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Variational Inequalities with Gradient Constraint and
Applications to Optimal Dividend Payments
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1 Variational inequalities arisen from dividend payments

We consider the variational inequality of the form:

(a) w'(z)>1, >0, w(0+)>1,

1
(b) —ow + §crzw” +pw’ <0, z>0,

(c) (—ow + —;—azw” + pw')(w' — 1)t =0, z>0,

(d) w(0) = 0, 4,0 > 0 : constants.

Define
_ | wo(=), z<m,
w(ac)—{ z —m + wo(m), z > m,
where wq is the solution of
1
Awg := —awq + -2—w6' +pwo =0, z<m,

and m > 0 is chosen as wy(m) = 1.
Theorem 1.1 w € C?(0,00) N C[0,00) is a concave solution of the variational inequality (a)-(d).

The variational inequality (a)-(d) is closely related to optimal dividend payments. The reserve

R; of an insurance company at time ¢ > 0 is assumed to be governed by

th,ut‘{“O'Bt*"Lt, Ro’—'—‘IZI—LO ZO,
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where B, is a standard Brownian motion, u,o > 0 constants, z > 0 the initial position of reserve
and L; the rate of dividend payment at time ¢ (O acts absorbing barrier for R;). Note that
Ry = x — Lo means that if there is a pay-out of dividends at time 0, then R; instantaneously

decreases from z to x — Lo. The dividend process {L;} is called admissible if

L, : 7 := 0(Bs,s < t)-measurable,  — Lg > 0,

L, is nonnegative, nondecreasing, continuous,

and we denote by L the class of all admissible dividend processes {L;}.
The objective is to find an optimal dividend payment {L}} €L so as to maximize the expected
total pay-out of dividend

Jo(L) = E| / e=tdL,), Le L,
0
where o > 0 is the discount rate and 7 the absorption time, 7 = inf{t > 0 : R; = 0}.

Theorem 1.2 We have

J=(L) < w(x).
Define

R =z+ut+0B,—L}, Ri=z-L}>0,

Ly = mg,gc(x +us+o0Bs —m)T.
Theorem 1.3 We assume that the initial position z < m. Then {L}} is optimal.
Remark 1.4 Instead of the variational inequality, we consider the Black-Scholes Model:

(a) W'(z)>1, z>0, w'(0+)>1,

1
(b) —ow + —2-a2az2w" +puzw’ <0, z >0,

1
(c) (—aw + 502:1:27.0” + prw)(w' —1)T =0, >0,

d  w(0)=0,
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where p, o0 > 0 constants. Then w(z) =z and (a) fails if & > p.

Remark 1.5 Consider the following variational inequality:

(@)
(0)
(c)
(d)

w'(z)>1, >0, w(0+)>1,
1 2.2,/ /
—aw+§a zw' +pw' <0, >0,

1
(—aw + 50233210" +pw)(w' = 1)t =0, >0,

w(0) = 0.

Then this variational inequality seems to have no solution.

2 Variational inequalities in the Stochastic Ramsey problem

From now on, we consider the variational inequality associated with optimal dividends for the

stochastic Ramsey model. We define the following quantities:

K; = capital stock of a firm at time ¢,

K7 = the Cobb-Douglas function for the amount of capital stock K, 0<y<1,

B; = 1-dim. Brownain motion,

-7::‘. =0(B813 S t))

o = diffusion constant, o > 0

x = initial position, z > 0.

Dividends are paid from the profit of the firm for shareholders and the remainder accumulates

in capital stock. We assume that the flow of dividend payments at time ¢ can be written as

K.dD;, where dD; denotes the per capital stock dividend payments. Let A be the class of all

nonnegative, nondecreasing, continuous, {;}-adapted stochastic processes D = {D;} such that

zp =z — Do > 0. Given a policy D € A, the capital stock process {K;} evolves according to

dK; = K;/dt + O'thBt-‘“thDt, Ko =x — Dy > 0.
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Our objective is to find an optimal policy D* = {D};} so as to maximize the expected total

pay-out functional with discount factor o > 0:
o0
J(D) = E[/ e **K:dD;|, VD € A.
0
The associated variational inequality is given by
e V(z)>1, >0, V(0+)>1,
1
(VI) e —av+ 502:1:211" +z7' <0, >0,
1
. (—av + -2—02.7:2'0" + 7)) - 1)t =0, z>0.

For the existence of K;, we have the following.

Proposition 2.1 For each D € A, there exists uniquely a positive solution {K:} of
th=KZdt+0'thBt—thDt, KO =Zp =33—D0 > 0.
such that
E[K,] < 2P(zp + tP),
EIK}] < 2%e"(a} + 27 /o?),
where B =1/(1 — 7).
Outline of the proof. We set k; = Ktl_’y. Then, by Ito’s formula
U2 —y—1
dky = (1-7)K;"dK;:+ —é—Kf(l —(=y)K; " dt
= (1—9)dt+oK} "dB, — K}~"dD,
0’2 1—y
t5 ==K, at
o2
= (1 d ’Y){(l t ?’th)dt + UktdBt - ktht},
ko = :L'ID_’Y.

By linearity, there exists a unique positive solution {k;}.
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Proposition 2.2 Assume o = 0. Then there exists a concave solution vy € C2(0,00) of (VI).

Outline of the proof. We solve the equation —ah + z7h’ = 0 to have
h(z) = Qexp{az~7/(1 - 7)}.

Define

(2) = h(x) if z<z,
VORE) = & — 2 + h(zs) if z.<uz,

Choose z, = (v/a)Y/(t=") Q > 0 such that A’(z,) = 1. Then we have
h”(x*) - 0,

and

—avg + 270y = —a{z — z« + h(z4)} +27 <0 for z > z,.

3 Probabilistic solution of the penalty equation

We consider the penalty equation
1 2,2,/ / Z, -
(p) —-au+—2-0'a:u + 2"y +Z(u—1) =0, z>0,

which can be rewritten as

1
—au+ 202z’ + 27 + 2 max (1-u)e=0, z>0.
2 € 0<e<1

Let C be the class of all { F;}-progressively measurable processes ¢ = {c;} such that 0 < ¢; < 1, a.s.

for all t > 0. For any c € C, let {X};} be the solution of
dXt = ngt + O'XtdBt - %CtXtdt, XO =z > 0.

Define

u(z) = sup E[/ e"atlctXtdt],
ceC 0 €

where the supremum is taken over all systems (Q, F, P,{c:},{B:}). Then we observe that the

penalty equation (p) is a Hamilton-Jacobi-Bellman equation.
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Theorem 3.1 We have

0<u) S vo(z) < CL+a), >0,

for some constant C > 0.
Theorem 3.2 For any p > 0, there exists C, ¢ > 0 such that
[u(z) —u(y)| < Crelz —yl+p(1+2+y), z,y>0.

Theorem 3.3 u is concave on (0,00).

4 Solution of the penalty equation

In this section, we show that the probabilistic solution u is a classical solution of the penalty

equation (p).
Definition 4.1 Let w € C(0,00). Then w is called a viscosity solution of (p) if

(a) w is a viscosity subsolution of (p), that is, for any ¢ € C2%(0,00) and any
local mazimum point z > 0 of w — ¢,

1
—ow + -2-02z2¢” +z7¢" + g(cp’ -1)" >0,
=

z

and (b) w is a viscosity supersolution of (p), that is, for any ¢ € C?(0,00) and any
local minimum point Z > 0 of w — @,

—ow + lazngb” +z7¢ + E(c,{)’ -1)" <0.
2 € T=2Z

By Theorems 3.1 and 3.2, we can show that the dymanic programming principle holds for %,
i.e.,

S
u(x) = sup E| e"“‘lctXtdt + e *y(X,)]
ceC 0 €

for any s > 0. By the theory of viscosity solutions, taking into account Proposition 2.1, we have

the viscosity property of u. For details, we refer to [9)].
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Theorem 4.2 w is a viscosity solution of (p).

Theorem 4.3 We have

u € C?*(0,00).

5 Solution of the variational inequality

In this section, we study the convergence of u = u. to a viscosity solution v of the variational
inequality (VI) as e — 0.

5.1 Limit of the penalized problem

Definition 5.1 Let w € C(0,00). Then w is called a viscosity solution of (VI), if the following

assertions are satisfied:

(a) For any ¢ € C? and any local minimum point Z > 0 of w — ¢,

<0,

=z

$'(z2)>1, —ow+ %azzqu” + ¢

(b) For any ¢ € C? and any local mazimum point z > 0 of w — ¢,

(—ow + 50%2%¢" +27¢)(¢ - *| _ >0,

=2z

By concavity and Theorem 3.1, we get
0 < ul(z)z < ue(z) — ue(0) < vo(z), z>0.

Hence, for any 0 < a < b,

sup HU'EHC[a,b] < o0.
€

By the Ascoli-Arzela theorem and Theorem 4.2, we have the following.
Theorem 5.2 There exists a subsequence {ue, } such that
— v € C(0,00) locally uniformly in (0,00) as &, — 0.

Ue

n

Furthermore, v is a viscosity solution of (VI).
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In this subsection, we study the regularity of the viscosity solution v of (VI). By concavity, we

can show that

u;,, =1 on [a,b].

We rewrite the penalty equation as

2 z
—u! = —53 {—ouc + zu, + -E—(u’e -1~}

Thus we have:
Theorem 5.3 For any 0 < a < b, we have
sup ”u,e/n”C[a.,b] < 0.
n>1
By Theorem 5.3, extracting a subsequence, we have
/ /

u, — v locally uniformly in (0,00) as n — oo,

and v’ is locally Lipschitz on (0, 00).

Theorem 5.4 We have

v e Ch(0,00), piecewise C?, v/ >1 on (0,00).

loc

Furthermore, by using Proposition 2.2, we can state the following.

Theorem 5.5 We have

v (0+) > 1,

and there exists z* > 0 such that

z* =inf{z > 0: v'(z) =1}.
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6 Optimal dividend payments

In this section, we give a synthesis of the optimal policy D* € A of the maximization problem.

Consider the SDE with reflecting barrier conditions:

(@) dK; = (K!)'dt+oK;dB, — K}dD}, K} =gz—D}>0,
¢
() Df=(z-z")7" +/ l{ks=2-}dD5,
0
(c) D} is continous a.s.,
(d) K!eR, Vt>0, as.,
¢
(e) / l{kr=z+}ds =0, Vt>0, as,
0

where R := (0, z*] for z* = inf{z > 0: v'(z) = 1}.

Theorem 6.1 We assume that the initial position x < z*, (by making Dy = =z — z* if z > z*).

Then the optimal policy D* = {D}} is given by (a) - (e).
Lemma 6.2 There ezists a unique solution ({K;}, {D;}) of (a) - (e).
Proof. There exists a unique solution {(M;, A;)} of the SDE with reflecting barrier conditions:

2
o« dMy=(1-)(dt - T Midt + oMdBy) ~ dBy, Mo =37 — 8o >0,
t
¢ A=ET =@+ [ luneosda,
0
. A, is continous a.s.,

) M, eSS, Vt>0, as.,

t
. / l{m,e053ds =0, Vt>0, as,
0
where S = [0, (z*)!77] and {A;} is a bounded variation process. Define
¢
Ki =M, Di=00+ [ BM;lurs0dhe, Bi=1/(1=1).
0

Then, Ito’s formula completes the proof.



110

Proof of Theorem 6.1. Let D € A be arbitrary. By the variational inequality and the continuity

of {D;}, we can apply the generalized Ito formula to {K;} for convex functions (cf. [5]). Then

dt
$=Kg

S
1
e *u(Ks) —v(zp) = / e *{—av+ 502:1321)” + z"'}
0

s

+ / e““tv'(Kt)athBt - / e_at‘Ul(Kt)thDt
0 0

IN

8 8
/e“"tv'(Kt)athBt—/ e (K KidD,, a.s. s>0.
0 0

Hence

TR
E| / e~tK,dD,] < v(zp) < v().
0
where 7p := RAinf{t >0: K; > R or K; <1/R} for R > 0. Letting R — oo,
o0
J(D) = E| / e~ K,dD;] < v(z).
0
By the same argument as above, we get
[ ]
v(@) = E / ety (K?)K*dD}).
0
Since D} increases only when K; = z* and v'(z*) =1,
w(@) = B[ e (KL xrme KiDE) = BL [ emK:aD;] = J(D"),
0 0
which completes the proof.
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