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1. Introduction and main result

In this article, we consider the one-dimensional Schrédinger operators with periodic
point interactions and discuss its spectrum. In our previous works [10, 12, 13], we discussed
the coexistence problem. In this article, we especially introduce the main results in [13]
and describe the outline of the proof.

In order to explain the motivation of our research, we describe backgrounds. The one-
dimensional Schrodinger operators with periodic point interactions play an impertant role
in solid state physics and have been studied in numerous works [1, 2, 3, 4, 5, 6, 7, 8, 15, 16]
so far. Especially, it is notable that R. Kronig and W. Penney introduced the one-
dimensional Schrédinger operators with periodic §-interactions. Let &(-) be the Dirac
delta function supported at the origin. The following operator is nowadays called the
Kronig-Penney Hamiltonian.

2
L, := —% +ﬁz5(x —2rl) in L*(R), BeR\{0}.

leZ

One can prove that a function y from the Dom(L;) satisfies that y € W22(R \ 27Z) and
the following boundary conditions at z € 2nZ:

y(z+0) \ _ (10 y(z — 0)

2z+0) )"\ B 1)\ E-0 )
This operators is the Hamiltonian for an electron in a one-dimensional crystal. The J-
interaction was widely generalized by P. Seba in 1986 (see also [2, 3] and [1, Section
K.1.4]). He investigated the family of the self-adjoint extensions of the second derivation
operator L% = —d?/dz? with Dom(L®) = {¢) € W22(R)| (0) = +'(0) = 0}. Since this
operator has the deficiency indeces (2,2), there is a four-parameter family of self-adjoint

* The author is supported by Research Fellowships of the Japan Society for the Promotion of Science
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extensions. In particular, the family of the connected types of self-adjoint extension is
given by
{L(,A) 6€R, Ae€SL(2,R)},

where

(L6, @) = -S4 (@), zeR\(0),

2,2 y(+0) \ _ y(-0)

pom(z0.4) = {yewrsvon| (475 ) =4 (&) ) }

for € R, A € SL(2,R). The generalized point interaction corresponds to the boundary
condition of this operator. In order to express the potential of the operator L(6, A), P.
Kurasov introduced the distribution theory for the discontinuous test functions in 1996.
Let D6 = 6V be the derivative of the Dirac delta function in the sense of this disctibution
theory. According to [7], one can prove that

L(0, Ag) = —D? + Bs™),

248
( 0 275

In this article, we especially summarize the results of the spectral analysis for the second
derivation operator —D? perturbed by the periodic 6(-interactions. For By, B,,8; €
R\ {2, -2}, B3 # 0 and 0 < k1 < K2 < 27, we consider the operator

where 8 € R\ {—2,2} and

H =D+ (816D (z — k1 — 2ml) + 26" (x — kg — 2l) + B30V (z — 2ml)) in  L*(R).
leZ

We define the domain of H as

_ 2 there exists some f € L?(R) such that
Dom(H) = {w €L (R)’ (HY,o)r2my) = (f, ¢)r2m) for all o €D } ’
where D = C§°(R).

We next introduce the precise definition of the operator H. For that purpose, we
describe the distribution theory for the discontinuous test functions. We put I' = I'; U
[y UTs, where Iy = {k1} +27Z, Ty = {ka} +27Z and I'3 = 27Z. For t € T", we define the
set K, as the set of all functions with compact support on R such that those derivatives of
any order outside the point ¢ are uniformly bounded. Furthermore, we put K = Uier K.
Let K’ be the set of the distribution corresponding to K. This implies that f € K’ is a

linear form on K such that for every compact set B C R, there exist constants C' > 0
and n € N U {0} satisfying
d o
(&) #

F@) < C3 sup

, p€K;, teTl, supp(p)C B.
TH#t

aln
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For a disctibution f € K’ and a test function ¢ € K, we define the derivative D f = f 1)
as

(0-0) =1 ()

where dyp/dx stands for the derivative of ¢ on R\ T in the classical sense. Moreover, we
define the delta function supported at t € I in K’ as

(5(a - ) () = AFX AP0

for ¢ € K. The derivative of Delta function in K’ is calculated as

(6(1)(16 . t))(‘P) _ _(%f)(t + 0) -;— (%g)(t - 0)

for ¢ € K;. The relationship between derivatives D, and d/dx can be given by using the
derivation of the constant disctibution 1. The derivation of 1 is the distribution defined
by the formula

(B(z = 1)) () = (¢t +0) — p(t - 0)

for t € T and ¢ € K,;. The derivative D,8(z —t) = SV (x — t) of this distribution is
defined the equation

(BV(z — 1)) (p) = — (fl—:(t +0) — %g(t - 0)) for o€ K; and teT.

Next, we describe the difference between the generalized and classical derivatives. We
define ’

Kijoc = {f € C*(R\ {t})| f is bounded,

d'n
agf(t:tO)’ < oo}

for t € T'. For every ¢ € Kijoc, ¥' = (d/dz)y stands for the classical derivative, D,y =
1) the derivative calculated as a distribution. As proved in [7, Lemma 4.5], the difference
between the classical deivative (d/dz)y and the generalized derivative Dyt = ) for
Y € Kioc is illustrated by the formula

Dy = -+ (Bl — ) )8z — ) + 3z — (WA — 1),

D2y = Ly 4 (6~ )DaBlz — 1) — (Dab(z — )W)z — )
+(Bz — )($)) Dab(z — 1) — (DaBlz — 1)(%))b(z — 1). (1.1)

We consider the product of any distribution f € K’ and any function ¢ € Ki o for t € T’
as

fo(p) =P f(p) = f(Yp)
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for an arbitrary test function ¢ € K;. We also define the product §V)(z~t) and ¥ € L*(R)
as

(6@ = D)) = (W8 (e~ )() =~z — 1) (= (we))

for ¢ € D satisfying supp(¢) N {t} = 0 because ((d/dz)(¢¢))(t £0) exists. As in [7, (14)],
we also have

B (z — 1)) (%)
4

6D (z — ) ()5 — 1) + L& ;t))(w)ﬁ“)(m —1) (1.2)

W6 (z — 1) = (6(z - )(W)6V(z — 1) + Blz 1)

for ¥ € K;joc and t € T
One can express the definition of the operator H by the boundary conditions on the
lattice I'. We define the operator T in L%(R) as follows:
2

(Ty)(@) = —y(z), = €R\T,

y(z+0) \ _ , ( y(z—-0)
Dom(T) = { y € W*2(R\T) ( 2(z+0) ) =4 ( #(z-0) )
for z€Tly, 7=1,2,3

2+8; 0
A, =1 276
J 0 2—52'
2485
for j = 1,2,3. By using (1.2), one can prove that H = T (see [13, Theorem 1.1]). In a
similar way to [10, Proposition 2.1], we can show the self-adjointness of H. Since H has

2m-periodic point interactions, we can make use of a direct integral decomposition for H
(see [14, Section XIII.16]). For u € R, we define the Hilbert space

where

Hy = {u e L} (R)| u(z+27) =e*u(z) for almost every z € R}

loc

equipped with the inner product

(uy V)20, = /0 T (2@ ds,  wveH,
We define a fiber operator H, = H,(A1, Az, A3) in H,, as
(Huy)(z) = —y"(x), z € R\T,
y € H*((0,2m) \ {k1, K2}),

o= fre) (4659)-a(3)

for zel';, j=1,2,3
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We further define a unitary operator I/ from L?(R) onto 0% BH, du as

(Uu)(x, p) eltu(x — 2Um).
)
Then we have the direct integral representation of 7"
2m
UTU™ ! = / G®H, du.
0
Let A\;(u) be the jth eigenvalue of H, counted with multiplicity for j € N. We put

24+ 8;  2-—5;
H<2_/BJ 2+/8.7')'

To define the spectral gaps of H, we now quote the basic properties (a)—(f) of ¢(H) from
[11, Proposition 1.1].

(a) The function A;(-) is continuous on [0, 27].
(c) If u & 7Z, then every eigenvalue of H, is simple.

(d) The spectrum of H is given by

o(H) = U o(H, (A1, Ag, A3))

pefo,m]

= D)‘J’([O)ﬂ-])
= |J U M}

=1 pe(0,r]

(e) If &€ > 0, then the function \;(-) is strictly monotone increasing (respectively, decreas-
ing) function on [0, 7] for odd (respectively, even) j.

(f) If £ < 0, then the function \;(-) is strictly monotone increasing (respectively, decreas-
ing) function on [0, 7] for even (respectively, odd) j.

Here we define the spectral gaps of H. We define

_f (M), Ajpa(m)) for j odd,
G = { (A;(0), A 311(0)) for ; Zven

in the case where £ > 0, while we put

| (N\j(m), Aja(m)) for j even,
G { (A;(0), A 3::1(0)) for 7 odd
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if £ < 0. Then we refer to the open interval G; as the jth gap of the spectrum of H.
Furthermore, we put B; = X;([0,7]). This closed interval B; is called the jth band of
the spectrum of H. The consecutive bands B, and B,; are separated by an spectral gap
G;. If there exists j € N such that G; = 0, i.e. the jth spectral gap is degenerate, then
the corresponding bands B; and Bjy; merge. The aim in this article is to determine the
degenerate spectral gaps of H, namely, to clarify the following set:

B .= U Bj N Bj+1.

=1

Furthermore, we determine the induces of the degenerate gaps of o(H), i.e., we analyze
the following set:

For j = 1,2, 3, we put

2—p;
Remark 1.1. Two of the following four statements does not simultaneously hold.
(A.1) alaia2 —1=0.
(A.2) asas —al=0.
(A.3) ajas —ai =0.
(A.4) ajas —ai =0.

In [13], we obtained the following three results.
Theorem 1.2. (the single periodic 6)-interaction ) If 81 = B2 = 0 is valid, then we have
G; #0
forj €N, ie., A=0.

Theorem 1.3. (the double periodic 6 -interactions) If /1 = 0 and By # 0, then the
following statements hold true.

(i) If asaz # £1 or ag # a3, then we have A = .

(ii) We suppose that azas = 1. Then, A =0 if and only if Ko/ & Q. If ko /2m = q/p,
(p,q) € N?, and ged(p,q) = 1, then A = {pj| j € N}.

(iii) We assume that ap = taz and ky # w. Then, A = 0 if and only if ky/7 &

{a/pl (p,q) € N?, gcd(p,q) =1, q € 2N —1}. If ko/7 = q/p, (p,q) € N2,
ged(p,q) =1 and q € 2N — 1, then we have

A={p(2j-1)| jeN}.

For the simplicity, we put 71 = k1, 72 = Ko — K1, T3 = 27 — k2. Note that the following
statements are equivalent:
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(A) K,Q/Kl S Q and Kl/ﬂ' € Q

(B) there exists (p1, 2, ps) € N® such that 71 : 7o : 73 = p1 : p2 : p3 and ged(py, p2, p3) =
1.

For (py1, pe, p3) € N? satisfying ged(p1, p2, p3) = 1, we put p = p1 + p2 + ps.

Theorem 1.4. (the triple periodic §V)-interactions) If 1 # 0 and By # 0, then we have
the following two statements.

(i) Suppose that (a2aal — 1)(adaf — o?)(adad — of)(ddad — af) = 0. If (ka/k1, K1 /T0) &
Q?2, then we have A = 0. If there exists (p1,pa2,ps) € N°® such that 71 : T2 : T3 =p1 :
po : p3 and ged(p1, p2, p3) = 1, then we have

pN  if a?a2a? =1,

EN  if p,pp€2N—1, p3€2N and ajaj —of =0,
A=<{ EN ifp,ps€2N—-1, p,€2N and ala? - a3 =0,

EN  if pp,ps €2N—1, p1 €2N and ofoj — a? =0,

0 otherwise.

ii) Suppose that (a2a2a2 — 1)(a2aj — a?)(a?ad — af)(afad — o) # 0. Then, we have
10503 203 — aj)(aj0p — O3 3

( 2 3

cot T3V A cot oV = %g%g%g—l-

—1°
afozaz—1

2

B= i A€ R\{O} COtTl\/XCOtT?’\/_: Ec?éx%%&—g%si’

N —

cot T/ cot T3V = %i%%—_ﬁ%%i

\ ajajQag y

Our problem is called the coexistence problem, which relates the properties of the
solutions to the differential equation corresponding to H. To explain the concept of the
coexistence problem, we consider the equations

2

da? = r 1.
defU(CE, A) = dy(z,)), ze€R\T, (1.3)
y(z+0,A) \ _ , ( y(z—0,}) o
(%(I+0,/\) =4\ oy )0 T I=L25 (1.4)

where A € R is a spectral parameter. Let v;(z, A) and y2(z, A) be the solutions to (1.3)
and (1.4) subject to the initial conditions

dyi
y A)=1 — A)=0
y1(+0’ ) ) dr (+07 ) )
and g
y2(+07 ’\) =0, Y2 (+O) )‘) =1,

dz
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respectively. The monodromy matrix M () is defined by

o mu(A) mia(A) [ (27 +0,A)  ye(2m+0,A)
M) = ( ma1(A)  maa(A) ) - ( @ (2m 4+ 0,A) 42(27 +0,\) ) '

The function D(X) := tr M(A) is called the discriminant of the spectrum of H. It holds
that o(H) = {A € R| |D(\)| < 2}. The sequence {\;}32, is defined as the zeroes of
D()) £ 2 counted with the multiplicity. Then, we have Ayj_2 < Agj_1 < Ay, for j € N.
Moreover, we obtain B; = [Ayj_2, A2j_1] for j € N. In addition, we have

B={AeR| M(AN=E or M(\)=-E}, (1.5)

E being the 2 x 2 unit matrix. According to [9, Section VII], one says that the periodic
solutions to (1.3) and (1.4) coexist if all the solution to (1.3) and (1.4) are periodic or
anti-periodic. We note that the periodic solutions to (1.3) and (1.4) coexist if and only
if A € B. In this sense, the coexistence problem relates the properties of the solution to
the differential equation corresponding to H. Therefore, the coexistence problem for the
periodic Schrédinger operators has been investigated by numerous authors. Especially,
we can find the result of the coexistence problem for the one-dimensional Schrodinger
operators with periodic point interactions in [4, 5, 6, 10, 12, 16] and so on.

2. Outline of the proof

In this article, we give the outline of the proof of Theorem 1.4. For that purpose, we
first introduce the rotation number for H. To look back on the definition of the rotation
number, we consider the Schrédinger equations (1.3) and (1.4). Let y(x, ) denote a non-
trivial solution of (1.3) and (1.4). The Priifer transform w = w(z, A) of y(z, ) is defined
by the polar coordinates (r,w) of ((d/dz)y,y), namely, (d/dz)y = r cosw and y = rsinw.
The function w(z, \) satisfies the equation

d
g:;w(a:, A) = cos®(z,A) + Asin®w(z,)), z € R\T, (2.1)
as well as the boundary conditions
a? cosw(z + 0, A) sinw(z — 0, A) = sinw(z + 0, A) cosw(z — 0, A), (2.2)
sgn(sinw(z + 0, A)) = sgn(a; sinw(z — 0, 1)), (2.3)
sgn(cosw(z + 0, ) = sgn(a; ' cosw(z — 0, A)) (2.4)

forz € I'; and j = 1,2, 3. Following (11, Theorem 1.2}, we choose the branch of w(z+0, \)
as

wz+0,\) —w(z—0,\) € [-7,m) for z€&T. (2.5)

Let w = w(z, A, wo) be the solution to (2.1)-(2.5) subject to the initial condition w(+0, A) =

wo € R. The rotation number for H is defined as

w(2km 4+ 0, A\, wp) — wp
2km ’

p(A) = lim (2.6)
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where k € N. Let us cite [11, Theorem 1.2], in which the properties of p()\) are summa-
rized.

Theorem B. The function p()\) has the following properties.

(a)  The limit on the right-hand side of (2.6) exists and is independent of the initial
value wy.

(b)  The function p()) is continuous and non-decreasing on R.

(c) We recall B; = [A2j—2, Agj—1] for 5 € N. Put £ = §{5 € {1,2,3}| a; < 0}, where
A stands for the number of the elements of a finite set of A. Then, we have

-1 ¢
/\gj_zzmax{/\ER p()\) ]T—'E}:

)\gj_l = min {)\ €eR

for j € N.

From now on, we start the discussion on the proof of Theorem 1.4. We assume that

B$1 # 0 and B; # 0. The elements of monodromy matrix can be directly calculated by
M()\) Tl()\)A TQ()\)AQT3()\)A3, where

Ti(\) = Cos Tj\/X % sin Tj\/X
P\ =VAsint VA cosTVA

for j =1,2,3. By using this formula, we have

mi11(\) = aaagas cos 71V A cos 79V cos 75V — 2293 Gin 71V A sin 5V cos T3V A
3]
_ o3 cos 71V A sin 75V sin 3V — sin 71V cos 79V A sin 73V,
A sin 71/ A sin 79 v/ sin 75/

org
ma1(A) = _di%e \/X cos 71V A cos 72 VA sin 73V A

1042

L /X cos 71V Asin 74 VA cos T3\/— — sin 71V cos T3 V'A cos T3V,
042013 1 o (x3

mia(A) = al\(;}% sin 7,V cos T2V A cos T3V A A+ 2 \/_ cos 71V Asin 79V cos T3 VA
1231

o
193 sin 71V A sin 2V sin 7s VA 4+ ——> COSTl\/XCOS‘Tg\/XSin’@\/X,
042\/_ alaz\/_

mas(A) = —-ala2\/Xsm7'1\/Xcos7'2\/XsmT3\/_—
51n71\/XsmT2\/Xcos7'3\/_+

az 3 Q10203

cos 71V A sin 75 VA sin VA
cos 73V A cos 75V cos T3V M.

a1a3
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We define S; = {p®j2/4| j € N} and S, = {p*j?/16] j € N}. The degenerate spectral
gap is characterized by the formula (1.5). By solving the equation M () = +E, we obtain
the following result. ( Since we presicely discussed in [13], we here omit the proof of this
part.)

Lemma 2.1. Suppose that (a202a? — 1)(aa? — a2)(a?a? — af)(aai — a3) = 0. Then,
we have

Sy if (B) and (A.l),

Sg if (B), p1 € 2N — 1, P2 € 2N — 1, p3 € 2N and (AZ),
B= SQ if (B), p1 € 2N — ]., p2 € 2N, P3 € 2N -1 and (A3),

So if (B), pp€2N, p,e2N—-1, p3e€2N-1 and (A44),

0 otherwise.

We prove Theorem 1.4 (i) by using this lemma. (Since we can find the proof of
Theorem 1.4 (ii) in [13], we here omit it.)

Proof of Theorem 1.4 (i). We prove that if (A.1) and (B) are valid, then we have A = pN.
We prove this statement in only the case where a1, as, a3 > 0, which implies £ = 0. By the
previous lemma, we see that B = S;. So, we calcurate the rotation number at p; = p%j2/4
for j € N. For that purpose, we calculate w(2mk + 0, uj,wo) for k € N. Since the rotation
number does not depend on the initial value, we put wy = 0. It turns out that w(z, A,0)
corresponds to the Priifer transform of y2(z, ). For z € (0, k,), we have

1 )
yo(z, pj) = \/_/T_ sin \/p;,
J

and
!
y2(z, py) = cos \/p;z.

Therefore, we have

2w _
w(kr — 0, 15,0) = /1y - % =p1mj € T2

Equations (2.2)—(2.4) imply that w(k; + 0, p;, 0) satisfies the equations
sgn(sinw(k; + 0, u;,0)) = sgn(a; sinpymy) = (=1)P7,
and
cosw(ky + 0, uj,0) = 0.

Because of (2.5), we obtain
w(ry +0, 45, 0) = pr7j.

Since yz(k1 + 0, ;) = 0 and y2(x1 + 0, p;) = (—1)"7 /oy, we have

(_1)1’1.] sin(z — k1)1,

T, ;) =
ya( #J) Oq\/}TJ
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and .
(__ 1)1’1]

(051

cos(z — K1)/

Yo (z, 1) =
on (k1, k2). This implies that
w(kg — 0, 145,0) = p1mj + \/B5 - (K2 — K1) = p17j + P27y
In a similar way, we obtain
w(ke +0, 15,0) = (p1 + p2)7J

and
w(2m — 0+ 0, u;,0) = (p1 + p2 + p3)mj = prj.

Since the equation (2.1) is periodic in w, we obtain
w(2rk + 0, pj,0) = pmjk
for k € N. This is why we have

o w(2km+0,u;,0 pJ
ppg) = lim ( T )=_2_.

By using Theorem B and ¢ = 0, if turns out that the pj*® spectral gap is degenerate at

u; for every j € N.
In a similar way, we can obtain the other results.
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