Weak Harnack inequality for fully nonlinear PDEs with superlinear growth terms in $D u$

Shigeaki Koike（小池 茂昭）
Saitama University（埼玉大学）

1 Introduction

In this note，we present the weak Harnack inequality for L^{p}－viscosity nonneg－ ative supersolutions of fully nonlinear elliptic PDEs with unbounded coeffi－ cients and inhomogeneous terms．Moreover，we discuss the case when PDEs have superlinear growth terms in Du ．

Throughout this paper，we suppose at least

$$
p>\frac{n}{2} .
$$

For measurable sets $U \subset \mathbf{R}^{n}$ ，we use the standard L^{p}－norm and $W^{2, p_{-}}$ norm，$\|\cdot\|_{L^{p}(U)}$ and $\|\cdot\|_{W^{2, p}(U)}$ ，respectively．We will write $\|\cdot\|_{p}$ and $\|\cdot\|_{2, p}$ for them if there is no confusion．We also use the following notation：

$$
L_{+}^{p}(U)=\left\{u \in L^{p}(U) \mid u \geq 0 \text { a.e. in } U\right\} .
$$

Let S^{n} be the set of $n \times n$ symmetric matrices with the standard order． For fixed uniform ellipticity constants $0<\lambda \leq \Lambda$ ，we denote by $S_{\lambda, \Lambda}^{n}$ the set of all $A \in S^{n}$ such that $\lambda I \leq A \leq \Lambda I$ ．We then define the Pucci operators $\mathcal{P}^{ \pm}$：for $X \in S^{n}$ ，

$$
\begin{aligned}
& \mathcal{P}^{+}(X)=\max \left\{-\operatorname{trace}(A X) \mid A \in S_{\lambda, \Lambda}^{n}\right\}, \\
& \mathcal{P}^{-}(X)=\min \left\{-\operatorname{trace}(A X) \mid A \in S_{\lambda, \Lambda}^{n}\right\} .
\end{aligned}
$$

Note that $X \rightarrow \mathcal{P}^{+}(X)$（resp．， $\mathcal{P}^{-}(X)$ ）is convex（resp．，concave）．
Let us consider the most general PDEs of second－order：

$$
\begin{equation*}
F\left(x, u, D u, D^{2} u\right)=f(x) \tag{1}
\end{equation*}
$$

in Ω, where $\Omega \subset \mathbf{R}^{n}$ is an open set. Here, we suppose that $F: \Omega \times \mathbf{R} \times$ $\mathbf{R}^{n} \times S^{n} \rightarrow \mathbf{R}$ and $f: \Omega \rightarrow \mathbf{R}$ are given measurable functions, and that F is continuous in the last three variables.

Definition 1.1 We call $u \in C(\Omega)$ an L^{p}-viscosity subsolution (resp., supersolution) of (1) in Ω if

$$
\begin{gathered}
\text { ess } \liminf _{y \rightarrow x}\left\{F\left(y, u(y), D \phi(y), D^{2} \phi(y)\right)-f(y)\right\} \leq 0 \\
\left(\text { resp., } \quad \operatorname{ess} \limsup _{y \rightarrow x}\left\{F\left(y, u(y), D \phi(y), D^{2} \phi(y)\right)-f(y)\right\} \geq 0\right)
\end{gathered}
$$

whenever $\phi \in W_{\operatorname{loc}}^{2, p}(\Omega)$ and $x \in \Omega$ is a local maximum (resp., minimum) point of $u-\phi$. Finally, we call $u \in C(\Omega)$ an L^{p}-viscosity solution of (1) in Ω if it is an L^{p}-viscosity subsolution and an L^{p}-viscosity supersolution of (1) in Ω.

In order to memorize the right inequality, we will often say that u is an L^{p}-viscosity (sub)solution of

$$
F\left(x, u, D u, D^{2} u\right) \leq f(x)
$$

when it is an L^{p}-viscosity subsolution of (1) for instance.
We also recall the notion of strong solutions.
Definition 1.2 We call $u \in W_{\mathrm{loc}}^{2, p}(\Omega)$ an L^{p}-strong subsolution (resp., supersolution) of (1) in Ω if u satisfies

$$
F\left(x, u(x), D u(x), D^{2} u(x)\right)-f(x) \leq 0 \quad(\text { resp. }, \geq 0) \quad \text { a.e. in } \Omega .
$$

Finally, we call $u \in W_{\text {loc }}^{2, p}(\Omega)$ an L^{p}-strong solution of (1) in Ω if the equality holds in the above.

Remark 1.3 Suppose that $p>p^{\prime}>n / 2$. It is trivial to see that u is an L^{p}-strong subsolution (resp., supersolution) of (1) in Ω, then it is an $L^{p^{\prime}}$-strong subsolution (resp., supersolution) of (1) in Ω. However, for L^{p} viscosity solutions, the opposite implication holds true; if u is an $L^{p^{\prime}}$-viscosity subsolution (resp., supersolution) of (1) in Ω, then it is also an L^{p}-viscosity subsolution (resp., supersolution) of (1) a.e. in Ω.

2 Known results

Since the weak Harnack inequality is derived from the Aleksandrov-BakelmanPucci (ABP for short) maximum principle, we recall it from [8]. Thus, in what follows, we only consider the case when F is independent of u-variable.

Now we suppose the uniform ellipticity for F :

$$
\mathcal{P}^{-}(X-Y) \leq F(x, \xi, X)-F(x, \xi, Y) \leq \mathcal{P}^{+}(X-Y)
$$

for $x \in \Omega, \xi \in \mathbf{R}^{n}$, and $X, Y \in S^{n}$. A typical example of F is given by

$$
F(x, \xi, X):=\max _{1 \leq i \leq M} \min _{1 \leq j \leq N}\{-\operatorname{trace}(A(x ; i, j) X)+\langle b(x ; i, j), \xi\rangle\}
$$

where for $M, N>1$, functions $x \in \Omega \rightarrow A(x ; i, j) \in S_{\lambda, \Lambda}^{n}$ and $x \in \Omega \rightarrow$ $b(x ; i, j) \in \mathbf{R}^{n}$ are measurable $(1 \leq i \leq M, 1 \leq j \leq N)$. Notice that the above F is non-convex and non-concave in general.

Under the uniform ellipticity assumption, if u is an L^{p}-viscosity solution of (1) in Ω, then it is also an L^{p}-viscosity solution of

$$
\mathcal{P}^{-}\left(D^{2} u\right)+F(x, D u, O) \leq f(x), \text { and } \mathcal{P}^{+}\left(D^{2} u\right)+F(x, D u, O) \geq f(x)
$$

in Ω. Therefore, for the sake of simplicity, instead of (1), we shall study the following extremal PDEs: for $m \geq 1$,

$$
\begin{equation*}
\mathcal{P}^{ \pm}\left(D^{2} u\right) \pm \mu(x)|D u|^{m}=\mp f(x), \tag{2}
\end{equation*}
$$

where μ, f are often supposed to be nonnegative.
We recall the ABP maximum principle for L^{n}-strong solutions of (2) $)_{1,-}$.
Proposition 2.1 (cf. [6]) There exist $C_{k}=C_{k}(n, \lambda, \Lambda)>0(k=1,2)$ such that if $f, \mu \in L_{+}^{n}(\Omega)$, and $u \in C(\bar{\Omega}) \cap W_{\text {loc }}^{2, n}(\Omega)$ is an L^{n}-strong subsolution of $(2)_{1,-}$ in Ω, then it follows that

$$
\max _{\bar{\Omega}} u \leq \max _{\partial \Omega} u^{+}+C_{1} \exp \left(C_{2}\|\mu\|_{n}^{n}\right)\|f\|_{L^{n}(\{u>0\})}
$$

where $\{u>0\}:=\{x \in \Omega \mid u(x)>0\}$.
Remark 2.2 In the above statement, we can replace $\|f\|_{L^{n}(\{u>0\})}$ by $\|f\|_{L^{n}(\Gamma\{u])}$, where $\Gamma[u]$ is the upper contact set of u in Ω. See Gilbarg-Trudinger's book for the definition of $\Gamma[u]$.

From Proposition 2.1, it is trivial to obtain the corresponding result for L^{p}-strong supersolutions of $(2)_{1,+}$ by taking $v=-u$.

Now, we recall an L^{p}-viscosity version of the ABP maximum principle. We will use a constant $p_{0}=p_{0}(n, \lambda, \Lambda) \in\left[\frac{n}{2}, n\right)$, which was introduced in [4]. We note that p_{0} does not depend on Ω because we only need to solve extremal PDEs in balls. See [8] (also [5]) for the details.

Theorem 2.3 (cf. Proposition 2.8 and Theorem 2.9 in [8]) Assume that

$$
\begin{equation*}
q \geq p>p_{0} \quad \text { and } \quad q>n \quad \text { hold } \tag{3}
\end{equation*}
$$

For $\mu \in L_{+}^{q}(\Omega)$, there exists $C_{3}=C_{3}\left(n, \lambda, \Lambda,\|\mu\|_{q}\right)>0$ such that if $f \in$ $L_{+}^{p}(\Omega)$, and $u \in C(\bar{\Omega})$ is an L^{p}-viscosity subsolution of $(2)_{1,-}$ in Ω, then it follows that

$$
\max _{\bar{\Omega}} u \leq \max _{\partial \Omega} u^{+}+C_{3}\|f\|_{L^{p}(\{u>0\})}
$$

Remark 2.4 For more precise dependence of C_{3} with respect to $\|\mu\|_{q}$, we refer to [8].

We next consider the case when $m>1$ for $(2)_{m,-}$. In general, when $m>1$, the ABP maximum principle for $(2)_{m,-}$ fails even for classical solutions (see $[7,8]$).

Theorem 2.5 (Theorems 2.11 and 2.12 in [8]) Assume that (3) and

$$
\begin{equation*}
m q(n-p)<n(q-p) \tag{4}
\end{equation*}
$$

holds. For $m>1$, there exists $\delta_{1}=\delta_{1}(n, \lambda, \Lambda, m, p, q)>0$ satisfying the following property: for $\mu \in L_{+}^{q}(\Omega)$, there is $C_{4}=C_{4}\left(n, \lambda, \Lambda, m, p, q,\|\mu\|_{q}\right)>0$ such that if $f \in L_{+}^{p}(\Omega)$ satisfies

$$
\|f\|_{p}^{m-1}\|\mu\|_{q}<\delta_{1}
$$

and $u \in C(\bar{\Omega})$ is an L^{p}-viscosity subsolution of $(2)_{m,-}$ in Ω, then it follows that

$$
\max _{\bar{\Omega}} u \leq \max _{\partial \Omega} u^{+}+C_{4}\|f\|_{L^{p}(\{u>0\})}
$$

Remark 2.6 We note that under (3), the relation (4) holds true when $p \geq n$. Thus, when $p \geq n$, we may choose arbitrary $m>1$.

3 Weak Harnack inequality ($m=1$)

From now on, we consider PDEs in cubes although it is possible to replace them by balls. We denote by Q_{R} the open cube with its center at the origin and with its length $R>0 ; Q_{R}=\left(-\frac{R}{2}, \frac{R}{2}\right) \times \cdots \times\left(-\frac{R}{2}, \frac{R}{2}\right)$.

Theorem 3.1 (Theorems 4.5 and 4.7 in [9]) Assume that (3) holds. There exists $r=r(n, \lambda, \Lambda)>0$ satisfying the following property: for $\mu \in L_{+}^{q}\left(Q_{2}\right)$, there is $C_{5}=C_{5}\left(n, \lambda, \Lambda, p, q,\|\mu\|_{q}\right)>0$ such that if $f \in L_{+}^{p}\left(Q_{2}\right)$ and $u \in$ $C\left(\bar{Q}_{2}\right)$ is a nonnegative L^{p}-viscosity supersolution of $(2)_{1,+}$ in Q_{2}, then it follows that

$$
\left(\int_{Q_{1}} u^{r} d x\right)^{\frac{1}{r}} \leq C_{5}\left\{\inf _{Q_{1}} u+\|f\|_{L^{p}\left(Q_{2}\right)}\right\} .
$$

Idea of proof: We first reduce the assertion to the case when $f \equiv 0$. For this purpose, due to our strong solvability (Theorem 2.3 in [9]), we find an L^{p}-strong supersolution $v \in C\left(\bar{Q}_{2}\right) \cap W_{\text {loc }}^{2, p}\left(Q_{2}\right)$ of

$$
\mathcal{P}^{-}\left(D^{2} v\right)-\mu(x)|D v| \geq f(x) \quad \text { in } Q_{2}
$$

such that $0 \leq v \leq C_{6}\|f\|_{p}$ in Q_{2} for some $C_{6}=C_{6}\left(n, \lambda, \Lambda, p,\|\mu\|_{q}\right)>0$. Setting $w:=u+v$, we see that w is an L^{p}-viscosity supersolution of $(2)_{1,+}$ in Q_{2} with $f \equiv 0$. Thus, if we verify the assertion when $f \equiv 0$, then we find $C_{7}=C_{7}\left(n, \lambda, \Lambda, p, q,\|\mu\|_{q}\right)>0$ such that

$$
\left(\int_{Q_{1}} u^{r} d x\right)^{\frac{1}{r}} \leq\left(\int_{Q_{1}} w^{r} d x\right)^{\frac{1}{r}} \leq C_{7} \inf _{Q_{1}} w \leq C_{7} \inf _{Q_{1}} u+C_{7} C_{6}\|f\|_{p},
$$

which concludes our proof.
Next, by considering $U:=u /\left(\inf _{Q_{1}} u+\varepsilon\right)(\forall \varepsilon>0)$, it is enough to show that $\inf _{Q_{1}} u \leq 1$ implies that $\int_{Q_{1}} u^{r} d x \leq C_{0}$ for some $r, C_{0}>0$, which are independent of u and $\varepsilon>0$. (In fact, we can prove a weaker fact that $\inf _{Q_{3}} u \leq 1$ implies $\int_{Q_{1}} u^{r} d x \leq C_{0}$. However, we skip this because we will not go into the details of "cube-decomposition lemma".)

By the strong solvability (Theorem 2.3 in [8]) again, we then choose an L^{p}-strong solution $\phi \in C\left(\bar{Q}_{2}\right) \cap W_{\mathrm{loc}}^{2, p}\left(Q_{2}\right)$ of

$$
\mathcal{P}^{-}\left(D^{2} \phi\right)+\mu(x)|D \phi|=\xi(x) \quad \text { in } Q_{2}
$$

such that $0 \geq \phi$ in $Q_{2},-2 \geq \phi$ in Q_{1}, and $\xi \in C\left(Q_{2}\right)$ with supp $\xi \subset Q_{1}$. Setting $V:=-u-\phi$, we see that V is an L^{p}-viscosity subsolution of

$$
\mathcal{P}^{-}\left(D^{2} V\right)-\mu(x)|D V| \leq-\xi(x) \quad \text { in } Q_{2} .
$$

Hence, the ABP maximum principle (Theorem 2.3) implies

$$
1 \leq \sup _{Q_{1}} V \leq C_{3}\|\xi\|_{L^{n}(\{V>0\})} \leq C_{3}\|\xi\|_{\infty}\left|\left\{x \in Q_{1} \mid u(x)<M_{1}\right\}\right|
$$

where $M_{1}=\sup (-\phi)>1$. Therefore, we have

$$
\left|\left\{x \in Q_{1} \mid u(x) \geq M_{1}\right\}\right| \leq \theta
$$

for some $\theta \in(0,1)$. It is now enough to obtain

$$
\begin{equation*}
\left|\left\{x \in Q_{1} \mid u(x) \geq M_{1}^{k}\right\}\right| \leq \theta^{k} \tag{5}
\end{equation*}
$$

because this yields $\int_{Q_{1}} u^{r} d x \leq C_{0}$ for some $r, C_{0}>0$. To prove (5), we need a "cube-decomposition" lemma (e.g. in [1, 2]) but we omit this here.

4 Weak Harnack inequality $(m>1)$

To follow the argument in section 3, we need to establish the existence of L^{p}-strong solutions of the associated extremal PDEs:

$$
\mathcal{P}^{+}\left(D^{2} u\right)+\mu(x)|D u|^{m}=f(x) .
$$

In order to show the strong solvability of the above PDEs, we will apply the Schauder fixed point theorem. To this end, we use a recent result by Winter in [14] on the global $W^{2, p}$-estimate of L^{p}-viscosity solutions of extremal PDEs:

$$
\mathcal{P}^{+}\left(D^{2} u\right)=f(x) \quad \text { in } B_{1}
$$

under "smooth" Dirichlet condition.
Our strong solvability resut is as follows:
Theorem 4.1 (Theorem 3.1 in [10]) Assume that $\partial \Omega \in C^{1,1}, f \in L^{p}(\Omega)$, $\mu \in L^{q}(\Omega)$ and $\psi \in W^{2, p}(\Omega)$ hold. Assume also that one of the following conditions holds:

$$
\left\{\begin{array}{l}
(a) \quad q=\infty, p_{0}<p, m(n-p)<n \tag{6}\\
\text { (b) } n<p \leq q<\infty \\
\text { (c) } \quad p_{0}<p \leq n<q<\infty, m q(n-p)<n(q-p)
\end{array}\right.
$$

There exists $\delta_{2}=\delta_{2}(n, \lambda, \Lambda, p, q, m, \Omega)>0$ such that if

$$
\|\mu\|_{q}\left(\|f\|_{p}+\|\psi\|_{2, p}\right)^{m-1}<\delta_{2},
$$

then there exists L^{p}-strong solutions $u \in W^{2, p}(\Omega)$ of

$$
\left\{\begin{array}{cl}
\mathcal{P}^{+}\left(D^{2} u\right)+\mu(x)|D u|^{m}=f(x) & \text { in } \Omega \\
u=\psi & \text { on } \partial \Omega
\end{array}\right.
$$

Moreover, there is $C_{8}=C_{8}(n, \lambda, \Lambda, p, q, m, \Omega)>0$ such that

$$
\|u\|_{2, p} \leq C_{8}\left(\|f\|_{p}+\|\psi\|_{2, p}\right)
$$

Idea of proof: It is enough to verify that we can apply the Schauder fixed point theorem to the mapping $T: v \in W^{1, r}(\Omega) \rightarrow T v \in W^{2, p}(\Omega)$ (for some $r>1$), where $w:=T v$ is an L^{p}-strong solution of

$$
\left\{\begin{array}{cl}
\mathcal{P}^{+}\left(D^{2} w\right)+\mu(x)|D v|^{m}=f(x) & \text { in } \Omega \\
w=\psi & \text { on } \partial \Omega
\end{array}\right.
$$

See [10] for the details.
Since we do not know if the weak Harnack inequality holds true even when μ is bounded, we will also consider this case. We refer to [13] for related results.

Theorem 4.2 (Theorem 4.2 in [10]) Assume that one of (6) holds. Assume also that

$$
\begin{equation*}
1<m<2-\frac{n}{q} \tag{7}
\end{equation*}
$$

For $M>0$, there exist $\delta_{3}=\delta_{3}(n, \lambda, \Lambda, p, m, M)>0, C_{9}=C_{9}(n, \lambda, \Lambda, p, q, m)>$ 0 and $r=r(n, \lambda, \Lambda, p, q, m)>0$ such that if $f \in L_{+}^{p}\left(Q_{2}\right)$ and $\mu \in L_{+}^{q}\left(Q_{2}\right)$ satisfy

$$
\|\mu\|_{q}\left(1+\|f\|_{p}^{m-1}\right)<\delta_{3}
$$

and an L^{p}-viscosity supersolution $u \in C\left(Q_{2}\right)$ of $(2)_{m,+}$ in Q_{2} satisfies $0 \leq$ $u \leq M$ in Q_{2}, then it follows that

$$
\left(\int_{Q_{1}} u^{r} d x\right)^{\frac{1}{r}} \leq C_{9}\left\{\inf _{Q_{1}} u+\|f\|_{p}\right\}
$$

Remark 4.3 The hypothesis (7) is necessary when we use a scaling argument to apply the cube-decomposition lemma.
Idea of proof: In section 3, we used strong solvability of extremal PDEs (2) ${ }_{1, \pm}$ twice in the idea of proof of Theorem 3.1. Instead, we need to utilize Theorem 4.1 here. In order to obtain (5), we have to modify the scaling argument in [1] (also [2]) as in [11].

References

[1] Caffarelli, L. A., Interior a priori estimates for solutions of fully nonlinear equations, Ann. Math. 130 (1989), 189-213.
[2] Caffarelli, L. A. and X. Cabré, Fully Nonlinear Elliptic Equations, Amer. Math. Soc. Colloquium Publications, 43 American Mathemathical Society, Providence, 1995.
[3] Caffarelli, L. A., M. G. Crandall, M. Kocan, and A. Świȩch, On viscosity solutions of fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math. 49 (1996), 365-397.
[4] Escauriaza, L., $W^{2, n}$ a priori estimates for solutions to fully non-linear equations, Indiana Univ. Math. J. 42 (1993), 413-423.
[5] Fok, P., Some maximum principles and continuity estimates for fully nonlinear elliptic equations of second order, Ph.D. Thesis, UCSB, 1996.
[6] Gilbarg, D. and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, New York, 1983.
[7] Koike, S. and A. Świẹch, Maximum principle and existence of $L^{p_{-}}$ viscosity solutions for fully nonlinear uniformly elliptic equations with measurable and quadratic terms, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 491-509.
[8] Koike, S. and A. Święch, Maximum principle for fully nonlinear equations via the iterated comparison function method, Math. Ann., 339 (2007), 461-484.
[9] Koike, S. and A. Święch, Weak Harnack inequality for fully nonlinear uniformly elliptic PDEs with unbounded ingredients, J. Math. Soc. Japan, 61 (3) (2009), 723-755.
[10] Koike, S. and A. Świȩch, Existence of strong solutions of Pucci extremal equations with superlinear growth in $D u$, J. Fixed Point Theory Appl., 5 (2009), 291-304.
[11] Koike, S. \& T. Takahashi, Remarks on regularity of viscosity solutions for fully nonlinear uniformly elliptic PDEs with measurable ingredients, Adv. Differential Equations, 7 (4) (2002), 493-512.
[12] Nakagawa, K., Maximum principle for L^{p}-viscosity solutions of fully nonlinear equations with unbounded ingredients and superlinear growth terms, Adv. Math. Sci. Appl., 19 (2009), 89-107,
[13] Sirakov, B., Solvability of uniformly elliptic fully nonlinear PDE, Arch. Rat. Mech. Anal.
[14] Winter, N., $W^{2, p}$ and $W^{1, p}$-estimates at the boundary for solutions of fully nonlinear, uniformly elliptic equations, Z. Anal. Anwend., 28 (2) (2009), 129-164.

