{R}^d} v(1, y) P_1(dy) - \int_{\mathbf{R}^d} v(0, x) P_0(dx) | v(1, \cdot) \in C_b^{\infty}(\mathbf{R}^d) \right\}, \quad (2.16)$$

where v(t,x) denotes a bounded uniformly continuous viscosity solution of (2.10).

(Proof) In the same way as in p. 127 in [4], by (A.1) and (A.3), one can prove that $v(\cdot,\cdot;f|\varphi)$ is Lipschitz continuous for Lipschitz continuous $f:\mathbf{R}^d\mapsto\mathbf{R}$. In addition, from Chap. II.16 of [7], under (A.1)-(A.3), $v(t,x;f|\varphi)$ is a bounded, uniformly continuous viscosity solution of (2.10). It is easy to see that the supremum in (2.7) can be taken only over all $f\in C_b^{\infty}(\mathbf{R}^d)$. For $n\geq 1$, $f\in C_b^{\infty}(\mathbf{R}^d)$ and $(t,x)\in[0,1]\times\mathbf{R}^d$,

$$v_{n}(t, x; f) := \sup \left\{ f(\mathbf{x}_{d_{1}} + (1 - t)b(t, \mathbf{x}_{d_{1}}), \phi_{2}(1)) - \int_{t}^{1} \ell\left(\frac{d\phi_{2}(s)}{ds}\right) ds \right|$$

$$\phi_{2}(t) = \mathbf{x}_{d_{1}, d}, \left|\frac{d\phi_{2}(s)}{ds}\right| \leq n \right\}.$$
(2.17)

Then, from Theorem 10.1 in p. 95 of [7], under (A.1), $v_n(t, x; f)$ is the unique bounded uniformly continuous viscosity solution of the following HJ Eqn: for $(t, x) \in (0, 1) \times \mathbf{R}^d$,

$$\frac{\partial v(t,x)}{\partial t} + \langle \nabla_{d_1} v(t,x), b(t,\mathbf{x}_{d_1}) \rangle + h_n(\nabla_{d_1,d} v(t,x)) = 0, v(1,x) = f(x),$$
 (2.18)

where

$$h_n(z) := \sup\{\langle u, z \rangle - \ell(u) | u \in \mathbf{R}^{d-d_1}, |u| \leq n\}.$$

Let \overline{v} be a bounded uniformly continuous viscosity solution of (2.10) with $\overline{v}(1,x) = f(x)$. Then it is a bounded uniformly continuous viscosity supersolution of (2.18) with $\overline{v}(1,x) = f(x)$ and

$$v_n(t, x; f) \le \overline{v}(t, x) \tag{2.19}$$

from Theorem 9.1 in p. 86 of [7]. Let $n \to \infty$ in (2.19). Then we obtain $v(t, x; f | \varphi) \le \overline{v}(t, x) \square$.

2.2 Convergence Theorem

Let
$$2 \le k \le d$$
, $0 = d_0 < d_1 < \cdots < d_k = d$ and (A.4) $c_i \in LSC(\mathbf{R}^{d_i - d_{i-1}} \times \mathbf{R}^{d_i - d_{i-1}} : [0, \infty))$ $(i = 1, \cdots, k)$.
For $\varepsilon \ge 0$, P_0 , $P_1 \in \mathcal{M}_1(\mathbf{R}^d)$,

$$T^{\varepsilon}(P_0, P_1) := \inf \left\{ \int_{\mathbf{R}^d \times \mathbf{R}^d} \sum_{i=1}^k \varepsilon^{i-1} c_i(\mathbf{x}_{d_{i-1}, d_i}, \mathbf{y}_{d_{i-1}, d_i}) \mu(dx dy) \right|$$

$$\mu(dx \times \mathbf{R}^d) = P_0(dx), \mu(\mathbf{R}^d \times dy) = P_1(dy) \right\}. \tag{2.20}$$

It is known that if $c_i(x,y) = \ell_i(y-x)$ and ℓ_i is strictly convex and superlinear $(i = 1, \dots, k)$ and if $P_0(dx)$ is absolutely continuous with respect to the Lebesgue measure dx, then $T^{\varepsilon}(P_0, P_1)$ has the unique minimizer, provided that it is finite (see e.g. [21], [24], [25]).

$$T_{1}(P_{0,1}, P_{1,1}) := \inf \left\{ \int_{\mathbf{R}^{d_{1}} \times \mathbf{R}^{d_{1}}} c_{1}(x, y) \mu(dx dy) \right|$$

$$\mu(dx \times \mathbf{R}^{d_{1}}) = P_{0,1}(dx), \mu(\mathbf{R}^{d_{1}} \times dy) = P_{1,1}(dy) \right\}, (2.21)$$

where $P_{t,i}(d\mathbf{x}_{d_i}) := P_t(d\mathbf{x}_{d_i} \times \mathbf{R}^{d-d_i}) \ (t = 0, 1)$. For $i \ge 2$ and $\nu_{i-1} \in \mathcal{M}_1(\mathbf{R}^{2d_{i-1}})$,

$$T_{i}(P_{0,i}, P_{1,i}|\nu_{i-1}) := \inf \left\{ \int_{\mathbf{R}^{d_{i}} \times \mathbf{R}^{d_{i}}} c_{i}(\mathbf{x}_{d_{i-1},d_{i}}, \mathbf{y}_{d_{i-1},d_{i}}) \mu(dxdy) \middle| \\ \mu(d\mathbf{x}_{d_{i-1}} \times \mathbf{R}^{d_{i}-d_{i-1}} \times d\mathbf{y}_{d_{i-1}} \times \mathbf{R}^{d_{i}-d_{i-1}}) = \nu_{i-1}(d\mathbf{x}_{d_{i-1}}d\mathbf{y}_{d_{i-1}}), \\ \mu(dx \times \mathbf{R}^{d_{i}}) = P_{0,i}(dx), \mu(\mathbf{R}^{d_{i}} \times dy) = P_{1,i}(dy) \right\}.$$
(2.22)

The following theorem can be proved in the same way as [2] (see also section 1) and is proved for the readers' convenience.

Theorem 2.2 Let P_0 , $P_1 \in \mathcal{M}_1(\mathbf{R}^d)$. Suppose that k = 2 and (A.4) holds and that $T_1(P_{0,1}, P_{1,1})$ and $T_2(P_0, P_1|\nu_1)$ have the unique minimizers ν_1 and ν_2 , respectively. Then a minimizer of $T^{\epsilon}(P_0, P_1)$ exists and weakly converges to ν_2 as $\epsilon \to 0$ and the following holds:

$$\lim_{\epsilon \to 0} \int_{\mathbf{R}^d \times \mathbf{R}^d} c_1(\mathbf{x}_{d_1}, \mathbf{y}_{d_1}) \mu^{\epsilon}(dxdy) = T_1(P_{0,1}, P_{1,1}), \tag{2.23}$$

$$\lim_{\varepsilon \to 0} \int_{\mathbf{R}^d \times \mathbf{R}^d} c_2(\mathbf{x}_{d_1,d}, \mathbf{y}_{d_1,d}) \mu^{\varepsilon}(dxdy) = T_2(P_0, P_1 | \nu_1). \tag{2.24}$$

(Proof). In the same way as in the proof of Proposition 2.1, by a standard method, one can show that $T^{\epsilon}(P_0, P_1)$ has a minimizer μ^{ϵ} , since

$$T^{\epsilon}(P_0, P_1) \le T_1(P_{0,1}, P_{1,1}) + \epsilon T_2(P_0, P_1 | \nu_1) < +\infty.$$
 (2.25)

Since the set of μ for which $\mu(dx \times \mathbf{R}^d) = P_0(dx)$ and $\mu(\mathbf{R}^d \times dy) = P_1(dy)$ is compact, any sequence $\{\mu^{\varepsilon_n}\}_{n\geq 1}$ $(\varepsilon_n \to 0 \text{ as } n \to \infty)$ has a weakly convergent subsequence $\{\mu^{\varepsilon_n(t)}\}_{t\geq 1}$ and for the limit μ ,

$$\mu_1(d\mathbf{x}_{d_1}d\mathbf{y}_{d_1}) := \mu(d\mathbf{x}_{d_1} \times \mathbf{R}^{d-d_1} \times d\mathbf{y}_{d_1} \times \mathbf{R}^{d-d_1})$$

is the minimizer of $T_1(P_{0,1}, P_{1,1})$ by the uniqueness of the minimizer and (2.23) holds. Indeed, from (2.25),

$$T_{1}(P_{0,1}, P_{1,1}) \leq \int_{\mathbf{R}^{d_{1}} \times \mathbf{R}^{d_{1}}} c_{1}(x, y) \mu_{1}(dxdy) = \int_{\mathbf{R}^{d} \times \mathbf{R}^{d}} c_{1}(\mathbf{x}_{d_{1}}, \mathbf{y}_{d_{1}}) \mu(dxdy)$$

$$\leq \liminf_{\ell \to \infty} T^{\epsilon_{n(\ell)}}(P_{0}, P_{1}) \leq \limsup_{\ell \to \infty} T^{\epsilon_{n(\ell)}}(P_{0}, P_{1})$$

$$\leq T_{1}(P_{0,1}, P_{1,1}). \tag{2.26}$$

Since

$$T_1(P_{0,1}, P_{1,1}) + \varepsilon \int_{\mathbf{R}^d \times \mathbf{R}^d} c_2(\mathbf{x}_{d_1,d}, \mathbf{y}_{d_1,d}) \mu^{\varepsilon}(dxdy) \le T^{\varepsilon}(P_0, P_1), \tag{2.27}$$

we also have, from (2.25) and (2.27),

$$T_{2}(P_{0}, P_{1}|\nu_{1}) \leq \int_{\mathbf{R}^{d}\times\mathbf{R}^{d}} c_{2}(\mathbf{x}_{d_{1},d}, \mathbf{y}_{d_{1},d})\mu(dxdy)$$

$$\leq \liminf_{\ell\to\infty} \int_{\mathbf{R}^{d}\times\mathbf{R}^{d}} c_{2}(\mathbf{x}_{d_{1},d}, \mathbf{y}_{d_{1},d})\mu^{\varepsilon_{n(\ell)}}(dxdy)$$

$$\leq \limsup_{\ell\to\infty} \int_{\mathbf{R}^{d}\times\mathbf{R}^{d}} c_{2}(\mathbf{x}_{d_{1},d}, \mathbf{y}_{d_{1},d})\mu^{\varepsilon_{n(\ell)}}(dxdy)$$

$$\leq T_{2}(P_{0}, P_{1}|\nu_{1}). \tag{2.28}$$

The uniqueness of the minimizer of $T_2(P_0, P_1|\nu_1)$ completes the proof.

Theorem 2.3 Let P_0 , $P_1 \in \mathcal{M}_1(\mathbf{R}^d)$. Suppose that (A.4) holds, that $T_1(P_{0,1}, P_{1,1})$ and $T_i(P_{0,i}, P_{1,i}|\nu_{i-1})$ have the unique minimizers ν_1 and ν_i $(i = 2, \dots, k)$, respectively and that $\nu \mapsto T_i(P_{0,i}, P_{1,i}|\nu)$ is continuous $(i = 3, \dots, k)$. Then a minimizer of $T^{\varepsilon}(P_0, P_1)$ exists and weakly converges to ν_k as $\varepsilon \to 0$ and the following holds:

$$\lim_{\varepsilon \to 0} \int_{\mathbf{R}^d \times \mathbf{R}^d} c_1(\mathbf{x}_{d_1}, \mathbf{y}_{d_1}) \mu^{\varepsilon}(dxdy) = T_1(P_{0,1}, P_{1,1}), \tag{2.29}$$

$$\lim_{\varepsilon \to 0} \int_{\mathbf{R}^d \times \mathbf{R}^d} c_i(\mathbf{x}_{d_{i-1}, d_i}, \mathbf{y}_{d_{i-1}, d_i}) \mu^{\varepsilon}(dxdy) = T_i(P_{0,i}, P_{1,i} | \nu_{i-1}) (i = 2, \dots, k). (2.30)$$

(Proof). In the same way as in (2.25), one can show that $T^{\varepsilon}(P_0, P_1)$ has a minimizer μ^{ε} and that any subsequence $\{\mu^{\varepsilon_n}\}_{n\geq 1}$ $(\varepsilon_n \to 0 \text{ as } n \to \infty)$ has a weakly convergent subsequence $\{\mu^{\varepsilon_n(\ell)}\}_{\ell\geq 1}$. Let μ denote the weak limit of $\mu^{\varepsilon_n(\ell)}$ as $\ell \to \infty$. We prove the theorem by induction. For $i=2,\cdots,k$,

$$T_{i-1}^{\varepsilon}(P_{0,i-1}, P_{1,i-1})$$
:= $\inf \left\{ \int_{\mathbf{R}^{d_{i-1}} \times \mathbf{R}^{d_{i-1}}} \sum_{j=1}^{i-1} \varepsilon^{j-1} c_j(\mathbf{x}_{d_{j-1},d_j}, \mathbf{y}_{d_{j-1},d_j}) \nu(dxdy) \middle| \right.$

$$\nu(dx \times \mathbf{R}^{d_{i-1}}) = P_{0,i-1}(dx), \nu(\mathbf{R}^{d_{i-1}} \times dy) = P_{1,i-1}(dy) \right\}. \tag{2.31}$$

Let μ_{i-1}^{ε} and $\nu_{i,j}^{\varepsilon}$ denote a minimizer of $T_{i-1}^{\varepsilon}(P_{0,i-1},P_{1,i-1})$ and $T_j(P_{0,j},P_{1,j}|\nu_{i,j-1}^{\varepsilon})$ $(j=i,\cdots,k)$, respectively, where $\nu_{i,i-1}^{\varepsilon}:=\mu_{i-1}^{\varepsilon}$. Then

$$T_{i-1}^{\varepsilon}(P_{0,i-1}, P_{1,i-1}) + \int_{\mathbf{R}^{d} \times \mathbf{R}^{d}} \sum_{j=i}^{k} \varepsilon^{j-1} c_{j}(\mathbf{x}_{d_{j-1}, d_{j}}, \mathbf{y}_{d_{j-1}, d_{j}}) \mu^{\varepsilon}(dxdy)$$

$$\leq T^{\varepsilon}(P_{0}, P_{1})$$

$$\leq T_{i-1}^{\varepsilon}(P_{0,i-1}, P_{1,i-1}) + \sum_{j=i}^{k} \varepsilon^{j-1} T_{j}(P_{0,j}, P_{1,j} | \nu_{i,j-1}^{\varepsilon}). \tag{2.32}$$

From Theorem 2.2, $\mu_2^{\varepsilon} \to \nu_2$ as $\varepsilon \to 0$ and (2.23)-(2.24) holds. Suppose that $\mu_i^{\varepsilon} \to \nu_i$ as $\varepsilon \to 0$ for $i \leq k-1$. In the same way as in Theorem 2.2, one can show that for j=1,2,

$$\mu(d\mathbf{x}_{d_j} \times \mathbf{R}^{d-d_j} \times d\mathbf{y}_{d_j} \times \mathbf{R}^{d-d_j}) = \nu_j(d\mathbf{x}_{d_j}d\mathbf{y}_{d_j}). \tag{2.33}$$

Suppose that (2.33) holds for j = i - 1. Then, from (2.32) and the assumption of induction,

$$T_{i}(P_{0,i}, P_{1,i}|\nu_{i-1}) \leq \int_{\mathbf{R}^{d}\times\mathbf{R}^{d}} c_{i}(\mathbf{x}_{d_{i-1},d_{i}}, \mathbf{y}_{d_{i-1},d_{i}})\mu(dxdy)$$

$$\leq \liminf_{\ell\to\infty} \int_{\mathbf{R}^{d}\times\mathbf{R}^{d}} c_{i}(\mathbf{x}_{d_{i-1},d_{i}}, \mathbf{y}_{d_{i-1},d_{i}})\mu^{\varepsilon_{n(\ell)}}(dxdy)$$

$$\leq \limsup_{\ell\to\infty} \int_{\mathbf{R}^{d}\times\mathbf{R}^{d}} c_{i}(\mathbf{x}_{d_{i-1},d_{i}}, \mathbf{y}_{d_{i-1},d_{i}})\mu^{\varepsilon_{n(\ell)}}(dxdy)$$

$$\leq \lim_{\ell\to\infty} T_{i}(P_{0,i}, P_{1,i}|\mu_{i-1}^{\varepsilon_{n(\ell)}}) = T_{i}(P_{0}, P_{1}|\nu_{i-1}). \tag{2.34}$$

(2.34) implies (2.30) and the uniqueness of the minimizer ν_i of $T_i(P_{0,i}, P_{1,i}|\nu_{i-1})$ implies that (2.33) holds for $j = i.\square$

From (2.32), we also have

Proposition 2.4 Suppose that the assumption in Theorem 2.3 holds. Then, for $i = 1, \dots, k-1$,

$$0 \leq \frac{\int_{\mathbf{R}^d \times \mathbf{R}^d} \sum_{j=1}^i \varepsilon^{j-1} c_j(\mathbf{x}_{d_{j-1}, d_j}, \mathbf{y}_{d_{j-1}, d_j}) \mu^{\varepsilon}(dxdy) - T_i^{\varepsilon}(P_{0,i}, P_{1,i})}{\varepsilon^i} \to 0 \quad (\varepsilon \to 0).$$
(2.35)

We don't know the real convergence rate of (2.35).

Example 2.2 Let
$$P_0, P_1 \in \mathcal{M}_1(\mathbf{R}^d)$$
. Suppose that (i) $d_{i+1} = d_i + 1$ ($i = 1, \dots, k-1$),

(ii) $c_i(x,y) = \ell_i(y-x)$ and $\ell_i : \mathbf{R}^{d_i} \mapsto [0,\infty)$ is strictly convex and superlinear $(i = 1, \dots, k)$,

(iii) P_0 is absolutely continuous with respect to the Lebesgue measure dx,

(iv) $T_1(P_{0,1}, P_{1,1})$ is finite.

Then $T_1(P_{0,1}, P_{1,1})$ has the unique minimizer ν_1 which can be written as follows:

$$\nu_1(d\mathbf{x}_{d_1}d\mathbf{y}_{d_1}) = P_{0,1}(d\mathbf{x}_{d_1})\delta_{\phi_1(\mathbf{x}_{d_1})}(d\mathbf{y}_{d_1}), \tag{2.36}$$

where ϕ_1 is a Borel measurable function (see e.g. [21], [24]).

Suppose, in addition, that

(v) $T_i(P_{0,i}, P_{1,i}|\nu_{i-1})$ is finite for $i = 2, \dots, k$. (If $T_i(P_{0,i}, P_{1,i}|\nu_{i-1})$ is finite, then it has a minimizer (see the proof of Prop. 2.1).)

Then the following holds:

$$\nu_{i}(d\mathbf{x}_{d_{i}}d\mathbf{y}_{d_{i}}) = P_{0,i}(d\mathbf{x}_{d_{i}})\delta_{\Phi_{\nu_{0},\cdots,\nu_{i-1}}(\mathbf{x}_{d_{i}})}(d\mathbf{y}_{d_{i}}),$$

$$where \ \Phi_{\nu_{0},\cdots,\nu_{i-1}}(\mathbf{x}_{d_{i}}) := (\phi_{\nu_{0}}(\mathbf{x}_{d_{1}}),\cdots,\phi_{\nu_{i-1}}(\mathbf{x}_{d_{i}})), \ \phi_{\nu_{0}} := \phi_{1} \ and$$

$$(2.37)$$

$$\phi_{\nu_{i-1}}(\mathbf{x}_{d_{i}}) := (F_{\nu_{i-1},1}(\cdot|\mathbf{x}_{d_{i-1}},\Phi_{\nu_{0},\cdots,\nu_{i-2}}(\mathbf{x}_{d_{i-1}})))^{-1}(F_{\nu_{i-1},0}(x_{d_{i}}|\mathbf{x}_{d_{i-1}},\Phi_{\nu_{0},\cdots,\nu_{i-2}}(\mathbf{x}_{d_{i-1}}))),$$

$$F_{\nu_{i-1},1}(x|\mathbf{x}_{d_{i-1}},\Phi_{\nu_{0},\cdots,\nu_{i-2}}(\mathbf{x}_{d_{i-1}}))$$

$$\vdots = \nu_{i-1}(\mathbf{R} \times (-\infty,x]|(\mathbf{x}_{d_{i-1}},\Phi_{\nu_{0},\cdots,\nu_{i-2}}(\mathbf{x}_{d_{i-1}}))),$$

$$F_{\nu_{i-1},0}(x_{d_{i}}|\mathbf{x}_{d_{i-1}},\Phi_{\nu_{0},\cdots,\nu_{i-2}}(\mathbf{x}_{d_{i-1}}))$$

$$\vdots = \nu_{i-1}((-\infty,x]\times\mathbf{R}|(\mathbf{x}_{d_{i-1}},\Phi_{\nu_{0},\cdots,\nu_{i-2}}(\mathbf{x}_{d_{i-1}}))).$$

In particular, $\phi_{\nu_{i-1}}$ is a minimizer of the following:

$$\min \left\{ \int_{\mathbf{R}^{d_i}} \ell_i(\phi(x) - x_{d_i}) P_{0,i}(dx) \middle| P_{0,i}(\Phi_{\nu_0, \dots, \nu_{i-2}}, \phi)^{-1} = P_{1,i} \right\} = T_i(P_{0,i}, P_{1,i} | \nu_{i-1}). \tag{2.38}$$

3 Stochastic version of Knothe-Rosenblatt type rearrangement.

Let \mathcal{A} denote the set of all \mathbf{R}^d -valued, continuous semimartingales $\{X(t)\}_{0 \leq t \leq 1}$ on a (possibly different) complete filtered probability space such that there exists a Borel measurable $\beta_X : [0,1] \times C([0,1]) \mapsto \mathbf{R}^d$ for which

(i)
$$\omega \mapsto \beta_X(t, \omega)$$
 is $\mathcal{B}(C([0, t]))_+$ -measurable for all $t \in [0, 1]$,

(ii) $X(t) = X(0) + \int_0^t \beta_X(s, X) ds + W_X(t) \ (0 \le t \le 1).$

Here $\mathcal{B}(C([0,t]))_+ := \cap_{s>t} \mathcal{B}(C([0,s]))$, $\mathcal{B}(C([0,t]))$ and W_X denote the Borel σ -field of C([0,t]) and an (\mathcal{F}_t^X) -Brownian motion, respectively, and $\mathcal{F}_t^X := \sigma[X(s): 0 \le s \le t]$ (see e.g. [14]). Let $d \ge 2$ and $1 \le d_1 < d$, and let $b_1: [0,1] \times \mathbf{R}^{d_1} \mapsto \mathbf{R}^{d_1}$ be a Borel measurable function such that the following SDE has a weak solution for a given initial distribution:

$$dX_1(t) = b_1(t, X_1(t))dt + dW_{X_1}(t). (3.1)$$

Let $L(t, x; u) : [0, 1] \times \mathbf{R}^d \times \mathbf{R}^{d-d_1} \mapsto [0, \infty)$.

A minimizer of the following can be considered as the stochastic optimal control (SOC for short) version of the Knothe Rosenblatt type rearrangement: for P_0 , $P_1 \in \mathcal{M}_1(\mathbf{R}^d)$,

$$V(P_0, P_1|b_1) := \inf \left\{ E\left[\int_0^1 L(t, Y(t); \beta_{Y,2}(t, Y)) dt\right] \middle| Y \in \mathcal{A}, \beta_{Y,1}(t, Y) = b_1(t, Y_1(t)), \\ PY(0)^{-1} = P_0, PY(1)^{-1} = P_1 \right\},$$
(3.2)

where we write $\beta_Y(t,Y) = (\beta_{Y,1}(t,Y), \beta_{Y,2}(t,Y)) \in \mathbf{R}^{d_1} \times \mathbf{R}^{d-d_1}$.

Example 3.1 For P_0 , $P_1 \in \mathcal{M}_1(\mathbf{R}^d)$, take T_{KR} in section 1 and, on a complete filtered probability space, consider

$$Z(t) = Z(0) + \int_0^t \frac{T_{KR}(Z(0)) - Z(s)}{1 - s} ds + W_Z(t).$$
 (3.3)

Then $Z(1) = T_{KR}(Z(0))$. In particular, $PZ(1)^{-1} = P_1$, provided $PZ(0)^{-1} = P_0$. Besides, $\beta_{Z,i}(t,Z) = \beta_{\mathbf{Z}_i}(t,\mathbf{Z}_i)$ for all $i = 1, \dots, d$. Suppose that $p \in [1,2)$ and that $\int_{\mathbf{R}^d} |x|^p (P_0(dx) + P_1(dx))$ is finite. Then

$$E\left[\int_0^1 \left| \frac{T_{KR}(Z(0)) - Z(s)}{1 - s} \right|^p ds \right] < \infty. \tag{3.4}$$

Indeed, $W_o(t) := Z(t) - Z(0) - (T_{KR}(Z(0)) - Z(0))t$ is a tided down brownian motion starting and arriving at o, and

$$\frac{T_{KR}(Z(0)) - Z(s)}{1 - s} = T_{KR}(Z(0)) - Z(0) - \frac{W_o(s)}{1 - s}.$$

We describe our assumption in this section to show the existence of the stochastic analogue of the Knothe Rosenblatt type rearrangement.

(H.1). (i) $L \in C([0,1] \times \mathbf{R}^d \times \mathbf{R}^{d-d_1} : [0,\infty))$, (ii) $u \mapsto L(t,x;u)$ is strictly convex.

(H.2). There exists $\gamma > 1$ such that

$$\liminf_{|u| \to \infty} \frac{\inf\{L(t, x; u) : (t, x) \in [0, 1] \times \mathbf{R}^d\}}{|u|^{\gamma}} > 0.$$
(3.5)

(H.3).

$$\Delta L(\varepsilon_1, \varepsilon_2) := \sup \frac{L(t, x; u) - L(s, y; u)}{1 + L(s, y; u)} \to 0 \quad \text{as } \varepsilon_1, \varepsilon_2 \to 0, \tag{3.6}$$

where the supremum is taken over all (t, x) and $(s, y) \in [0, 1] \times \mathbf{R}^d$ for which $|t - s| \le \varepsilon_1$, $|x - y| < \varepsilon_2$ and over all $u \in \mathbf{R}^d$.

The following can be proved in the same way as Prop. 2.1 in [19], and the proof is omitted.

Proposition 3.1 Suppose that (H.1)-(H.3) hold. Then for any $P_0, P_1 \in \mathcal{M}_1(\mathbf{R}^d)$, $V(P_0, P_1|b_1)$ has a minimizer, provided it is finite.

3.1 Duality Theorem

We consider the following HJB Equation:

$$\frac{\partial v(t,x)}{\partial t} + \frac{1}{2} \triangle v(t,x) + \langle \nabla_{\mathbf{x}_{d_1}} v(t,x), b_1(t,\mathbf{x}_{d_1}) \rangle + H(t,x; \nabla_{\mathbf{x}_{d_1,d}} v(t,x)) = 0,$$
(3.7)

 $((t,x) \in (0,1) \times \mathbf{R}^d)$, where

$$H(t, x; z) := \sup\{\langle u, z \rangle - L(t, x; u) | u \in \mathbf{R}^{d-d_1}\} \quad (z \in \mathbf{R}^{d-d_1}).$$

For $f \in C_b(\mathbf{R}^d)$,

$$u(t, x; f|b_1)(x) := \sup \left\{ E \left[f(Y(1)) - \int_t^1 L(s, Y(s); \beta_{Y,2}(s, Y)) ds \right] \right\}$$
$$Y(t) = x, \beta_{Y,1}(s, Y) = b_1(s, Y_1(s)), Y \in \mathcal{A} \right\}. \tag{3.8}$$

(H.4). (i) L(t, x; o) is bounded; (ii) $\Delta L(0, \infty)$ is finite;(iii) $b_1 \in C^{1,2}([0, 1] \times \mathbf{R}^d) \cap C_b^{0,1}([0, 1] \times \mathbf{R}^d)$, $|D_x L(t, x; u)|/(1 + L(t, x; u))$ is bounded on $[0, 1] \times \mathbf{R}^d \times \mathbf{R}^{d_1}$ and $D_u L(t, x; u)$ is bounded on $[0, 1] \times \mathbf{R}^d \times B_R$ for all R > 0, where $B_R := \{x \in \mathbf{R}^{d_1} | |x| \le R\}$.

The following can be proved in the same way as Theorem 11.1 in IV.11 of [7], and the proof is omitted.

Proposition 3.2 Suppose that (H.1)-(H.2) and (H.4,i,iii) hold. Then, for any $f \in C^5(\mathbf{R}^d) \cap C_b^3(\mathbf{R}^d)$, $u(t,x;f|b_1) \in C^{1,2}([0,1] \times \mathbf{R}^d) \cap C_b^{0,1}([0,1] \times \mathbf{R}^d)$ and is the unique classical solution of the HJB Equation (3.7) with v(1,x) = f(x).

It is easy to see that the following holds:

$$V(P_0, P_1|b_1) := \inf \left\{ E \left[\int_0^1 \frac{L(t, Y(t); \beta_{Y,2}(t, Y))}{1_{\{b_1(t, Y_1(t))\}}(\beta_{Y,1}(t, Y))} dt \right] \middle| Y \in \mathcal{A},$$

$$PY(0)^{-1} = P_0, PY(1)^{-1} = P_1 \right\},$$
(3.9)

which implies the duality theorem for $V(P_0, P_1|b_1)$.

Theorem 3.1 Suppose that (H.1)-(H.4) hold. Then for any $P_0, P_1 \in \mathcal{M}_1(\mathbf{R}^d)$,

$$V(P_0, P_1|b_1) = \sup \left\{ \int_{\mathbf{R}^d} v(1, y) P_1(dy) - \int_{\mathbf{R}^d} v(0, x) P_0(dx) \right\}, \tag{3.10}$$

where the supremum is taken over all classical solutions v of (3.7) with $v(1,y) \in C_b^{\infty}(\mathbf{R}^d)$.

(Proof). Under (H.1)-(H.3) and (H.4,i,ii), (3.9) implies that $V(P_0, \cdot | b_1)$ is convex and lower-semicontinuous, which can be proved in the same way as in [19] and is not identically equal to infinity by considering the case where $\beta_{Y,2}(s,Y) = o$ from (H.4,i). Hence, from Theorem 2.2.15 and Lemma 3.2.3 in [3],

$$V(P_0, P_1|b_1) = \sup \left\{ \int_{\mathbf{R}^d} f(y) P_1(dy) - V(P_0, \cdot|b_1)^*(f) \middle| f \in C_b(\mathbf{R}^d) \right\}, \tag{3.11}$$

where

$$V(P_0, \cdot |b_1)^*(f) := \sup \left\{ \int_{\mathbf{R}^d} f(y) P(dy) - V(P_0, P|b_1) \middle| P \in \mathcal{M}_1(\mathbf{R}^d) \right\}.$$
(3.12)

One can replace $C_b(\mathbf{R}^d)$ by $C_b^{\infty}(\mathbf{R}^d)$ in (3.11) in the same way as in the proof of Theorem 2.1 in [19]. For $f \in C_b^{\infty}(\mathbf{R}^d)$, from Proposition 3.2,

$$V(P_{0}, \cdot | b_{1})^{*}(f)$$

$$= \sup \left\{ E \left[f(Y(1)) - \int_{0}^{1} \frac{L(t, Y(t); \beta_{Y,2}(t, Y))}{1_{b_{1}(t, Y_{1}(t))}(\beta_{Y,1}(t, Y))} dt \right] \middle| Y \in \mathcal{A}, P(Y(0))^{-1} = P_{0} \right\}$$

$$= \int_{\mathbb{R}^{d}} u(0, x; f | b_{1}) P_{0}(dx), \tag{3.13}$$

where the optimal control is $\beta_{Y,2}(t,Y) = \nabla_{d_1,d}u(t,Y(t);f|b_1).\Box$

As a corollary to Theorem 3.1, in the same way as [19], we easily obtain

Corollary 3.1 Suppose that (H.1)-(H.4) hold. Then for any $P_0, P_1 \in \mathcal{M}_1(\mathbf{R}^d)$ for which $V(P_0, P_1|b_1)$ is finite, there exists a Borel measurable function $b_2^o: [0, 1] \times \mathbf{R}^d \mapsto \mathbf{R}^{d-d_1}$ such that for a minimizer $\{Y(t)\}_{0 \le t \le 1}$, $\beta_{Y,2}(t, Y) = b_2^o(t, Y(t))$.

We consider the following marginal problem:

$$v(P_0, P_1|b_1) := \inf \int_0^1 dt \int_{\mathbf{R}^d} L(t, x; B_2(t, x)) Q_t(dx), \tag{3.14}$$

where the infimum is taken over all $\{Q_t(dx)\}_{0 \le t \le 1} \subset \mathcal{M}_1(\mathbf{R}^d)$ for which $B_1 = b_1$, $Q_t = P_t$ (t = 0, 1) and

$$\frac{\partial Q_t(dx)}{\partial t} = \frac{1}{2} \triangle Q_t(dx) - div(B(t, x)Q_t(dx)),$$

in a weak sense. Here we write $B(t,x)=(B_1(t,x),B_2(t,x))\in\mathbf{R}^{d_1}\times\mathbf{R}^{d-d_1}$.

In the same way as [17], we have

Theorem 3.2 Suppose that (H.1)-(H.4) hold. Then for any $P_0, P_1 \in \mathcal{M}_1(\mathbf{R}^d)$,

$$v(P_0, P_1|b_1) = \sup \left\{ \int_{\mathbf{R}^d} v(1, y) P_1(dy) - \int_{\mathbf{R}^d} v(0, x) P_0(dx) \right\}, \tag{3.15}$$

where the supremum is taken over all classical solutions v of (3.7) with $v(1,y) \in C_b^{\infty}(\mathbf{R}^d)$. In particular, $V(P_0, P_1|b_1) = v(P_0, P_1|b_1) (\in [0, \infty))$.

We introduce an additional assumption to formulate the duality theorem in the framework of the theory of viscosity solutions.

(H.4)'. (i) $\partial L(t, x; u)/\partial t$ and $D_x L(t, x; u)$ is bounded on $[0, 1] \times \mathbf{R}^d \times B_R$ for all R > 0; (ii) $\Delta L(0, \infty)$ is finite; (iii) $b_1 \in C_b^1([0, 1] \times \mathbf{R}^d)$.

In the same way as in Lemma 4.5 in [17], one can prove

Proposition 3.3 Suppose that (H.1)-(H.3) and (H.4)' hold. Then for any $f \in UC_b(\mathbf{R}^d)$, $u(t, x; f|b_1)$ is a bounded continuous viscosity solution of (3.7) with v(1, x) = f(x) and for any $Q \in \mathcal{M}_1(\mathbf{R}^d)$ and $t \in [0, 1]$,

$$\int_{\mathbf{R}^d} u(t, x; f|b_1)Q(dx) = \sup \left\{ E\left[f(Y(1)) - \int_t^1 L(s, Y(s); \beta_{Y,2}(s, Y))ds\right] \right\}$$

$$PY^{-1}(t) = Q, \beta_{Y,1}(s, Y) = b_1(s, Y_1(s)), Y \in \mathcal{A} \right\}. (3.16)$$

In addition, for any bounded continuous viscosity solution u of (3.7) with u(1,x) = f(x), $u(t,x) \ge u(t,x;f|b_1)$, that is, $u(t,x;f|b_1)$ is minimal.

In the same was as in Theorem 3.1, from Prop. 3.3, we have

Theorem 3.3 Suppose that (H.1)-(H.3) and (H.4)' hold. Then for any $P_0, P_1 \in \mathcal{M}_1(\mathbf{R}^d)$,

$$V(P_0, P_1|b_1) = \sup \left\{ \int_{\mathbf{R}^d} v(1, y) P_1(dy) - \int_{\mathbf{R}^d} v(0, x) P_0(dx) \right\}, \tag{3.17}$$

where the supremum is taken over all bounded continuous viscosity solutions v(t, x; f) of (3.7) with $v(1, x) \in C_b^{\infty}(\mathbf{R}^d)$.

Remark 3.1 (H.3) and (i) in (H.4)' implies (i) in (H.4).

3.2 Convergence Theorem

Let $L_1: [0,1] \times \mathbf{R}^{d_1} \times \mathbf{R}^{d_1} \mapsto [0,\infty)$ and $L_2: [0,1] \times \mathbf{R}^d \times \mathbf{R}^{d-d_1} \mapsto [0,\infty)$. For $\varepsilon > 0$, $P_0, P_1 \in \mathcal{M}_1(\mathbf{R}^d)$,

$$V^{\varepsilon}(P_{0}, P_{1}) := \inf \left\{ E \left[\sum_{i=1}^{2} \varepsilon^{i-1} \int_{0}^{1} L_{i}(t, \mathbf{Y}_{i}(t); \beta_{Y,i}(t, Y)) dt \right] \right|$$

$$PY(0)^{-1} = P_{0}, PY(1)^{-1} = P_{1}, Y \in \mathcal{A} \right\},$$
(3.18)

where $\mathbf{Y}_1(t) := Y_1(t)$ and $\mathbf{Y}_2(t) := Y(t)$ for $Y(t) = (Y_1(t), Y_2(t)) \in \mathbf{R}^{d_1} \times \mathbf{R}^{d-d_1}$.

If (H.1)-(H.3) holds for $L = L_i$ for all i = 1, 2, then $V^{\varepsilon}(P_0, P_1)$ has a minimizer, provided it is finite (see Prop. 2.1 in [19]).

$$V_{1}(P_{0,1}, P_{1,1}) := \inf \left\{ E \left[\int_{0}^{1} L_{1}(t, Y(t); \beta_{Y}(t, Y)) dt \right] \middle| Y \in \mathcal{A}_{1},$$

$$PY(0)^{-1} = P_{0,1}, PY(1)^{-1} = P_{1,1} \right\},$$
(3.19)

where A_1 denotes A with $d = d_1$.

Remark 3.2 If (H.1)-(H.4) with $L = L_1$ holds and that $V_1(P_{0,1}, P_{1,1})$ is finite. Then there exists a Borel measurable function $b : [0,1] \times \mathbf{R}^{d_1} \mapsto \mathbf{R}^{d_1}$ such that for any minimizer $\{Y(t)\}_{0 \leq t \leq 1}$ of $V_1(P_{0,1}, P_{1,1})$, $\beta_Y(t, Y) = b(t, Y(t))$ (see [19]).

Let b_1 denote the drift vector of the minimizer of $V_1(P_{0,1}, P_{1,1})$, provided it exists and let $V_2(P_0, P_1|b_1)$ denote $V(P_0, P_1|b_1)$ with $L = L_2$. Then

Theorem 3.4 Let P_0 , $P_1 \in \mathcal{M}_1(\mathbf{R}^d)$. Suppose that (H.1)-(H.3) with $L = L_i$ holds (i = 1, 2) and that $V_1(P_{0,1}, P_{1,1})$ and $V_2(P_0, P_1|b_1)$ is finite and have the unique minimizers $\{X_1(t)\}_{0 \le t \le 1}$ and $\{X(t)\}_{0 \le t \le 1}$, respectively. Then a minimizer $\{Y^{\varepsilon}(t)\}_{0 \le t \le 1}$ of $V^{\varepsilon}(P_0, P_1)$ exists and weakly converges to $\{X(t)\}_{0 \le t \le 1}$ as $\varepsilon \to 0$. In particular,

$$\lim_{\varepsilon \to 0} E \left[\int_0^1 L_1(t, Y_1^{\varepsilon}(t); \beta_{Y^{\varepsilon}, 1}(t, Y^{\varepsilon})) dt \right] = V_1(P_{0,1}, P_{1,1}), \tag{3.20}$$

$$\lim_{\epsilon \to 0} E\left[\int_0^1 L_2(t, Y^{\epsilon}(t); \beta_{Y^{\epsilon}, 2}(t, Y^{\epsilon})) dt\right] = V_2(P_0, P_1 | b_1). \tag{3.21}$$

(Proof) In the same way as Prop. 2.1 in [19], one can show that there exists a minimizer $Y^{\varepsilon}(t)$ of $V^{\varepsilon}(P_0, P_1)$ since

$$V^{\varepsilon}(P_0, P_1) \le V_1(P_{0,1}, P_{1,1}) + \varepsilon V_2(P_0, P_1|b_1). \tag{3.22}$$

In the same way as in Lemma 3.1 in [19], from (H.2), one can show that any sequence $\{Y^{\varepsilon_n}(\cdot)\}_{n\geq 1}$ in \mathcal{A} ($\varepsilon_n\to 0$ as $n\to \infty$) has a weakly convergent subsequence $\{Y^{\varepsilon_{n(k)}}(\cdot)\}_{k\geq 1}$. Indeed,

$$E\left[\int_0^1 L_1(t, Y_1^{\varepsilon}(t); \beta_{Y^{\varepsilon}, 1}(t, Y^{\varepsilon})) dt\right] \leq V^{\varepsilon}(P_0, P_1), \tag{3.23}$$

$$E\left[\int_0^1 L_2(t, Y^{\varepsilon}(t); \beta_{Y^{\varepsilon}, 2}(t, Y^{\varepsilon})) dt\right] \leq V_2(P_0, P_1|b_1). \tag{3.24}$$

We prove (3.24). In the same way as in Lemma 3.1 in [19], from (H.1,ii), by Jensen's inequality,

$$V_{1}(P_{0,1}, P_{1,1}) \leq E\left[\int_{0}^{1} L_{1}(t, Y_{1}^{\varepsilon}(t); \beta_{Y_{1}^{\varepsilon}}(t, Y_{1}^{\varepsilon}))dt\right]$$

$$\leq E\left[\int_{0}^{1} L_{1}(t, Y_{1}^{\varepsilon}(t); \beta_{Y^{\varepsilon}, 1}(t, Y^{\varepsilon}))dt\right]. \tag{3.25}$$

Indeed, $Y_1^{\varepsilon} \in \mathcal{A}_1$ with

$$\beta_{Y_1^{\epsilon}}(t, Y_1^{\epsilon}) = E[\beta_{1,Y^{\epsilon}}(t, Y^{\epsilon}))|Y_1^{\epsilon}(s), 0 \le s \le t]$$

(see e.g., p. 258 of [14]). (3.25) and (3.22) implies (3.24).

Let $Y^0(t)$ denote the weak limit of $\{Y^{\epsilon_{n(k)}}(\cdot)\}_{k\geq 1}$ as $n\to\infty$. Then, again in the same way as in Lemma 3.1 in [19] and (3.25), from (H.1,ii) and (3.22)-(3.23), by Jensen's inequality,

$$V_{1}(P_{0,1}, P_{1,1}) \leq E\left[\int_{0}^{1} L_{1}(t, Y_{1}^{0}(t); \beta_{Y_{1}^{0}}(t, Y_{1}^{0}))dt\right]$$

$$\leq E\left[\int_{0}^{1} L_{1}(t, Y_{1}^{0}(t); \beta_{Y^{0}, 1}(t, Y^{0}))dt\right]$$

$$\leq \liminf_{k \to \infty} V^{\epsilon_{n(k)}}(P_{0}, P_{1}) \leq \limsup_{k \to \infty} V^{\epsilon_{n(k)}}(P_{0}, P_{1})$$

$$\leq V_{1}(P_{0,1}, P_{1,1}). \tag{3.26}$$

 $\beta_{Y^0,1}(t,Y^0) = \beta_{Y_1^0}(t,Y_1^0)$ from the strict convexity of L_1 in u, and Y_1^0 is equal to the minimizer X_1 of $V_1(P_{0,1},P_{1,1})$ by the uniqueness of the minimizer of $V_1(P_{0,1},P_{1,1})$ and we obtain (3.20). From (3.24), we also have

$$V_{2}(P_{0}, P_{1}|b_{1}) \leq E\left[\int_{0}^{1} L_{2}(t, Y^{0}(t); \beta_{Y^{0}, 2}(t, Y^{0}))dt\right]$$

$$\leq \liminf_{k \to \infty} E\left[\int_{0}^{1} L_{2}(t, Y^{\varepsilon_{n(k)}}(t); \beta_{Y^{\varepsilon_{n, 2}}}(t, Y^{\varepsilon_{n(k)}}))dt\right]$$

$$\leq \limsup_{k \to \infty} E\left[\int_{0}^{1} L_{2}(t, Y^{\varepsilon_{n(k)}}(t); \beta_{Y^{\varepsilon_{n, 2}}}(t, Y^{\varepsilon_{n(k)}}))dt\right]$$

$$\leq V_{2}(P_{0}, P_{1}|b_{1}). \tag{3.27}$$

The uniqueness of the minimizer of $V_2(P_0, P_1|b_1)$ completes the proof. \square One can easily prove

Corollary 3.2 Let P_0 , $P_1 \in \mathcal{M}_1(\mathbf{R}^d)$. Suppose that (H.1)-(H.3) with $L = L_i$ holds (i = 1, 2), that $\gamma = 2$ in (H.2), and that $V_1(P_{0,1}, P_{1,1})$ and $V_2(P_0, P_1|b_1)$ is finite. Then the minimizers $\{X_1(t)\}_{0 \le t \le 1}$, $\{X(t)\}_{0 \le t \le 1}$ and $\{Y^{\varepsilon}(t)\}_{0 \le t \le 1}$ of $V_1(P_{0,1}, P_{1,1})$, $V_2(P_0, P_1|b_1)$ and $V^{\varepsilon}(P_0, P_1)$ exist uniquely, respectively. In addition, $\{Y^{\varepsilon}(t)\}_{0 \le t \le 1}$ weakly converges to $\{X(t)\}_{0 \le t \le 1}$ as $\varepsilon \to 0$ and (3.20)-(3.21) holds.

From (3.21)-(3.22) and (3.25), we easily have

Proposition 3.4 Suppose that the assumption in Theorem 3.3 holds. Then for any minimizer $\{Y^{\varepsilon}\}_{0 \leq t \leq 1}$ of $V^{\varepsilon}(P_0, P_1)$,

$$0 \le \frac{E\left[\int_0^1 L_1(t, Y_1^{\varepsilon}(t); \beta_{Y^{\varepsilon}, 1}(t, Y^{\varepsilon}))dt\right] - V_1(P_{0, 1}, P_{1, 1})}{\varepsilon} \to 0 \quad (\varepsilon \to 0).$$
 (3.28)

We don't know the real convergence rate!

4 Discussion

In section 2, Theorem 2.3, we assumed that $\nu \mapsto T_i(P_{0,i}, P_{1,i}|\nu)$ is continuous $(i = 3, \dots, k)$. This continuity is known only in the case of the Knothe-Rosenblatt rearrangement where the representation of the minimizer is known. It is difficult to prove that $\nu \mapsto T(P_0, P_1|\nu)$ is continuous, which is our future problem.

In section 3.2, we only considered the case where k=2 because of the similar reason to above. The point is that we do not even know any example such as the Knothe-Rosenblatt rearrangement. This is also our future problem.

The Knothe-Rosenblatt rearrangement implies the Brunn-Minkowskii inequality. We would like to find, in future, the inequality which can be obtained by the result in section 3.

References

- [1] Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., 44, no. 4, 375–417 (1991).
- [2] Carlier, G., Galichon, F. and Santambrogio, F.: From Knothe's transport to Brenier's map and a continuation method for optimal transport, preprint.
- [3] Deuschel, J.D., Stroock, D.W.: Large deviations (Pure and Applied Mathematics 137) Boston: Academic Press, Inc. 1989.
- [4] L.C. Evans, Partial differential equations. AMS, 1998.
- [5] L.C. Evans, Partial differential equations and Monge-Kantorovich mass transfer, Current developments in mathematics, 1997 (Cambridge, MA), pp. 65–126, Int. Press, 1999.

- [6] L.C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137, No. 653 (1999).
- [7] Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Berlin Heidelberg New York Tokyo: Springer-Verlag 1993.
- [8] W. Gangbo and R.J. McCann, The geometry of optimal transportation, Acta Math., 177, 113-161 (1996).
- [9] Jacod, J., Shiryaev, A.N.: Limit theorems for stochastic processes. Berlin Heidelberg New York Tokyo: Springer-Verlag 1987.
- [10] Jamison, B.: The Markov process of Schrödinger. Z. Wahrsch. Verw. Gebiete **32**, 323–331 (1975).
- [11] Kellerer, H. G.: Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete 67, no. 4, 399-432 (1984).
- [12] Knothe, H.: Contributions to the theory of convex bodies. Michigan Mathematical J. 4, 39–52 (1957).
- [13] Lévy, P.: Théorie de l'Addition des Variables Aléatoires. pp. 71-73, 121-123, Paris: Gauthier-Villars 1937.
- [14] Liptser, R.S., Shiryaev, A.N.: Statistics of random processes I. Berlin Heidelberg New York Tokyo: Springer-Verlag 1977.
- [15] Mikami, T.: Monge's problem with a quadratic cost by the zero-noise limit of h-path processes. Probab. Theory Related Fields 129, 245-260 (2004).
- [16] Mikami, T.: A Simple Proof of Duality Theorem for Monge-Kantorovich Problem. Kodai Math. J. 29, 1-4 (2006).
- [17] Mikami, T.: Marginal problem for semimartingales via duality. International Conference for the 25th Anniversary of Viscosity Solutions, Gakuto International Series. Mathematical Sciences and Applications, Vol. 30, 133-152 (2008).
- [18] Mikami, T.: Optimal transportation problem as stochastic mechanics. To appear in Selected Papers on Probability and Statistics. (AMS Translations Series 2, Vol. 227) Providence: Amer. Math. Soc. 2009.

- [19] Mikami, T., Thieullen, M.: Duality Theorem for Stochastic Optimal Control Problem. Stoc. Proc. Appl. 116, 1815-1835 (2006).
- [20] Mikami, T., Thieullen, M.: Optimal Transportation Problem by Stochastic Optimal Control. SICON. 47, 1127-1139 (2008).
- [21] Rachev, S.T., Rüschendorf, L.: Mass transportation problems, Vol. I: Theory, Vol. II: Application. Berlin Heidelberg New York Tokyo: Springer-Verlag 1998.
- [22] Rosenblatt, M.: Remarks on a multivariate transformation. Annals of Mathematical Statistics 23, 470-472 (1952).
- [23] Rüschendorf, L., Thomsen, W.: Note on the Schrödinger equation and *I*-projections. Statist. Probab. Lett. **17**, 369-375 (1993).
- [24] Villani, C.: Topics in optimal transportation (Graduate Studies in Mathematics 58) Providence: Amer. Math. Soc. 2003.
- [25] Villani, C.: Optimal Transport: Old and New. Berlin Heidelberg New York Tokyo: Springer-Verlag 2009.